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Lung cancer is the leading cause of cancer-related death world-wide. Although 
the standard of care for patients with advanced stage lung cancer has 
significantly improved with the advent of immunotherapy and targeted agents, 
the overall prognosis remains poor. It highlights the need for improved patient 
selection utilizing prognostic and predictive biomarkers. Given the limited 
feasibility of serial lung tumor tissue biopsies, liquid biopsies have gained 
specific interest in achieving this aim. Radiotherapy, commonly used alongside 
systemic treatments, can induce the release of immuno-stimulatory and 
immuno-suppressive molecules, triggering the immune- and inflammatory 
responses and releasing associated molecules. This review specifically focusses 
on immune-related molecules that are measurable in the blood and which have 
potential prognostic and/or predictive value in patients with lung cancer treated 
with radiotherapy alone or in combination with systemic agents. Such immune-

related molecules include cytokines and chemokines, damage-associated 
molecular patterns, soluble receptors and ligands, and proteins expressed on 
the immune cell surface of circulating immune cells. Classical cytokines IL-6, IL­
8, and TGF-b1 were the most studied molecules in patients with lung cancer 
treated with radiotherapy and were associated with poor survival and increased 
risk of radiation-induced toxicity. To date, there are still some barriers before 
these promising findings can be implemented in regular clinical practice. 
Practical points to achieve this goal are also addressed in this review. 
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1 Introduction 

Lung cancer remains one of the leading causes of cancer-related 
deaths worldwide, with a 5-year overall survival (OS) rate of only 25% 
(1). Depending on the type of lung cancer, the stage of the disease, and 
the overall health of the patient, treatment options can include surgery, 
radiotherapy (RT), chemotherapy, immunotherapy, targeted therapy 
or a combination of these (2–6). RT is a treatment modality that can be 
used in all stages of lung cancer. In recent years, both technological 
advancements (e.g., intensity-modulated RT) and the integration of 
immunotherapy have broadened the indication for RT and have 
improved patients’ outcomes by reducing RT-related toxicity and 
increasing OS, respectively (7, 8). However, in patients with lung 
cancer, radio-resistance and radiation-induced toxicity are both 
significant contributors to RT failure, resulting in cancer progression 
and deterioration of quality of life (QoL) (9). 

Whereas research has mainly focused on the level and 
mechanisms of RT-induced DNA damage, and the repair capacity 
of irradiated cancer cells, the field has largely ignored the fact that the 
radiosensitivity of cancer cells in patients is greatly affected by the 
immunocompetence of the host (10). RT not only induces DNA 
double-strand breaks followed by some forms of cell death (i.e. 
apoptosis, necrosis, mitotic catastrophe, or replicative senescence) 
but it can also induce clinically relevant tumor-targeting immune 
responses, which critically rely on the host’s immune status and the 
antigenicity of cancer cells and their capacity to generate adjuvant 
signals (11, 12). Upon RT-induced DNA damage, DNA 
accumulation in the cytoplasm of irradiated cells can be sensed by 
cytoplasmic nucleic acid sensors, resulting in activation of the cyclic 
GMP-AMP synthase-simulator of interferon genes (cGAS-STING) 
pathways which in turn lead to a systematically interferon type I 
(IFN-I) driven immunity program (13, 14). Besides, RT can induce 
an immunogenic variant of tumor cell death (ICD), which is 
accompanied by the expression and release of damage-associated 
molecular patterns (DAMPs). These RT-induced immunogenic 
responses can result in the uptake of tumor-associated antigens 
(TAAs) by dendritic cells (DCs) that present them to cytotoxic 
CD8+ T-cells recruited from circulatory system, subsequently 
priming and activating the anti-tumor immunity response (15). 

In contrast to these RT-induced immunostimulatory effects, RT 
can also induce immunosuppressive responses, such as the secretion 
of immune suppressive cytokines (i.e. granulocyte-macrophage 
colony-stimulating factor, GM-CSF; transforming growth factor-b, 
TGF-b) from tumor cells, which promote the migration of myeloid­

derived suppressor cells (MDSCs) and regulatory T cells (Treg) from 
the circulation towards irradiated areas (16). Also, there is increasing 
evidence showing that irradiation can induce the expression of the 
immune checkpoint programmed death ligand 1 (PD-L1) on tumor 
cells. PD-L1 can induce T-cell anergy (i.e., absence of the normal 
immune response to a particular antigen or allergen) or apoptosis by 
binding to PD-1 on activated T-cells, and thereby prevent the killing 
of cancer cells (17, 18). 

Besides the radiosensitivity and immunogenicity of tumor cells 
itself, the tumor microenvironment (TME) can shift from an 
immunosuppressive “cold” TME to an immunostimulatory “hot” 
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TME and vice versa (19). An immune-desert TME is generally 
characterized by high numbers of MDSCs and Tregs and 
enrichment of immunosuppressive cytokines, such as TGF-b and 
interleukin-10 (IL-10). An immune-enriched TME is characterized 
by high PD-L1 expression on the tumor cell surface, high number of 
effector immune cells (e.g., CD8+ T-cells, natural killer cells), and 
immunostimulatory cytokines and chemokines (i.e. interferons). 
The switch from a “cold” towards a “hot” tumor highly depends on 
the local production of cytokines, chemokines and other soluble 
factors but also on the trafficking or modulation of immune cell 
subsets recruited from circulatory system into the TME (19). This 
transition may be impaired by intrinsic tumor cell radio-resistance 
mechanisms, tumor heterogeneity, resistance-promoting 
microenvironment and immunocompetence of the host, resulting 
in a proportion of patients that initially do or do not respond to 
RT (10). 

Another key aspect limiting the success of RT for lung cancer 
treatment is RT-induced lung injury (RILI), which encompasses 
any lung toxicity induced by RT and can manifest acutely – in an 
early phase – as radiation pneumonitis and in a late phase as 
radiation pulmonary fibrosis resulting from chronic pulmonary 
tissue damage (8, 20). Acute radiation damage induced on 
endothelial and epithelial cells mainly includes DNA damage and 
release of reactive oxygen species (ROS), which cause cell death, 
release of pro-inflammatory proteins like CXC-chemokine ligand 
12 (CXCL12), interleukin-1 (IL-1), recruiting immune cells to 
irradiated areas, edema of the alveolar walls and increased 
vascular disruption (21). Protracted fractions of irradiation can 
cause endothelial cell dysfunction, leading to increased membrane 
permeability, detachment and apoptosis, activation and release of 
inflammatory cytokines like TGF-b, eventually leading to chronic 
radiation-induced pulmonary fibrosis (22, 23). Almost one out of 
four patients (24%) with stage II-III non-small-cell lung cancer 
(NSCLC) treated with chemoradiotherapy experience RILI with 
grade 2 or more (24, 25), underlining the need for predictive and 
prognostic biomarkers. 

Tissue biopsies are the golden standard procedure for diagnosis 
and molecular testing, however, a tissue biopsy is an invasive 
method that is not always feasible and repeatable. Also, the 
diagnostic information obtained from these tumor biopsies is 
only used for treatment selection, without providing any 
additional information regarding radio-resistance or the 
development of RILI (26). Moreover, tissue biopsies can only 
provide information limited to a single timepoint and a single 
tumor location. Tissue biopsies are also unable to capture the 
dynamic changes of the tissue during treatment. In recent years, 
liquid biopsies have gained interest due to their non-invasive, cost-
effective nature and the ability to be repeatedly collected. Peripheral 
blood is the main source of circulating immune-related molecules 
and therefore may be a valuable surrogate for the actual systemic 
immune status of patients’ before, during, and after treatment. To 
date ,  there  i s  l imited  understanding  of  whether  the  
immunocompetence  of  the  host  and  the  RT-induced  
immunological changes can be captured systemically in the blood, 
and whether these features may serve as prognostic or predictive 
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markers for treatment outcome. As such, there is an urgent need for 
liquid prognostic and predictive biomarkers that can aid in patient 
selection and monitoring treatment outcomes for patients with lung 
cancer treated with RT. This review aims to summarize and discuss 
the current literature regarding peripheral immune-related proteins 
that are associated with treatment responses and treatment 
outcome in patients with lung cancer treated with RT alone or in 
combination with other systemic anti-cancer medications. 
Clinically relevant immunological prognostic and predictive 
biomarkers can help clinicians to timely identify the patients with 
a poor prognosis or the patients who are at high risk to develop RT-
induced toxicity. 
 

2 Prognostic and predictive peripheral 
immune biomarkers 

RT can exert immunostimulatory and immunosuppressive 
effects, both locally, within the irradiated TME, and systemically, 
outside the radiation field (27). Molecules involved in these RT-
activated immunological signaling cascades include cytokines, 
chemokines, damage-associated molecular patterns (DAMPs), 
soluble proteins such as soluble receptors and ligands, and soluble 
forms of immune cell surface proteins. The circulating levels of 
these proteins and their fluctuations before, during and after 
treatment may represent the actual immunological status of 
patients. This information may aid clinicians to predict the 
patient’s prognosis and tailor treatments. 

To date, numerous clinical trials have investigated the 
prognostic and predictive significance of these circulating 
immune-related proteins in the blood of patients with lung 
cancer treated with RT, as summarized in Tables 1, 2 and 
discussed in detail below. Prognostic biomarkers are defined as 
biomarkers that provide information about the oncological 
outcome, regardless of treatment, whereas predictive biomarkers 
indicate the probability of a therapeutic benefit from a

specific therapy. 
 

2.1 Cytokines 

Cytokines are soluble polypeptides that mediate cell-to-cell 
communication, functioning as chemical messengers in the 
human body. They are produced and secreted by many different 
cell types, including immune cells, epithelial cells, and endothelial 
cells that are present in the TME and healthy surrounding tissue. 
There are different subclasses of cytokines, including interleukins, 
chemokines, interferons, and tumor necrosis factors (TNF), which 
all play an important role in regulating inflammatory responses. 
These cytokines are often produced in a cascade as one cytokine 
stimulates its target cells to produce and secrete additional 
cytokines, and increases in hundreds fold in response to the 
injury (61). 
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Irradiation can induce acute responses in the irradiated tissue, 
resulting in the production of numerous inflammation-related 
cytokines such as IL-1, IL-6, IL-8, and TNF-a within minutes to 
hours (62). These pro-inflammatory cytokines are instrumental in 
generating free radicals and oxidative stress, leading to secondary DNA 
damage, inflammation, and potentially RILI (63, 64), whereas anti-
inflammatory cytokines, such as IL-10 and TGF-b show anti-oxidative 
properties (65, 66). Also, RT-induced tissue damage results in the 
expression and/or release of DAMPs in a time-dependent manner. 
Whereas ATP is secreted rapidly after irradiation, others are secreted 
hours to days after RT mainly by dead cells (22, 67). 

2.1.1 Interleukin-6 
IL-6 is a multifunctional cytokine that is produced by many cell 

types like tumor cells, immune cells, and smooth muscles that play 
important roles during inflammation and immune responses (68). 
IL-6 is involved in the acute inflammation process by inducing the 
production of C-reactive proteins and serum amyloid A (SAA), but 
also by reducing serum iron levels resulting in anemia. 
Furthermore, IL-6 is recognized as a key regulator of 
immunosuppression in patients with advanced cancer (69, 70). 
Blockade of IL-6 in mice has been shown to significantly inhibit 
lung cancer progression, tumor cell–intrinsic STAT3 activation, 
tumor cell proliferation, and angiogenesis (71). 

In pre-clinical studies, IL-6 levels have been shown to increase 
after irradiation and predominantly exert immunosuppressive 
functions. For example, Ao et al. showed that serum IL-6 levels 
were already increased 6 hours after irradiation in mice (72). 
Similarly, Xin et al. showed that IL-6 levels significantly increased 
within 24 hours after irradiation, mediating macrophage infiltration 
and promoting tumor metastasis in mice (73). 

In the clinical setting, numerous studies have evaluated the role 
of circulating IL-6 in patients with lung cancer treated with RT. For 
example, in patients with histologically proven thoracic 
malignancies, Gkika et al. showed that circulating levels of IL-6 at 
the end of RT and during follow-up were inversely correlated with 
OS (28), as well as Ye and associates for both PFS and OS (29). A 
meta-analysis performed by Fu and colleagues revealed that patients 
with RILI had significantly higher serum IL-6 levels before RT than 
those without RILI (49). Similar findings have been reported by 
numerous others (42, 50, 51, 74). Furthermore, besides high IL-6 
levels before RT, increased IL-6 levels during and after RT also 
appeared to be associated with the development of RILI. For 
instance, Jeong et al. showed that IL-6 levels peaked at week 3 
after RT initiation in patients who developed RILI (50). Chen and 
associates showed that absolute levels of IL-6 were significantly 
higher before, during and after RT in patients who developed RILI 
(51). These findings suggest that IL-6 could be a promising 
biomarker for developing RILI. 

2.1.2 Transforming growth factor-b 
TGF-b is a master regulator of cellular proliferation and tissue 

homeostasis (75). There are three known isoforms of TGF-b, of
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TABLE 1 The prognostic and predictive value of circulating immune-related biomarkers in relation to treatment outcome in patients with lung cancer 
treated with radiotherapy. 

Biomarkers Number of 
patients 

Treatment Prognostic 
or predictive 

Relationship Reference 

Cytokines 

IL-6 41 (Chemo)RT Predictive ↑ IL-6 ↓ OS Gkika et al. (28) 

23 RT + ICB Predictive ↓ IL-6 ↑ PFS/OS Ye et al. (29) 

TGF-b 82 (C)RT Predictive ↓ TGF-b ↑ Effective 
treatment response 

Luo et al. (30) 

65 (C)RT Predictive ↓ TGF-b ↑ PFS/OS Zhao et al. (31) 

58 RT Predictive ↓ TGF-b ↑ Effective 
treatment response 

Fu et al. (32) 

IL-8 58 RT Predictive ↓ TGF-b ↑ Effective 
treatment response 

Fu et al. (32) 

41 (C)RT Predictive ↑ IL-8 ↓ OS Gkika et al. (28) 

45 (C)RT Predictive ↑ IL-8 ↑ MTV Eide et al. (33) 

44 (C)RT + ICB Predictive ↑ IL-8 ↓ OS Kang et al. (34) 

49 RT + ICB + 
GM-CSF 

Prognostic/Predictive ↑ IL-8 ↑ PFS/OS Ni et al. (35) 

IL-1 19 CRT Prognostic ↑ IL-1 ↑ OS Tang et al. (36) 

IL-10 26 RT Prognostic/Predictive ↑ IL-10 ↓ PFS Vaes et al. (37) 

23 RT + ICB Predictive ↓ IL-10 ↑ PFS/OS Ye et al. (29) 

OPN 337 (C)RT Prognostic ↓ OPN ↑ OS Suwinski et al. (38) 

55 (C)RT Predictive ↓ OPN ↑ FFR Ostheimer et al. (39) 

IP-10/CXCL10 26 RT Predictive ↑ IP-10 ↓ PFS Vaes et al. (37) 

GM-CSF 72 (C)RT Predictive ↑ GM-CSF ↑ PFS/OS Deng et al. (40) 

IFN-b 35 RT + ICB Predictive ↑ IFN-b ↑ Effective 
treatment response 

Formenti et al. (41) 

IL-17A 23 RT + ICB Predictive ↓ IL-17A ↑ PFS/OS Ye et al. (29) 

IL-21 51 RT + ICB + 
GM-CSF 

Predictive ↑ IL-21 ↑ PFS/OS Ni et al. (35) 

Soluble receptors and ligands 

sTNFR1 62 CRT Predictive ↑ sTNFR1 ↑ Symptom burden Wang et al. (42) 

sIL-2R 181 (C)RT Prognostic ↑ sIL-2R ↓ OS Carvalho et al. (43) 

sPD-L1 126 CRT Prognostic ↑ sPD-L1 ↓ OS Zhao et al. (44) 

31 (C)RT Prognostic ↓ sPD-L1 ↑ Tumor remission Sui et al. (45) 

sCD244 26 RT Prognostic ↑ sCD244 ↓ PFS Vaes et al. (37) 

sCR2 18 CRT Prognostic ↑ sCR2 ↑ PFS Vaes et al. (37) 

Proteins on immune cell surface 

CD28+CD8+ T-cells 41 RT Prognostic ↑ CD28+CD8+ 
T cells 

↑ Tumor remission Liu et al. (46) 

TCR repertoire 19 RT Predictive ↓ Shannon entropy* ↑ Metastasis Wu et al. (47) 

TCR repertoire 15 RT + ICB Predictive ↓ Shannon entropy* ↑ PFS/OS Öjlert et al. (48) 
F
rontiers in Oncology 
04 
*Shannon entropy index is a metric for measuring variable gene expression levels. Treatment response was evaluated according to RECIST 1.1. ↑, higher level of molecule; ↓, lower level of 
molecule; CRT, chemoradiotherapy; ICB, immune checkpoint blocker; MTV, metabolic tumor volume; NR, not reported; OS, overall survival; PFS, progression-free survival; RT, radiotherapy. 
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which TGF-b1 is the most abundant and ubiquitously expressed 
(76). In cancer, TGF-b plays dual roles as it can exert tumor 
suppressor  effects  on  normal  healthy  cells  and  early  
carcinogenesis by regulating cell growth and apoptosis. However, 
during tumor development, these tumor suppressor effects are often 
lost and then switches to promote cancer progression, invasion, and 
tumor metastasis (77). In the TME, TGF-b can promote 
suppression of the anti-tumor immunity by inducing polarization 
of macrophages towards the M2 anti-inflammatory phenotype, 
inhibiting the release of IL-2 by naïve T cells to prevent 
proliferation of cytotoxic T-lymphocytes (CTLs) and NK cells, 
and inducing cancer-associated fibroblasts to release interleukin­
11 (IL-11) that can increase the metastatic capacity of cancer cells 
(78–81). Suppression of TGF-bs by antibody-mediated TGF-b 
neutralization in combination with RT has been shown to 
increase the numbers of CTLs and NK cells within the TME (82). 

Numerous pre-clinical studies have investigated the role of 
TGF-b during irradiation. In vivo studies showed that RT-
induced ROS activate TGF-b, which encompasses the release of 
Frontiers in Oncology 05 
TGF-b from the latency-associated protein (LAP) that is required 
for the binding of TGF-b to its receptor (83). Also, the clearance of 
RT-induced dead tumor cells by macrophages can trigger the 
release of TGF-b by macrophages (79). Furthermore, TGF-b has 
been shown to exert multiple functions within irradiated lung 
cancer cells. On one hand, TGF-b can promote the DNA damage 
response both in vitro and in vivo reducing the radiosensitivity of 
tumor cells (84). On the other hand, TGF-b signaling has been 
shown to be involved in ionizing radiation-induced fibrosis through 
both canonical and noncanonical TGF-b pathways (79), either by 
Smad 2/3 pathway or mir-21 (85), Rho/ROCK (86) and NADPH 
oxidase (87) in lung. 

Given that TGF-b regulates a plethora of cellular responses, 
numerous clinical trials have investigated its clinical significance in 
patients with lung cancer. For example, Luo et al. investigated the 
potential predictive value of TGF-b1 in  82 patients with lung cancer  
treated with RT (30). Within one week after RT, TGF-b1 levels were 
significantly decreased in patients who achieved an effective response 
according to RECIST 1.1 compared to patients who did not. Also, 
TABLE 2 The prognostic and predictive value of circulating immune-related biomarkers in relation to the development of RILI (GR≥2) in patients with 
lung cancer treated with radiotherapy. 

Biomarkers Number of patients Treatment Prognostic 
or predictive 

Relationship Reference 

Total 
cohort (N) 

RILI (N) 

Cytokines 

IL-6 432 NR NR Prognostic ↑ IL-6 ↑ RILI Fu et al. (49) 

15 6 CRT Predictive ↑ IL-6 ↑ RILI Jeong et al. (50) 

24 13 (C)RT Prognostic/ 
predictive 

↑ IL-6 ↑ RILI Chen et al. (51) 

TGF-b 142 29 (C)RT Predictive ↑ TGF-b ↑ RILI Wang et al. (52) 

80 10 CRT Predictive ↑ TGF-b ↑ RILI Liu et al. (53) 

34 8 Surgery + RT/ 
(C)RT 

Predictive ↑ TGF-b ↑ RILI Kim et al. (54) 

165 29 (C)RT Predictive ↑ TGF-b ↑ RILI Zhao et al. (55) 

IL-8 142 29 (C)RT Prognostic/ 
predictive 

↓ IL-8 ↑ RILI Wang et al. (52) 

IL-1 24 13 (C)RT Prognostic/ 
predictive 

↑ IL-1 ↑ RILI Chen et al. (51) 

IL-10 96 7 Surgery + RT/ 
(C)RT 

Predictive ↓ IL-10 ↑ RILI Arpin et al. (56) 

TNF-a 104 21 Surgery + RT/ 
(C)RT 

Prognostic ↑ TNF-a ↑ RILI Li et al. (57) 

IP-10/CXCL10 12 5 (C)RT Predictive ↓ IP-10 ↑ RILI Siva et al. (58) 

Soluble receptors and ligands 

sTNFR1 39 8 CRT Predictive ↓ sTNFR1 ↑ RILI Hinton et al. (59) 

Proteins on immune cell surface 

CD57+CD28-CD8 
+ T-cells 

54 11 CRT Prognostic/ 
predictive 

↑ CD57+CD28­
CD8+ T-cells 

↑ RILI Kim et al. (60) 
↑, higher level of molecule; ↓, lower level of molecule; CRT, chemoradiotherapy; NR, not reported; RILI, radiation-induced lung injury; RT, radiotherapy. 
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TGF-b1 levels were negatively correlated with circulating CD4+, CD8+ 
and the CD4+/CD8+ ratio during and at the end of RT (30). In 
addition, patients who had significantly reduced TGF-b1 levels 2 weeks 
after initiation of RT compared to pre-RT seemed to have a better 
treatment response than those who had higher TGF-b1 levels (30). 
Zhao et al. collected data from patients with NSCLC treated with 
chemoradiotherapy and showed that 4 weeks after the first fraction of 
RT, decreased TGF-b levels were significantly associated with a 
prolonged OS and PFS compared to patients with increased TGF-b1 
levels (31). Similarly, Fu et al. showed that in patients with unresectable 
NSCLC treated with three-dimensional conformal radiation therapy 
(3D-CRT), TGF-b1 levels were significantly decreased in patients who 
achieved a radiological response after 3D-CRT (32). Overall, decreased 
TGF-b1 levels during and after RT seem to be associated with 
better outcomes. 

Besides the association of TGF-b1 with treatment response and 
outcome, TGF-b1 has also been associated with the development of 
RILI. Wang et al. showed that a higher mean lung dose and a higher 
TGF-b1 2w/pre ratio  (i.e.,  TGF-b levels at 2 weeks after RT initiation 
divided by the TGF-b1 levels before the first fraction of RT) in 
combination with lower pre-treatment IL-8 levels were associated 
with a higher risk of developing RILI in patients with NSCLC (52). 
Similarly, Liu et al. demonstrated that in patients with stage III NSCLC 
who underwent 3D-CRT, circulating TGF-b1 levels increased during 
the first 2 weeks after the first fraction of RT and were significantly 
increased at week 6 in the patients who developed RILI (grade ≥1) 
(53). Similarly, Kim et al. observed significant associations between the 
changes of TGF-b1 during the time course of RT and the risk of 
developing RILI in patients with lung cancer (54). Zhao et al. reported 
similar results in patients with stage I-III NSCLC (55). They showed 
that patients with increased TGF-b1 levels 4  weeks after  the  first 
fraction of RT are more likely to develop RILI than those who do not. 
These results were validated by them in a larger cohort (88). In 
summary, alterations in TGF-b levels during and after RT are 
predominantly associated with a high risk of developing RILI. 

2.1.3 Interleukin-8 
Interleukin-8 (IL-8/CXCL8), is a pro-angiogenic and pro-

inflammatory chemokine (89). The biological effects of IL-8 are 
mediated through the binding of IL-8 to two cell-surface G protein– 
coupled receptors, CXCR1 and CXCR2 (90). Different stimuli can 
induce the expression and release of IL-8 by various cell types, 
including inflammatory signals (i.e. TNF-a, IL-1b), chemical and 
environmental stresses (i.e. RT and hypoxia), and steroid hormones 
(89, 91). In tissue specimens of patients with lung cancer, high levels 
of IL-8 have been shown to correlate with tumor stage and 
prognosis (92, 93). Furthermore, IL-8 has been shown to 
stimulate tumor cell proliferation and promote angiogenesis by 
recruiting endothelial cells to the TME (94). 

So far, only a limited number of pre-clinical studies have 
investigated the role of RT on the expression and release of IL-8 
and its function in lung cancer models. In vitro, RT has been shown 
to induce IL-8 expression via the p38/MAPK and NF-kB signaling 
pathways in lung cancer cells (95). In vivo studies also showed that 
stereotactic ablative radiotherapy (SABR) could induce IL-8 
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secretion by lung cancer cells (96). Furthermore, Kühlmann et al. 
showed that increased IL-8 levels in the supernatant of irradiated 
lung epithelial cells could stimulate collagen synthesis and matrix 
production in lung fibroblasts (97). Accordingly, irradiation may 
stimulate the secretion of IL-8, which in turn can promote tumor 
development and lung fibrosis in lung cancer. 

Numerous clinical studies have investigated the prognostic and 
predictive value of IL-8 in patients with lung cancer treated with RT 
(28, 33–35). In a recent study, Gkika et al. showed that IL-8 levels 
during and at the end of RT were negatively correlated with OS (28). 
Eide et al. revealed that IL-8 serum levels before, during and after 
treatment were all positively correlated with the metabolic tumor 
volume (i.e. FDG uptake) in patients with advanced NSCLC 
undergoing palliative RT (33). In 2023, Kang et al. investigated 
the predictive value of IL-8 in patients with advanced NSCLC who 
received hypo-fractionated RT combined with PD-1 blockade 
immunotherapy (34). In this study, high pre-treatment levels of 
circulating IL-8 were significantly associated with a poor prognosis 
and 3 months after treatment, a remarkable decrease of IL-8 was 
only observed in patients in the partial remission group compared 
to the non-responder group (34). Notwithstanding, Ni and 
colleagues showed that higher pre-SBRT and post-SBRT levels of 
circulating IL-8 were prognostic and predictive, respectively, for 
improved PFS and OS, although not significant (35). 

Furthermore, IL-8 has been shown to be a good predictor for 
developing post-RT toxicities. Wang et al. collected blood samples 
from 142 patients with stage I-III NSCLC treated with RT and 
found that low circulating IL-8 levels before and 2–4 weeks during 
RT were significantly associated with a higher risk of developing 
RILI (52). 

2.1.4 Interleukin-1 
The interleukin-1 (IL-1) family, comprising 11 cytokines, plays 

a central role in innate and acquired immunity (98). Previous 
studies have mainly focused on interleukin-1a (IL-1a) and

interleukin-1b (IL-1b) during irradiation. IL-1a, predominantly 
produced by mesenchymal cells, is a key cytokine involved in 
acute inflammatory responses. It can induce the production of 
other cytokines such as IL-2, IL-6, and TNF-a, and enhance their 
relative biologic effectivity (99, 100). The main producers of IL-1b 
are innate immune cells, such as monocytes and macrophages 
(101). In cancer, IL-1 has been shown to promote carcinogenesis, 
induce tumor growth, metastasis and exert immunosuppressive 
functions (102). 

Numerous pre-clinical studies have investigated the effects of 
irradiation on IL-1 expression in lung cancer. In healthy mice lung 
tissues, RT induces a biphasic expression pattern of IL-1a. An initial 
rise was observed at 6 hours after irradiation followed by a drop to 
basal levels at 2 weeks, whereas these levels increased again at 8 weeks 
due to RT-induced inflammation (103). Interestingly, Johnston et al. 
showed that IL-1a and IL-1b remained elevated in healthy mouse 
lungs up to 6 months after irradiation and contributed to the 
radiation-induced pulmonary fibrosis (104). Kang et al. 
demonstrated that IL-1b enhances migration and invasion in the 
A549 NSCLC cells via the NF-kB–RIP1- IL-1b pathway (105). 
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There are only a limited number of clinical studies that have 
explored the dynamic changes and potential prognostic or predictive 
value of IL-1 in patients with lung cancer treated with RT. Trovò et al. 
reported decreased IL-1 levels in 13 patients with locally advanced 
NSCLC within 4 weeks following radical moderated hypo-fractionated 
RT (60 Gy/25 fractions) (106). However, it was not reported whether 
the decreased IL-1 levels were associated with treatment outcome as 
the purpose of the study was only to assess the kinetics of plasmatic 
cytokines during RT. In the NCT01725165 phase II trial, high baseline 
circulating IL-1a levels were significantly associated with improved 
outcomes in 19 patients with oligometastatic NSCLC (36). 
Furthermore, IL-1a has also been identified as a potential predictive 
biomarker. Chen et al. revealed that in patients with lung cancer 
(n=24), IL-1a blood levels were significantly higher before, during and 
after RT in patients who developed RILI (51). In addition, the authors 
showed that both IL-1a and IL-6 circulating levels gradually increased 
and were positively correlated with time, especially after RT, which 
may suggest that both IL-1a and  IL-6 are  involved  in  the response to  
radiation injury (51, 107). 

2.1.5 Interleukin-10 
IL-10 is a key anti-inflammatory cytokine that modulates 

inflammation and maintains cell homeostasis. It is mainly 
produced by monocytes, macrophages, and cytotoxic T-cells and 
can inhibit the synthesis of pro-inflammatory cytokines like IL-2 
and TNF-a, while it also exerts immunostimulatory effects on B-
cells, cytotoxic T cells and thymocytes (108–110). An in vitro study 
showed that low-dose irradiation of 4 Gy can induce IL-10 secretion 
by lung tumor cells 6–48 hours post-irradiation (111). In vivo, IL-10 
significantly increased from 24 to 96 hours after irradiation. It 
showed that hypo-fractionated RT could induce the production of 
IL-10  by  CD8+  T-cells,  enhancing  their  proliferation,  
differentiation, activity, and function (18). 

Only a few studies have investigated the clinical significance of 
IL-10 in patients with lung cancer undergoing RT. We 
demonstrated that high circulating levels of IL-10 at baseline, 
during, and end of stereotactic body radiotherapy (SBRT) were 
significantly associated with worse PFS in patients with stage I 
NSCLC (n=26) (37). Ye and his colleagues corroborated these 
results for increased plasma levels of IL-10 following treatment in 
Nivolumab responders (29). For RILI, Arpin et al. performed a 
multivariate analysis of serum cytokine levels on patients with 
NSCLC during the first two weeks of RT (56). Their results 
indicated that elevated IL-6 and decreased IL-10 levels were 
associated with a high likelihood of developing RILI . 

2.1.6 Other cytokines 
In addition to the cytokines mentioned above, several other 

circulating cytokines have been reported to have prognostic or 
predictive potential in patients with lung cancer treated with RT. 
However, the association of these cytokines with patient outcomes 
has only been reported in a very limited number of clinical studies. 

One of these cytokines is osteopontin (OPN), a secreted 
phosphorylated glycoprotein that is involved in inflammation, 
tumor progression, and metastasis (112). OPN is activated under 
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hypoxia and OPN concentrations are associated with both tumor 
hypoxia and outcomes after RT in patients with cancer (113, 114). 
In 337 patients with NSCLC, Suwinski et al. showed that low OPN 
concentrations before the start of (chemo)radiation were 
significantly associated with a favorable OS (38). Ostheimer et al. 
reported a higher risk of relapse in patients with inoperable NSCLC 
whose OPN were stable or increased 4 weeks after RT (n=55), 
indicating that OPN may be associated with a more aggressive 
cancer phenotype (39, 115). In 2016, Carvalho et al. improved a 
clinical prognostic model by incorporating OPN (43). The inclusion 
of OPN significantly improved the discrimination of the model to 
better predict the prognosis of patients with stage I-IIIB NSCLC 
treated with RT. 

Other immune-related cytokines reported in patients with lung 
cancer treated with RT include TNF-a (57), IFN-b (41), IFN-g (37, 
116), interferon gamma-induced protein 10 (IP-10/CXCL10) (37), 
monocyte chemoattractant protein-1 (MCP-1) (58), vascular 
endothelial growth factor (VEGF) (38), erythropoietin (EPO) 
(38), GM-CSF (116), IL-17A (29), and IL-21 (35). TNF-a is a 
pro-inflammatory cytokine which can induce the synthesis and 
release of other cytokines, including IL-6 and IL-1 (117). TNF-a 
levels have been shown to increase after RT in patients with lung 
cancer (n=104), but its relationship with survival was not reported 
(57). Furthermore, the baseline TNF-a levels were higher in 
patients who developed RILI (57). Siva et al. showed that patients 
with stage I-III NSCLC who developed RILI have decreased 
circulating levels of IP-10/CXCL10, MCP-1 and eotaxin after the 
first fraction of RT compared to patients without RILI (n=12) (58). 
Also, Vaes et al. implied that after the first fraction of SBRT, 
increased IP-10/CXCL10 levels were significantly associated with 
a shorter PFS for patients with stage I NSCLC (n=26) (37). Deng 
et al. demonstrated that upregulated GM-CSF during RT correlated 
with longer OS and PFS in patients with unresectable lung cancer, 
and it was an independent predictive factor (40), which is in line 
with its antitumor immune function (118). Lastly, Formenti et al. 
analyzed the blood samples of patients with metastatic lung cancer 
that were treated with palliative RT and the anti-CTLA-4 antibody, 
ipilimumab (n=35) (41). They showed that IFN-b was significantly 
increased 22 days after completion of RT in patients with partial/ 
complete response and stable disease but not in patients with 
progressive disease or death. 
2.2 Damage-associated molecular patterns 

Other interesting immune-related molecules that can act as 
predictive and prognostic biomarkers include DAMPs. Heat shock 
proteins (HSPs), particularly HSP70 and HSP90 (37, 119), are 
intracellular chaperones that can act as damage-associated 
molecular patterns (DAMPs) when exposed on the cell surface or 
released extracellularly during stress or cell death. In patients with 
NSCLC treated with immunotherapy and chemotherapy, increased 
plasma levels of HSP90 at diagnosis has shown to be prognostic for 
survival (119). In addition, high mobility group box 1 (HMGB1) 
and interferon-1 (IFN-I) were also investigated in patients with 
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NSCLC whom have been treated with radiotherapy alone or in 
combination with immunotherapy (Ipilimumab), respectively. 
Whilst HMGB1 was not associated with survival rates, IFN-I 
showed to be predictive for treatment response (41). 
2.3 Soluble receptors and ligands released 
from immune cell surface 

Soluble receptors and ligands may also have potential predictive 
or prognostic value in patients with lung cancer treated with RT. 
Soluble receptors either are formed by alternative mRNA splicing, 
resulting in a polypeptide lacking a transmembrane region that is 
secreted by the cell, or it is a direct derivative from proteolytic cleavage 
of the membrane-bound receptor proteins from the cell surface (120). 
Receptors generally consist of a cytoplasmic domain, a 
transmembrane domain, and an extracellular domain. Soluble 
receptors generally comprise the extracellular domain and, 
therefore, retain the ability to bind the ligand (121). However, in 
contrast to membrane-bound receptors, soluble receptors cannot 
transmit signals to cells directly, but they can affect binding and 
activation of membrane receptors and co-receptors and, therefore, 
indirectly regulate cellular signaling (122). Recent studies have shown 
that circulating soluble receptors and ligands are potential cancer 
biomarkers, implicated in cancer progression, metastasis, immune 
evasion, and inflammation (44, 122, 123). 

2.3.1 Soluble tumor necrosis factor receptor-1 
As mentioned before, TNF-a is an important pro-inflammatory 

cytokine involved in many pathologies (124). It exerts its biological 
effects by binding to receptors like TNFR1, which is widely 
expressed and, upon activation, can promote the proliferation, 
apoptosis or metastasis of lung cancer cells (125, 126). Soluble 
TNFR1 (sTNFR1) is generated by proteolytic cleavage of 
membrane-bound receptors by TNF-a converting enzyme 
(TACE), leading to a transiently reduced cellular responsiveness 
(127, 128). Interestingly, Hinton et al. showed that patients with 
stage II-IV NSCLC have higher baseline sTNFR1 before 
chemoradiotherapy compared to healthy individuals. Also, a 
temporary decline (2–4 weeks during RT) of sTNFR1 and TACE 
levels were observed in patients with RILI (59). Furthermore, Wang 
et al. showed that increased sTNFR1 levels 8 weeks post­
chemoradiation were positively associated with increased 
symptom burden (e.g., pain, fatigue, distress) in 62 patients with 
stage I-IV NSCLC (42). 

2.3.2 Soluble interleukin-2 receptor 
Interleukin-2 (IL-2) is a well-studied cytokine with pleiotropic 

effects (129). It can induce the activation of effector T cells and 
stimulate the growth of NK- and B-cells (130). IL-2R is expressed 
on various immune cells, varying from antigen-presenting cells to 
conventional T-cells and regulatory T-cells (Treg), releasing soluble 
IL-2 receptor (sIL-2R) upon immune activation (131). sIL-2R can 
modulate the biological function of IL-2 in serum (132). Carvalho 
et al. showed that higher concentrations of sIL-2R before start of 
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treatment were associated with a worse OS in 181 patients with 
inoperable NSCLC who had undergone (chemo)-radiotherapy (43). 

2.3.3 Soluble programmed cell death ligand 1 
Soluble forms of immune checkpoints have also been identified 

as key modulators in cancer pathogenesis (133). The PD-1/PD-L1 
pathway controls the induction and maintenance of immune 
tolerance within the TME, with PD-L1 binding to PD-1 on T­
cells to inhibit  the immune response (134). PD-L1 is mainly 
expressed on tumor cells and some immune cells under 
inflammatory conditions (135). The soluble form of PD-L1 (sPD­
L1) is produced by shedding the transmembrane domain of PD-L1 
(136). Zhao et al. showed that high baseline levels of sPD-L1 were 
correlated with worse OS in patients with inoperable NSCLC 
treated with RT (44). They also showed that sPD-L1 levels tended 
to decrease during RT and got back to baseline levels months after 
RT. Similarly, Sui et al. reported in 31 patients with unresectable 
NSCLC that low levels of sPD-L1 before treatment initiation were 
associated  with  an  object ive  response  to  concurrent  
chemoradiotherapy (45). 

2.3.4 Other soluble receptors and ligands 
Other soluble receptors that were found to be related to 

treatment outcomes of patients with lung cancer treated with RT 
included CD244 and complement receptor 2 (CR2). CD244 (2B4) is 
a Signaling Lymphocyte Activation Molecule (SLAM) family 
immunomodulatory receptor that binds to high-affinity ligand 
CD48. CD244 is expressed by immune cells, such as monocytes, 
dendritic cells, NK cells, and T cells (137). Pre-clinical studies have 
shown that increased CD244 expression in the TME corresponds to 
increased immunosuppression via CD8+ T-cell exhaustion and 
increased production of immunosuppressors by MDSCs (138). 
Vaes et al. revealed that higher plasma CD244 levels before the 
first fraction of SBRT tended to be associated with a worse PFS in 
patients with stage I NSCLC (37). CR2 (Complement Receptor 2, or 
CD21) is a glycosylated transmembrane protein mainly expressed 
on B cells that binds to C3d, involved in linking the innate and 
adaptive immune system (139). Vaes et al. also showed that in 
patients with stage III NSCLC treated with concurrent 
chemoradiotherapy, higher levels of CR2 before the first fraction 
of RT were significantly associated with a better PFS (37). 
2.4 Proteins on the immune cell surface of 
circulating immune cells 

2.4.1 Cluster of differentiation molecules 
Naive- and effector CD8+ (cytotoxic) T cells are crucial in 

immune surveillance and the adaptive immunity against infection 
and cancer (140). The predictive and prognostic value of various 
CD8+ T-cell subsets have already been shown. Kim et al. indicated 
that high levels of T-cells with a senescence phenotype 
(CD57+CD28−CD8+ T cells) before, during and after treatment 
are correlated with increased RILI in 54 patients with stage II-III 
NSCLC treated with concurrent chemoradiotherapy. Also, high 
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levels of circulating CD57+CD28−CD8+ T-cells before treatment 
were an independent predictor of grade ≥2 RILI (60). Besides, Liu 
et al. indicated that high amounts of CD8+CD28+T cells before 
treatment are related to improved early response to SABR in 
patients with metastatic NSCLC (46). In addition, Zafra and 
associates investigated CD8+PD1+ and CD8+PDL1+ as predictive 
biomarkers after the first stereotactic ablation RT fraction (141). 
However, both were elevated in the responders and non-
responders, making them not eligible as distinct biomarker. 

2.4.2 T cell receptor repertoire 
T-cell receptors (TCRs) are highly diverse heterodimeric surface 

receptors that mediate T-cell responses by recognizing specific 
antigens on major histocompatibility complex (MHC) molecules 
of antigen-presenting cells (APCs) (142). The spectrum of TCR 
epitopes responsible for tumor neoantigen recognition is diverse 
owing to the random formation of neoantigens, derived from 
numerous genetic alterations between patients (143). Each 
patient’s immune system must maintain a diversified TCR 
repertoire to recognize the variety of tumor neoantigens (144). 
Recent studies emphasize the role of TCR sequencing and repertoire 
analysis in understanding tumor biology, immune responses during 
treatment, and developing immunotherapies (145, 146). Increasing 
evidence indicated that the TCR repertoire changes after RT in 
patients with lung cancer (41, 147, 148). For example, Wu et al. 
indicated that the TCR repertoire diversity is reduced in patients 
with stage I NSCLC treated with SBRT (n=19). Moreover, diversity 
levels of TCR clones were lower after SBRT in the patients who 
developed distant metastases than in those who did not (47). Also, 
Öjlert et al. performed T-cell receptor sequencing in patients with 
stage IV NSCLC treated with SBRT and anti-PD-L1 (atezolizumab) 
immunotherapy (n=15) and showed decreased or stable diversity 
after RT in the best responders, and increased diversity at disease 
progression. Moreover, expansion of TCR clones was observed 
more often in responders (48). Similar results were reported by 
Formenti et al. in patients with metastatic lung cancer treated with 
CTLA-4 blockade combined with RT (41). 
 

3 Discussion 

The immune system’s diversity and the actual heterogeneous 
immune status before, during, and after treatment result in different 
treatment responses among patients. A reliable biomarker or 
preferably a panel of biomarkers to predict and monitor 
treatment responses is crucial for adjusting treatment protocols 
and personalizing interventions. This review summarized the 
current literature on peripheral immune-related molecules that 
may have prognostic and/or predictive value for outcomes and 
RT-induced toxicity in patients with lung cancer (Figure 1). Key 
molecules with a strong negative predictive value for treatment 
outcomes include IL-6, IL-8, and TGF-b1. Also, we observed that 
IL-6 and TGF-b1 are both prognostic and predictive for the 
development of RILI in patients with lung cancer. Other 
molecules, including IL-1, OPN, IP-10/CXCL10, IL-10, GM-CSF, 
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IFN-b, IL-17A, IL-21, TNF-a, sTNFR1, sIL-2R, sPDL1, CD244, 
CR2, CD28+CD8+ T-cells, CD57+CD28-CD8 T-cells, and TCR 
repertoire have also been identified as potential prognostic or 
predictive biomarkers for patient outcomes. However, these 
molecules have only been assessed in a limited number of small-

scale studies. 
In this review, we showed that circulating levels of IL-6, IL-8, 

and TGF-b1 in the blood of patients with lung cancer treated with 
RT were consistently negatively associated with survival and RT-
related toxicity. Measuring these proteins and validating their 
usefulness in real-life datasets will lead to improved patient 
selection and tailored preventive strategies for RT-induced 
toxicity. Besides, there are several ongoing phase 1/2 clinical trials 
aiming to investigate the clinical benefit of including blockade of IL­
6, IL-8 or TGF-b in the treatment of patients with advanced lung 
cancer (IL-6: NCT05704634; IL-8: NCT04123379, NCT04572451; 
TGF-b: NCT03732274, NCT05537051). As such, IL-6, IL-8, and 
TGF-b are potential biomarkers and targets that should be 
further explored. 

Despite extensive knowledge about the biological roles of these 
molecules, their clinical relevance as prognostic or predictive 
biomarkers remains poorly understood since their local biological 
effect is not always consistent with the clinically assessed responses. 
For example, IL-1 can induce inflammatory responses and can play a 
role in cancer progression, and as such, it was expected that IL-1 would 
negatively correlate with patient outcome (149). However, Tang et al. 
showed that higher baseline IL-1a levels were associated with 
improved outcomes in patients with oligometastatic NSCLC, possibly 
due to a systemic anti-tumor inflammatory state exhibited by induction 
chemotherapy (36). Similarly, it has been shown that irradiation can 
induce the expression of PD-L1 on the tumor cell surface of lung 
cancer cells (150). However, Zhao et al. showed that circulating sPD-L1 
levels tended to decrease during RT and normalized 3 months after RT 
(44). This might be a result of the tumor death occurred by treatment 
and the recovered level of sPD-L1 coming from the immune cell 
response to RT. Also, IL-8, which is a pro-inflammatory cytokine, can 
stimulate collagen synthesis and matrix production inducing lung 
fibroblasts (97). However, in contrast to these local biological 
functions, low circulating levels of IL-8 before and during RT were 
associated with a higher risk of RILI in patients with NSCLC (52). 
These inconsistent findings highlight the need for more research and 
prospective clinical trials to understand better the mechanisms and 
clinical implications of these markers in RT. 

Peripheral immune-related biomarkers are promising in the 
field of RT and can provide information on the host’s actual

immune status before, during, and after treatment. Also, blood-
based biomarkers can be monitored longitudinally and multiple 
biomarkers can be assessed simultaneously without sample 
limitation. Nevertheless, to date, there are still no reliable 
prognostic or predictive blood-based biomarker(s) to predict 
treatment outcomes in patients with lung cancer treated with RT, 
despite the circulating levels of numerous potential biomarkers have 
been assessed in several clinical trials. 

An emerging but still incompletely understood phenomenon in 
the context of radiotherapy combined with immunotherapy is the 
 frontiersin.org 

https://doi.org/10.3389/fonc.2025.1625212
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lyu et al. 10.3389/fonc.2025.1625212 
abscopal effect - a systemic antitumor response occurring beyond 
the irradiated field (151). This effect has attracted growing interest 
as a potential outcome measure in immuno-oncology studies (29, 
35, 41, 141, 152). However, current literature on the abscopal effect 
remains limited and presents several challenges. To date, only 
Mathew and his colleagues reported that abscopal responses (9 
out of 29 patients) at 4 weeks following treatment were associated 
with prolonged increase in dendritic cells subset DC1, T-helper 1­
like CD4 T-cells and circulating IL-12 (152). Other studies only 
report indirect correlations between immune-related peripheral-
blood markers and abscopal responses, using surrogate outcomes 
like survival outcomes or objective response rates – complete or 
partial responses evaluated in all sites of the disease (29, 35, 41, 141). 
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Notably, even when considering all cancer types, the occurrence of 
the abscopal effect remains rare. A systematic review by Abuodeh 
et al. highlighted that only 46 cases of abscopal effects were reported 
between 1969 and 2014, amongst which only 3 patients with 
primary lung cancer (153). Aside from the limited population, 
there is also lack of standardized, quantifiable criteria for defining 
and assessing abscopal responses, making it hard to corroborate 
the results. 

Even though it falls outside the scope of our review, we want to 
acknowledge the relevance of other molecular biomarkers with 
potential immunological effects that can be measured in blood, 
encompassing circulating tumor cells (154), ctDNA (155, 156), m(i) 
RNA (141) and exosomes (35). For future studies developing risk 
FIGURE 1 

Prognostic and predictive biomarkers of peripheral immune-related proteins in patients with lung cancer treated with (chemo) radiotherapy. (C)RT, 
(chemo) radiotherapy; OS, overall survival; PFS, progression-free survival); RILI, radiation-induced lung injury. Created with BioRender.com. 
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assessment models for RT in combination with immunotherapy, a 
broader spectrum of biomarkers in blood should be explored than 
solely immune-related molecules. 

There are multiple challenges and limitations hampering both 
the identification and implementation of promising biomarkers in 
daily clinical practice (Figure 2). First of all, several types of biases 
causes failure in biomarker discovery and validation studies: for 
example, patient selection, specimen collection, specimen analysis, 
and patient evaluation. To date, numerous guidelines are available, 
providing researchers with an overview of practical considerations 
and potential pitfalls for their biomarker research (157, 158). 
Furthermore, recent technological advances have significantly 
enhanced the capacity for biomarker discovery, however, these 
innovations are often expensive. Consequently, many promising 
biomarkers remain confined to small-scale clinical studies, 
hampering the broader validation and clinical implementation. 
Also, the use of assays from different manufacturers further 
complicates the validation of promising biomarkers, while these 
vary in sensitivity and specificity. As a result, the outcomes from 
small-small scale studies cannot be compared. Also, most available 
tests are designated for research use only (RUO) and are therefore 
not validated for diagnostic applications. Lastly, the implementation 
of the ‘In vitro Diagnostic Medical Devices Regulation’ (IVDR), 
which replaces the IVD Directive 98/79/EC, have resulted in drastic 
changes for practically all stakeholders (i.e. manufacturers, notified 
bodies, medical laboratories) in the field of in vitro diagnostic 
medical devices. As a consequence, manufacturers have to make 
strong investments (i.e. time, resources, and budget) to meet these 
new regulatory requirements (159, 160). Also, such regulations 
hinder the innovative capacity of medical laboratories preventing 
the development of new IVDs that could improve patient care. 
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Despite all these efforts, only a small number of biomarkers have 
been successfully validated and implemented in daily clinical care. 
One key barrier to clinical translation is the lack of multidisciplinary 
collaboration among researchers, clinicians, and industry partners. 
Most trials included in our review only assessed the circulating levels 
of specific proteins in a small sample size. However, due to 
significant heterogeneity in study designs, patient populations, and 
methodologies, the findings are difficult to compare and cannot be 
reliably corroborated. First, blood samples have been collected at 
different timepoints before, during and after treatment. Second, the 
patient populations vary substantially between the studies, including 
variations in tumor stages and treatment regimen (e.g., types of 
systemic drugs and various fractionation schemes). For example, 
low-doses  rad iat ion  therapy  have  shown  promis ing  
immunomodulatory effects, potentially reversing tumor resistance 
to immunotherapy, compared to high-dose radiation schemes (161). 
However, in-vivo evidence is currently lacking for lung cancer on the 
effect of different radiation schemes. As such, to set the stage for 
widespread clinical implementation and acceptance of these new 
lung cancer biomarkers, efforts are needed to set up collaborative, 
multidisciplinary studies. 
4 Conclusion 

This review focused on peripheral blood immune-related 
biomarkers with potential prognostic or predictive value for 
patients with lung cancer treated with RT. These findings could 
help researchers and clinicians to further validate promising 
candidates in prospective trials and implement them in daily 
clinical practice. 
FIGURE 2 

Current challenges and limitations to implement promising biomarkers in daily clinical care. 1) Bias is the main cause of failure in biomarker discovery 
and validation studies and can occur during patient selection, specimen collection, specimen analysis, and patient evaluation; 2) New technological 
advances have significantly enhanced the capacity for biomarker discovery, however, these innovations are expensive hampering the 
implementation thereof in large-scale studies; 3) Assays from different manufacturers vary in sensitivity and specificity. As a consequence, results 
from different trials cannot be compared. 4) Most assays are designated for research use only (RUO) and are not validated for diagnostic 
applications. 5) Manufacturers have to make strong investments (time, resources, and budget) to meet the new regulatory requirements to bring an 
in vitro diagnostic medical device (IVD) on the market (IVDR); 6) Lack of multidisciplinary collaboration among researchers, clinicians and industrial 
partners. Created with BioRender.com. 
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Suwiński R. Pretreatment plasma osteopontin level as a marker of response to 
curative radiotherapy and hormonal treatment for prostate cancer. Radiother Oncol. 
(2024) 200:110518. doi: 10.1016/j.radonc.2024.110518 

115. Hu Z, Lin D, Yuan J, Xiao T, Zhang H, Sun W, et al. Overexpression of 
osteopontin is associated with more aggressive phenotypes in human non-small cell 
lung cancer. Clin Cancer Res. (2005) 11:4646–52. doi: 10.1158/1078-0432.ccr-04-2013 
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