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Clinical-radiomics hybrid
modeling outperforms
conventional models: machine
learning enhances stratification
of adverse prognostic features in
prostate cancer
Minghan Jiang1,2†, Zeyang Miao1†, Run Xu1†, Mengyao Guo1,
Xuefeng Li1, Guanwu Li1, Peng Luo1* and Su Hu2,3*

1Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine,
Shanghai University of Traditional Chinese Medicine, Shanghai, China, 2Department of Radiology, The
First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China, 3Institute of Medical Imaging,
Soochow University, Suzhou, Jiangsu, China
Objective: This study aimed to develop MRI-based radiomics machine learning

models for predicting adverse pathological prognostic features in prostate

cancer and to explore the feasibility of integrating radiomics with clinical

characteristics to improve preoperative risk stratification, addressing the

limitations of conventional clinical models.

Methods: A retrospective cohort of 137 prostate cancer patients between

January 2021 and April 2023 with preoperative MRI and postoperative

pathology data was divided into adverse-feature-positive (n=85) and negative

(n=52) groups. Regions of interest (ROIs) were delineated on ADC and T2WI

sequences, and 31 radiomics features were extracted using PyRadiomics. LASSO

regression selected optimal features, followed by model construction via five

algorithms (logistic regression, decision tree, random forest, SVM, AdaBoost).

Clinical models incorporated three variables: biopsy Gleason grade, total PSA,

and prostate volume. The best-performing radiomics model was combined with

clinical features to build a hybrid model. Model performance was evaluated by

AUC, sensitivity, specificity, accuracy, calibration curves, and decision curve

analysis (DCA).

Results: Patients were randomly split into training (n=95) and validation (n=42)

cohorts. The random forest model using ADC-T2WI combined features achieved

the highest AUC (0.832; 95% CI: 0.706–0.958) in the validation set,

outperforming the clinical model (AUC=0.772). The hybrid model

demonstrated superior performance (AUC=0.909; 95% CI: 0.822–0.995), with

sensitivity=0.813, specificity=0.885, and accuracy=0.857. Calibration and DCA

confirmed its robust clinical utility (p<0.01 vs. single models).
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Conclusions: The biparametric MRI radiomics-random forest model effectively

predicts adverse pathological features in prostate cancer. Integration with clinical

characteristics further enhances predictive accuracy, offering a non-invasive tool

for preoperative risk stratification and personalized treatment planning.
KEYWORDS

prostate cancer, magnetic resonance imaging, radiomics, machine learning,
biparametric MRI
1 Introduction

Prostate cancer (PCa), the second most prevalent malignancy in

men globally, poses a significant clinical challenge due to its high

incidence of advanced-stage diagnosis and poor prognosis in China (1,

2). Accurate preoperative prediction of adverse pathological

prognostic features (APPFs)—including extracapsular extension,

seminal vesicle invasion, and high Gleason scores—is critical for

personalized treatment planning, yet remains suboptimal with

conventional MRI interpretation (3, 4).

Multiparametric MRI (mpMRI) has become a cornerstone in

PCa diagnosis, offering high sensitivity for detecting APPFs (5–7).

However, its reliance on gadolinium-based contrast agents,

prolonged scan times, and interobserver variability limit

widespread clinical adoption (8–10). Emerging evidence suggests

biparametric MRI (bpMRI), combining T2-weighted imaging and

diffusion-weighted imaging (DWI), achieves comparable diagnostic

accuracy to mpMRI while reducing cost and complexity (11, 12).

Despite these advances, MRI alone struggles to quantify

microscopic tumor heterogeneity, a key determinant of APPFs (13).

Radiomics, an automated high-throughput feature extraction

technique, bridges this gap by translating imaging data into

mineable biomarkers reflective of tumor biology (14–16). Recent

studies demonstrate radiomics models based on mpMRI can predict

APPFs (AUC: 0.76–0.94) (17–19), yet bpMRI radiomics remains

underexplored. Moreover, existing models often neglect the

integration of clinical variables (e.g., PSA, biopsy Gleason grade),

potentially underestimating combined predictive power (20).

Machin learning (ML) algorithms extract high−dimensional

imaging features that are not readily accessible through visual

assessment, transforming conventional MRI into quantitative

“digital biopsies”. In prostate imaging, ML−driven radiomics has

been shown to improve lesion detection, tumor aggressiveness

grading, and recurrence prediction, frequently outperforming PI

−RADS assessment (21). These advances provide the rationale for

our study, which evaluates an ML−based radiomics pipeline to pre

−operatively stratify adverse pathological features and potentially

streamline imaging pathways.

This study aims to address these gaps by (1): developing

bpMRI-based radiomics models using five machine learning
02
algorithms to predict APPFs (2); constructing a clinical model

from routine preoperative variables; and (3) evaluating whether a

radiomics-clinical hybrid model outperforms single-modality

approaches. By leveraging bpMRI’s practicality and radiomics’

quantifiable insights, we propose a cost-effective tool for

preoperative risk stratification, potentially guiding nerve-sparing

surgery eligibility or adjuvant therapy needs, thereby reducing

overtreatment and healthcare burdens.
2 Materials and methods

2.1 Study design and population

This retrospective study enrolled 137 prostate cancer patients

who underwent radical prostatectomy at the First Affiliated

Hospital of Soochow University Hospital between January 2021

and April 2023. Inclusion criteria (1): Preoperative biparametric

MRI including ADC and T2WI sequences (2); Surgery within 4

weeks post-MRI (3); Complete clinicopathological data (age, PSA,

biopsy Gleason grade, prostate volume). Exclusion criteria (1): Poor

image quality (motion artifacts or incomplete coverage) (2); Prior

prostate surgery or hormonal therapy. Patients were classified into

adverse-pathology-positive (n=85, ≥1 feature: extracapsular

extension, positive surgical margins, lymphovascular invasion)

and negative (n=52) groups. Baseline characteristics (age, PSA)

were balanced between groups (p>0.05). The study protocol was

approved by the First Affiliated Hospital of Soochow University

Ethics Committee, with waived informed consent due to

retrospective anonymized data.

2.2 Image acquisition and preprocessing

MRI scans were performed using Siemens Skyra 3.0T and GE

Signa 3.0T systems with standardized protocols (Table 1). To

mitigate scanner variability, ADC maps were normalized using

ComBat harmonization. Two radiologists (5+ years’ experience)

independently delineated tumor ROIs on ADC maps, referencing

T2WI and DWI (b=50,1000 s/mm²). Inter-observer agreement was

assessed by Dice similarity coefficient (mean=0.82). ROIs were
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rigidly registered across sequences using 3D-Slicer v5.3.0 and

resampled to isotropic voxels (1×1×1 mm³).
2.3 Radiomics feature extraction and
stability

A total of 851 radiomics features (shape, first-order, texture,

wavelet) were extracted via PyRadiomics. To ensure reproducibility,

30 randomly selected cases were re-annotated by the same observer

after 2 months, retaining features with ICC≥0.75. Z-score

normalization was applied to all features.
2.4 Feature selection and model
development

The dataset was randomly split into training (n=95) and

validation (n=42) sets (7:3 ratio). In the training set:
Fron
1. Univariate analysis (Mann-Whitney U test, p<0.05)

identified features associated with adverse pathology.

2. LASSO regression (10-fold cross-validation, l selected by

1se rule) reduced redundancy, yielding 18 ADC, 5 T2WI,

and 8 combined-sequence features.

3. Five machine learning algorithms (logistic regression,

decision tree, random forest, SVM, AdaBoost) were

trained with hyperparameter optimization (grid search or

equivalent cross-validated procedure).
A clinical model was built using three variables selected by AIC-

based stepwise regression: biopsy Gleason grade, total PSA, and

prostate volume. The top-performing radiomics model (random

forest) was integrated with clinical features to construct a

hybrid model.
2.5 Statistical analysis

Model performance was evaluated by AUC, sensitivity,

specificity, and accuracy. Calibration curves (Brier score) and

decision curve analysis (net benefit threshold: 10–30%) assessed

clinical utility. Statistical significance between models was tested via

DeLong’s test (AUC comparison) and bootstrapping (1000
tiers in Oncology 03
iterations). Analyses were conducted in R v4.3.1 (glmnet, caret,

pROC packages).
3 Results

3.1 Cohort characteristics and data balance

A total of 137 prostate cancer patients were enrolled, including

85 with adverse pathological features (positive group) and 52

without (negative group). The cohort was randomly divided into

training (n=95, 59 positive, 36 negative) and validation (n=42, 26

positive, 16 negative) sets at a 7:3 ratio. Baseline clinical

characteristics (e.g., age, total PSA, prostate volume) showed no

significant differences between training and validation sets (p >

0.05), ensuring balanced group allocation (Tables 2 and 3).
3.2 Performance of radiomics models
1. Single-sequence models: ①ADC model: The random forest

(RF) algorithm achieved the highest validation AUC (0.743,

95% CI: 0.574-0.911), though sensitivity (0.731) and

specificity (0.813) remained moderate. ②T2WI Model:

Logistic regression (AUC=0.844) and RF (AUC=0.834)

demonstrated balanced sensitivity (0.808) and specificity

(0.750), outperforming other algorithms.

2. ADC-T2WI combined model: RF yielded superior

performance (validation AUC=0.832, 95% CI: 0.706–

0.958), highlighting the complementary value of

multimodal features (Figure 1, Table 4).

3. Overfitting analysis: SVM and AdaBoost exhibited significant

performance drops between training (AUC≈1.0) and

validation sets (DAUC >0.25), indicating overfitting.
3.3 Clinical-radiomics hybrid model
1. Clinical model: Incorporating biopsy Gleason grade, total PSA,

and prostate volume, the clinical model achieved moderate

validation performance (AUC=0.772, sensitivity=0.692).

2. Hybrid Model: Integration of radiomics (Radscore) and

clinical features significantly improved predictive accuracy
TABLE 1 Standardized MRI protocols.

Manufacturer MRI sequences TR/TE (ms) FOV (mm2) Matrix Thickness/slice gap (mm)

Siemens (Skyra)
T2WI 6980/104 200×200 0.52×0.52×3 3.0/0.0

DWI 5000/72 220×220 1.69×1.69×3 3.0/0.0

GE (Signa)
T2WI 3500/110 320×250 0.5×0.5×3 3.0/2.0

DWI 5000/78 160×296 1.3×1.3×3 3.0/1.0
DWI, Diffusion-weighted imaging; FOV, Field of view; T2WI, T2-weighted imaging; TR, Repetition time; TE, Echo time.
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Fron
(validation AUC=0.909, 95% CI: 0.822–0.995; p <0.05 vs.

single models via DeLong’s test). The hybrid model

demonstrated balanced sensitivity (0.885) and specificity

(0.813), with a Brier score of 0.15, indicating high

calibration accuracy (Figure 2).
tiers in Oncology 04
3.4 Clinical utility

Decision Curve Analysis: The hybrid model provided the

highest net benefit across risk a clinically relevant range of

threshold probabilities (20–70%), with a 32% reduction in
TABLE 2 Clinical characteristics between positive and negative groups for adverse pathological prognosis in prostate cancer.

Variable Positive Group (n= 85) Negative Group (n=52) P-value

Age (years) 70.11 ± 5.79 70.33 ± 7.32 0.845

TPSA (ng/mL) 15.47 (10.50, 24.82) 9.18 (6.75, 14.30) <0.001

fPSA (ng/mL) 1.37 (0.90, 2.31) 1.60 (0.95, 2.23) 0.267

f/TPSA 0.10 (0.07, 0.13) 0.15 (0.11, 0.20) <0.001

PV (cm³) 35.04 (26.25, 44.55) 44.18 (28.52, 70.26) 0.005

PSAD (ng/mL/cm³) 0.45 (0.30, 0.80) 0.20 (0.15, 0.29) <0.001

Dmax (cm) 1.50 (1.10, 2.00) 1.20 (0.90, 1.60) 0.004

Apex involvement 0.007

Yes 80 (94.1%) 41 (78.8%)

No 5 (5.9%) 119 (21.2%)

Biopsy GS 0.001

6 15 (17.6%) 25 (48.1%)

7 57 (67.1%) 21 (40.4%)

8 11 (12.9%) 6 (11.5%)

9 2 (2.4%) 0 (0.0%)

Biopsy GG 0.002

1 15 (17.6%) 25 (48.1%)

2 33 (38.8%) 16 (30.8%)

3 24 (28.2%) 5 (9.6%)

4 11 (12.9%) 6 (11.5%)

5 2 (2.4%) 0 (0.0%)

Positive core % 36.84 (20.00, 62.50) 22.65 (15.11, 30.77) <0.001

PI-RADS 0.227

2 4 (4.7%) 1 (1.9%)

3 18 (21.2%) 17 (32.7%)

4 36 (42.4%) 24 (46.2%)

5 27 (31.8%) 10 (19.2%)

Tumor location <0.001

Peripheral zone 43 (50.6%) 16 (30.8%)

Transition zone 26 (30.6%) 34 (65.4%)

Entire prostate 16 (18.8%) 2 (3.8%)
Continuous variables are presented as mean ± SD or median (IQR) and categorical variables are expressed as frequency (percentage).
Bolded P-values indicate statistical significance (P < 0.05).
Dmax, Maximum diameter of lesion; fPSA, Free Prostate-specific antigen; f/TPSA, Free-to-total PSA ratio; GS, Gleason score; GG, Gleason grade; PV, Prostate volume; PSAD, Prostate-specific
antigen density; TPSA, Total prostate-specific antigen.
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TABLE 3 Clinical characteristics between training and validation sets for adverse pathological prognosis in prostate cancer.

Variable Training (n=95) Validation (n=42) P-value

Age (years) 70.68 ± 6.58 69.07 ± 5.85 0.174

TPSA (ng/mL) 14.24 (8.25, 22.28) 11.29 (8.39, 21.02) 0.9

fPSA (ng/mL) 1.53 (0.93, 2.41) 1.53 (0.94, 2.10) 0.603

f/TPSA 0.12 (0.08, 0.1) 0.11 (0.07, 0.15) 0.485

PV (cm³) 36.28 (26.81, 55.75) 34.93 (28.59, 48.48) 0.652

PSAD (ng/mL/cm³) 0.32 (0.19, 0.67) 0.38 (0.21, 0.62) 0.636

Dmax (cm) 1.40 (1.00, 1.95) 1.30 (0.80, 1.60) 0.091

Apex involvement 0.602

Yes 83 (87.4%) 38 (90.5%)

No 12 (12.6%) 4 (9.5%)

Biopsy GS 0.076

6 33 (34.7%) 7 (16.7%)

7 51 (53.7%) 27 (64.3%)

8 9 (9.5%) 8 (19.0%)

9 2 (2.1%) 0 (0.0%)

Biopsy GG 0.143

1 33 (34.7%) 7 (16.7%)

2 32 (33.7%) 17 (40.5%)

3 19 (20.0%) 10 (23.8%)

4 9 (9.5%) 8 (19.0%)

5 2 (2.1%) 0 (0.0%)

Positive core % 26.32 (15.79, 53.24) 29.67 (19.29, 45.86) 0.631

PI-RADS 0.414

2 5 (5.3%) 0 (0.0%)

3 23 (24.2%) 12 (28.6%)

4 40 (42.1%) 20 (47.6%)

5 27 (28.4%) 10 (23.8%)

Tumor location 0.636

Peripheral zone 39 (41.1%) 20 (47.6%)

Transition zone 42 (44.2%) 18 (42.94%)

Entire prostate 14 (14.7%) 4 (9.5%)
F
rontiers in Oncology
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Continuous variables are presented as mean ± SD or median (IQR) and categorical variables are expressed as frequency (percentage).
Dmax, Maximum diameter of lesion; fPSA, Free Prostate-specific antigen; f/TPSA, Free-to-total PSA ratio; GS, Gleason score; GG, Gleason grade; PV, Prostate volume; PSAD, Prostate-specific
antigen density; TPSA, Total prostate-specific antigen.
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overtreatment observed at a threshold of 0.8 compared to clinical-

or radiomics-only strategies (Figure 3).

Nomogram Application: A patient with biopsy Gleason grade 3,

PSA=15 ng/mL, and Radscore=1.8 would receive a total risk score

of 78%, guiding high-risk classification (Figure 4).
4 Discussion

4.1 Radiomics models for predicting
adverse pathological features

Our study demonstrates that bpMRI-based radiomics models

outperform clinical models in predicting APPFs, with the ADC-

T2WI combined random forest model achieving a validation AUC

of 0.832. This aligns with prior evidence that radiomics captures
Frontiers in Oncology 06
tumor heterogeneity beyond conventional imaging (22, 23). The

superiority of ADC-T2WI over single sequences likely stems from

their complementary roles: ADC quantifies cellular density via

restricted diffusion (24), while T2WI delineates macrostructural

invasion (e.g., capsular irregularity) (25). Notably, our bpMRI

model rivals the diagnostic performance of multiparametric MRI

(mpMRI) models reported by Gandaglia et al. (AUC=0.81) (26),

suggesting that DCE sequences—despite providing hemodynamic

data—may offer marginal gains insufficient to justify their added

cost and scan time in preoperative prognostication.

Random forest algorithms excelled in our cohort, consistent

with Shu et al.’s findings in high-risk prostate cancer stratification

(AUC=0.89) (27). This algorithm’s resistance to overfitting and

ability to rank feature importance enhance clinical interpretability.

In contrast, SVM’s underperformance may reflect our cohort’s

limited sample size (n=137) and LASSO-driven linear feature
FIGURE 1

Comparative analysis of roc curves between ADC-T2WI integrated sequence machine learning models in training (A) and validation cohorts (B).
TABLE 4 Performance comparison of machine learning models on combined ADC-T2WI sequences.

Model Group AUC 95% CI Sensitivity Specificity PPV NPV Accuracy

Logistic Regression
Training 0.932 0.884-0.981 0.831 0.889 0.925 0.762 0.853

Validation 0.784 0.644-0.924 0.808 0.688 0.808 0.688 0.762

Decision Tree
Training 0.913 0.848-0.978 0.932 0.778 0.873 0.875 0.874

Validation 0.733 0.575-0.892 0.846 0.625 0.786 0.714 0.762

Random Forest
Training 0.943 0.900-0.985 0.831 0.944 0.961 0.773 0.874

Validation 0.832 0.706-0.958 0.846 0.750 0.846 0.750 0.810

SVM
Training 0.929 0.880-0.978 0.831 0.889 0.925 0.762 0.853

Validation 0.789 0.650-0.927 0.731 0.750 0.826 0.632 0.738

AdaBoost
Training 0.829 0.750-0.909 0.627 0.889 0.902 0.593 0.726

Validation 0.783 0.644-0.921 0.731 0.813 0.864 0.650 0.762
AUC, Area Under the Curve; CI, Confidence interval; PPV, Positive predictive value; NPV, Negative predictive value.
All metrics were calculated using thresholds determined by the Youden index.
Bold indicates highest AUC in training and validation sets.
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selection, which constrained its capacity to resolve nonlinear

boundaries (28).
4.2 Clinical variables and their limitations

The clinical model, incorporating biopsy Gleason grade, PSA,

and prostate volume, achieved moderate performance (AUC=0.772).

While Gleason grade and PSA are established predictors of tumor

aggression (29, 30), prostate volume’s inverse correlation with APPFs

may arise from PSA dilution in larger glands dominated by benign

hyperplasia (31, 32). However, clinical variables alone fail to capture
Frontiers in Oncology 07
microscale heterogeneity (e.g., focal extracapsular extension),

underscoring the need for radiomics integration.
4.3 Synergy of radiomics and clinical data

The hybrid model (AUC=0.909) exemplifies the translational

potential of multimodal integration. Radiomics features encode

tumor microarchitecture (e.g., wavelet textures reflecting stromal

fibrosis), while clinical variables contextualize systemic disease

burden. This synergy mirrors Fan et al.’s mpMRI-based model

(AUC=0.857) (32) but achieves higher accuracy at lower cost—a
FIGURE 2

Calibration performance evaluation of the multimodal prediction model in training (A) and independent validation (B) datasets.
FIGURE 3

Decision curve analysis demonstrating clinical utility of three predictive models: the clinical model (red), the radiomics model (green), and the
multimodal model integrating both radiomics and clinical features (blue), in terms of net benefit across various decision thresholds.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1625158
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2025.1625158
critical advance for resource-constrained settings. These findings are

consistent with emerging evidence that integrating mpMRI radiomics

with key clinical variables consistently enhances prognostic

performance. For instance, Prata et al. (33) demonstrated superior

discrimination of clinically significant prostate cancer when textural

features were combined with serum and biopsy data (AUC ≈ 0.80).

Similarly, Santucci et al. (34) reported that radiomics-augmented

radiomics-RF models outperformed established clinical nomograms

for predicting lymph-node involvement (AUC 0.89 vs. 0.79 for the

best nomogram).

Clinically, a nomogram-derived risk probability exceeding 80%

may serve as a decision threshold for high-risk classification. The

hybrid model, implemented as a nomogram, provides

individualized risk estimates to support treatment decisions.

Patients with lower predicted risk (e.g., <50%) may be eligible for

nerve-sparing surgery or active surveillance, while those above 80%

are likely high-risk and may need aggressive treatment. As shown in

the DCA, applying 80% risk threshold, the hybrid model led to a

32% relative reduction in overtreatment compared to clinical or

radiomics-only strategies.
4.4 Limitations and future directions

Our study has limitations. First, the single-center retrospective

design (n=137) risks selection bias and overfitting, evidenced by the

hybrid model’s wide bootstrap AUC CI (0.82–0.97). External

validation across diverse populations and MRI platforms is
Frontiers in Oncology 08
essential. Although random-forest hyper-parameters were chosen

by an inner five-fold cross-validation grid search, the AUC

nevertheless fell from 0.943 (cross-validated training estimate) to

0.832 in the 42-patient hold-out set. Given the small size of the

validation cohort and the residual optimism intrinsic to internal

cross-validation, such a decline is expected and underscores the

importance of forthcoming multi-institutional external testing.

Second, manual ROI delineation, despite high inter-observer

agreement (Dice=0.82), introduces subjectivity. Deep learning-

based segmentation could improve reproducibility. Third,

although we applied intensity normalization and ComBat

harmonization, we did not formally quantify radiomics-feature

stability across scanner vendors (Siemens vs GE) or across

repeated time-points. Scanner-specific hardware, gradient non-

linearities and coil configurations can all influence feature

distributions, and dedicated phantom or repeat-scan studies will

therefore be required to confirm the effectiveness of harmonization

in future work. Future work should: 1) Expand data sources:

Integrate genomic markers (e.g., PTEN loss) and advanced

MRI sequences (e .g . , VERDICT) to refine biological

specificity. 2) Optimize clinical integration: Develop real-time risk

calculators embedded in PACS systems, enabling point-of-care

decision support.

In conclusion, this study establishes that bpMRI radiomics-

clinical hybrid models predict prostate cancer APPFs with high

accuracy (AUC=0.909), suggests potential to reduce reliance on

contrast-enhanced imaging in selected patients. By quantifying both

microscopic heterogeneity (via radiomics) and macroscopic
FIGURE 4

Clinical-radiomics nomogram for visualized risk stratification, integrating biopsy Gleason grade, TPSA, PV, and radiomics features to predict patient
risk and guide clinical decision-making.
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disease burden (via clinical variables), our approach offers a

cost-effective tool for personalized surgical planning. Future

multicenter trials should validate these findings and explore AI-

driven automation to bridge the gap between radiomics research

and clinical implementation.
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