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Introduction: In the early asymptomatic stages of cancer, the immune system

initiates a targeted response against tumor-associated antigens. During this

phase, the immune system specifically identifies tumor antigens and triggers

the clonal expansion of tumor antigen-specific T cells, which recognize tumor

antigen peptides presented by the major histocompatibility complex via the T-

cell receptor (TCR) on their surface. Consequently, monitoring alterations in the

TCR repertoire holds promise for evaluating an individual’s immune status for

cancer detection.

Methods: In this study, we introduced a deep learning framework named

DeepCaTCR, designed to enhance the prediction of cancer-associated T-cell

receptors. The framework employs a one-dimensional convolutional neural

network with variable convolutional kernels, a bidirectional long short-term

memory network, and a self-attention mechanism to facilitate feature

extraction from amino acid fragments of varying lengths.

Results: DeepCaTCR demonstrates superior performance in cancer-associated

TCR recognition, achieving an area under the receiver operating characteristic

curve (AUC) of 0.863 and an F1-score of 0.669, thereby outperforming prevailing

deep learning models. Validation result indicates that DeepCaTCR effectively

distinguishes between tumor-infiltrating lymphocytes (TILs) and healthy

peripheral blood samples, achieving an AUC greater than 0.95. It also exhibits

high sensitivity (62.5%) and specificity (over 98%) in peripheral blood testing for

early-stage cancer patients. To further enhance detection efficacy, we

introduced a variance-based repertoire scoring strategy to quantify the

dynamic heterogeneity of TCR clonal amplification, resulting in an increased

AUC of 0.967 for pan-cancer early screening.

Discussion: This study introduces a novel tool for analyzing the tumor immune

microenvironment, offering significant translational potential for early cancer

diagnosis. Its key feature is a new scoring method based on variance, not the

average method.
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1 Introduction

The high mortality rate of cancer is primarily due to the late-

stage diagnosis of many cases, which consequently leads to lost

opportunities for early intervention and treatment. Early cancer

screening is as crucial for decreasing both the incidence and

mortality rates associated with cancer (1, 2). Traditional imaging

methods like endoscopy, CT (3), MRI, and PET (4) are limited to

detecting visible cancerous lesions and face challenges in speed,

sensitivity, and effectiveness (5). Similarly, tumor marker

screenings, such as carcinoembryonic and carbohydrate antigen

tests (6), are practical but lack specificity due to the absence of

unique markers for many cancer types. Advancements in Artificial

Intelligence (AI) have enhanced early cancer screening by creating

diagnostic models using tumor marker concentrations (7, 8).

Circulating free DNA is a key tool in cancer detection (9), but its

plasma concentration can be obscured by noise, complicating early

cancer detection. Additionally, the immune system’s response to

early-stage cancers produces immune characteristics that, when

combined with AI, could serve as immune biomarkers for

intelligent early screening models (10, 11).

The tumor microenvironment (TME) is vital in influencing the

immune response to cancer by modulating T-cell activity (12).

Antigen-specific T cells in the TME are crucial for identifying and

attacking tumor antigens (13), aided by the diverse and adaptable

T-cell receptor (TCR) repertoire. This diversity is key for effectively

targeting cancer cells (14). The expansion and diversification of the

TCR repertoire enable T cells to recognize tumor antigens and

activate them. Analyzing the TCR repertoire is a powerful approach

to understanding the clonal responses of tumor-reactive T cells

(15), which are crucial for effective antitumor immune responses.

The TCR repertoire provides a detailed map of the diversity and

specificity of T cells, which can be used to track the dynamics of

immune responses in cancer. Recent advancements in sequencing

technologies have enabled the comprehensive analysis of TCR

repertoires (16), allowing researchers to identify specific T-cell

clones that are reactive to tumor antigens and to understand their

role in the immune response against cancer (17). A study

demonstrated that the oligoclonal expansion of TCR b clonotypes

is associated with effective immune checkpoint therapy responses,

suggesting that specific TCR signatures can serve as biomarkers for

predicting treatment outcomes (18).

Numerous computational approaches have been devised to

detect cancer-associated sequences and estimate cancer

probability. However, the identification of cancer-associated T-

cell receptors (caTCRs) through computational methods

encounters three primary challenges: 1) the presence of weak

immune signals attributable to the low neoantigen burden

characteristic of early-stage tumors, 2) the conservation of TCR

motifs across various cancer types, and 3) the sparse distribution of

informative TCR sequences. Although current methodologies offer

partial solutions to these challenges, they continue to exhibit

significant limitations. Beshnova et al. used convolutional neural

networks to differentiate cancer TCRs but covered limited data (19).

Xu et al. (20) and Qian et al. (21) employed an enhanced TextCNN
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network with 1-max pooling and manual filter allocation to identify

breast cancer and lung cancer, which may result in the loss of key

long-range motifs. Zhang et al. used a pre-trained protein language

model to capture TCR sequence features, but its early cancer

detection sensitivity is limited by training data bias (22). Cai et al.

showed good performance in pan-cancer screening but struggled

with early immune microenvironment features (23).

To overcome these challenges, we proposed DeepCaTCR, a

deep learning framework that integrates three key innovations.

First, we employed multi-scale k-max pooling to capture variable-

length motifs (two to five amino acids) while preserving the top k

informative segments per filter. Unlike 1-max pooling (in

DeepLION, DeepLION2, and BertTCR), this approach mitigates

bias toward dominant but non-specific signals and enhances

sensitivity to sparse caTCR features. Second, we introduced

context-aware feature fusion via bidirectional long short-term

memory (LSTM) (BiLSTM) layers, modeling dependencies

between discontinuous TCR segments to address motif

conservation variability. Third, we implemented a noise-resistant

attention mechanism [multi-head self-attention (MHSA)] after k-

max pooling to dynamically weight informative sequence regions,

suppressing noise from non-cancerous motifs. Our approach

uniquely combines these components to enhance caTCR

detection in early-stage tumors.
2 Materials and methods

In this study, we developed the deep learning framework

DeepCaTCR, which effectively manages the varying lengths of

amino acid fragments in TCR sequences. Initially, we de novo

assembled cancer-associated TCRs from RNA-seq data and

collected non-cancer TCRs from healthy individuals to create a

training dataset. Subsequently, we constructed a pattern recognition

network utilizing deep learning algorithms to extract features from

amino acid fragments of differing lengths. Finally, we implemented

a variance repertoire scoring strategy to quantify individual cancer

scores. This study differentiates between cancerous and healthy

individuals based on TCR repertoire derived from TCR-seq,

exploring non-invasive early cancer detection methods.
2.1 Datasets

2.1.1 TCR training data and data processing
The positive training data were generated from CDR3s

identified by TRUST (24) from The Cancer Genome Atlas

(TCGA) 4,200 tumor RNA-seq samples across 32 cancer types

(25). Detailed information on the specific samples is available in

Supplementary Table 1. This approach was chosen instead of

utilizing TCR repertoires from tumor or blood cancer sources.

These de novo assembled caTCRs from RNA-seq data showed

higher specificity than those from TCR-seq data. Only the TCR b
chain CDR3 region, crucial for antigenic specificity, was used.

TRUST-assembled CDR3 sequences excluded incomplete
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sequences (not starting with C and ending with F), non-productive

sequences (containing B and *), those common in healthy

individuals, and sequences shorter than 10 or longer than 24.

Negative data from the training set were derived from TCR-seq

data of healthy individuals’ peripheral blood (26) by selecting CDR3

sequences with clonal frequencies at least four times the minimum

in each TCR repertoire and clustering them using iSMART (27).

Incomplete, unproductive, and improperly sized sequences were

excluded. This process yielded 30,000 cancer-associated and 59,851

normal CDR3 sequences, mostly ranging from 11 to 20 in length. In

this study, only sequences of length 11 to 20 were used for training

and validation.

2.1.2 TCR repertoire data and data processing
The TCR cohort repertoire data utilized in this study were

obtained from bulk TCR sequencing. The cancer tumor-infiltrating

lymphocyte (TIL) cohort comprises samples from breast cancer

(BRCA) (28), lung metastasis (Lung BM) (29), lung cancer (29),

melanoma (MELA) (30), and pancreatic cancer (PC) (31). The cancer

peripheral blood mononuclear cell (PBMC) cohort includes samples

from BRCA (28), MELA (32), ovarian cancer (OV) (33), PC (31),

colorectal cancer (CRC) (34), bladder cancer (35), glioblastoma

multiforme (GBM) (36), and lung cancer (37). The cancer staging

PBMC cohort encompasses stage I–II lung cancer (38), stage III lung

cancer (38), stage I renal cell carcinoma (RCC) (19), borderline

ovarian cancer (19), stage II–III ovarian cancer (19), and stage II PC

(19). The non-cancer PBMC cohorts consist of samples from yellow

fever virus (YFV) (39), human cytomegalovirus (HCMV) (26),

healthy T-cell controls (Healthy TC) (40), graft-versus-host disease

(GVHD) (41), healthy donors (HCMV−) (26), and healthy donors

(42). The details of the datasets are provided in Supplementary

Table 1. In the preprocessing of repertoire data, TCR sequences

with lengths ranging from 11 to 20 nucleotides were selected.
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Following the exclusion of unqualified TCR sequences as detailed

in Section 3.1, the sequences with the top 10,000 clone scores were

retained for further analysis. These sequences were subsequently

clustered using the iSMART algorithm. The TCR sequences

resulting from this clustering process were considered in this study

to be those most likely associated with cancer.
2.2 Multi-scale attentive BiLSTM for TCR
motif analysis

Figure 1 presents a structural diagram of the TCR sequence

recognition algorithm. In summary, TCR sequences associated with

cancer and those not associated with cancer are initially encoded

into a matrix using amino acid biochemical features as model

inputs. This matrix is subsequently processed in the convolutional

layer using a multi-scale convolutional kernel to extract features. A

max pooling layer is employed to encode the feature set of amino

acid fragments of varying lengths before applying a multi-head self-

attention mechanism to assign differential attentional weights. The

resulting attention-weighted encoding matrices are interconnected

along the channel dimension, producing an attention-weighted

matrix that contains key molecules of different lengths. This

weighted pattern matrix is then further processed using

bidirectional long- and short-term memory networks, which

focus on the correlations between these key patterns. Finally, a

self-attention mechanism is introduced to assign varying attention

weights, followed by the application of a linear classifier for

binary classification.

2.2.1 1D convolutional neural network
Deep convolutional neural networks (CNNs) are a class of deep

learning algorithms adept at identifying latent patterns within grid
FIGURE 1

Structure diagram of TCR sequence recognition algorithm. TCR, T-cell receptor.
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data. CNNs serve as highly effective tools for feature extraction from

such data, often outperforming traditional machine learning

algorithms (23). However, when CNNs are employed to extract

features from equal-length sequence encoding matrices, created by

padding variable-length sequences with zero vectors, the model

performance tends to degrade. This degradation is likely due to the

introduction of zero vectors via AA index encoding, which alters the

original data length distribution and introduces significant noise.

To mitigate this issue, we used a one-dimensional CNN (1D CNN)

algorithm to transform the encoding matrix into a one-dimensional

sequence. This approach more effectively preserves sequence

information and the dependencies between sequences (19, 21).

Let the input sequence be represented as a matrix X ∈ RL�d ,

where L is the padded sequence length and d is the encoding

dimension (amino acid index features). The 1D convolution

operation applies a filter WC ∈ Rk�d with kernel size k, sliding

over the sequence to generate feature maps (Equation 1):

h ið Þ
C = ReLU(WC · Xi : i+k−1 + bC) (1)

where Xi : i+k−1 is the subsequence window from position i to i +

k − 1, and bC is a bias term.

2.2.2 k-max pooling
Furthermore, we employed the k-max pooling algorithm to

transform the one-dimensional coding sequence into a sequence of

uniform length, effectively mitigating interference from zero vector

padding, and k-max pooling selects the k largest values from the

feature map hC (Equation 2):

Pk = Topk(hC) (2)

where Topk retains the k highest activations.

2.2.3 Multi-scale convolutional kernels
The currently employed algorithm is limited to acquiring amino

acid fragments of a fixed length from the sequence. However, prior

research has demonstrated that the length of cancer-related key

motifs is variable, typically ranging from two to eight amino acids.

To capture the characteristics of amino acid fragments of varying

lengths, this study adapted the TextCNN model from natural

language processing, implementing convolutional kernels of

diverse sizes within the convolutional layer (20). To capture

motifs of variable lengths (k1, k2, …, kn), parallel convolutional

kernels of different sizes are applied (Equation 3):

Hmulti = ⊕n
j=1Hkj (3)

where Hkj is the feature map from the jth kernel and⨁ denotes

concatenation along the channel dimension.
2.2.4 Self-attention mechanism
In the context of the weighted motif matrix of a sequence, it is

acknowledged that amino acid fragments of varying lengths exert

differential influences on sequence specificity. To address this, a

self-attention mechanism was implemented to evaluate the

similarity between different positions within the sequence,
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assigning an attention weight to each position. This allows the

model to autonomously identify the key motifs within the sequence.

Given the multi-scale feature matrix Hmulti, the attention weights ai

for each position i are computed as follows (Equation 4):

ai = softmax
QKTffiffiffiffiffi

dk
p

 !
(4)

where Q = HmultiWQ, K = HmultiWK , andWQ,WK are learnable

query/key matrices. The attention-weighted output is as follows

(Equation 5):

A =oL
i=1aiH

(i)
multi (5)
2.2.5 Bidirectional long short-term memory
Nonetheless, it has been observed that this algorithmic

approach neglects the interconnections between key motifs within

the same sequence. LSTM networks, a class of neural networks

specifically designed for sequential data processing, offer a potential

solution. In LSTM networks, the output at each time step, known as

the hidden state, encapsulates all input information up to that point.

Additionally, the cell state serves as a repository for long-term

information. The input gate computes an activation value based on

the current input and the state from the preceding moment to

determine the acceptance of new input. Similarly, the forgetting gate

calculates the degree of forgetting by evaluating the current input

alongside the previous state. Activation values for each gate are

computed based on the hidden state from the preceding moment.

In contrast, the BiLSTM model processes sequential data by

considering not only the current position at each time step but also

both preceding positions (via the forward LSTM) and subsequent

positions (via the backward LSTM). This dual processing results in

the generation of two hidden states at each time step: one derived

from the forward network and the other from the backward

network. These hidden states are subsequently combined to form

a comprehensive context representation that encapsulates enduring

dependency information within the text. Consequently, this model

is capable of capturing more profound contextual associations.

BiLSTM processes the attention-weighted matrix A ∈ RL�m to

model long-range dependencies (44). For each time step t, the

forward ( h
→

t) and backward ( h
←

t) hidden states are computed as

follows (Equation 6):

h
→

t= LSTM(At , h
→

t−1 ), h
←

t= LSTM(At , h
←

t+1 ) (6)

The final hidden state combines both directions (Equation 7):

ht = h
→

t ∥ h
←

t

h i
(7)

where || denotes concatenation.

2.2.6 Classification layer
Prior to the introduction of the attention mechanism, we input

the weighted motif matrix into BiLSTM to evaluate the correlation

between different key motifs of the sequence, thereby adaptively

capturing the long-range dependencies between amino acid
frontiersin.org
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fragments. The aggregated hidden states HBiLSTM ∈ RL�2m are fed

into a fully connected layer with softmax for binary classification

(Equation 8):

ŷ = softmax(Wf · Flatten(HBiLSTM) + bf ) (8)

where Wf and bf are learnable parameters.
2.3 Cancer predictor

2.3.1 TCR repertoire mean scoring strategy
Let R = {TCR1, TCR2, …, TCRN} represent a TCR repertoire

containing N distinct TCRs, and the composite score of the TCR

repertoire S(R) is defined as the arithmetic mean of the predicted

cancer scores across all TCRs in R (Equation 9):

S(R) =
1
No

N
i=1f (TCRi) (9)

where f (TCRi) denotes the predicted cancer score of the ith

TCR (i = 1, 2,…, N). This formulation reflects the intuition that the

overall repertoire score represents the average likelihood of cancer-

associated specificity across its constituent TCRs.

2.3.2 TCR repertoire variance scoring strategy
Let R = {TCR1, TCR2, …, TCRN} represent a TCR repertoire

containing N distinct TCRs, and the variance-based composite

score V(R) is then defined as the variance of the predicted cancer

scores across all TCRs in R (Equation 10):

V(R) =
1
No

N
i=1 (f (TCRi) − m(R))2 (10)

where m(R) is the mean predicted cancer score (as defined in the

mean strategy). This formulation quantifies the spread

(heterogeneity) of predicted cancer scores within the repertoire,

with higher variance indicating greater diversity in cancer-

associated specificity among TCRs.
2.4 TCR sequence recognition model
parameter settings

The model architecture and final hyperparameter configuration,

including convolutional kernel dimensions, pooling strategies, and

fully connected layer specifications, are detailed in Table 1. The

process of parameter tuning, which involves a systematic evaluation

of alternative dropout rates and learning rates, along with the

associated performance metrics, is thoroughly documented in

Supplementary Table 2.
2.5 Model training and evaluation

The experiments were executed on a high-performance

computing platform operating Ubuntu 20.04, featuring an Intel®
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Xeon® Platinum 8470Q processor with 20 virtual CPUs, 90GB of

RAM, and an NVIDIA virtual GPU with 48GB of memory. The

software environment consisted of Python 3.8 and PyTorch 1.10.0

with CUDA 11.3 for acceleration, supplemented by standard

scientific computing libraries. For model development, 30,000

cancer-associated CDR3 sequences and approximately 60,000

non-cancer sequences were encoded, assigning binary labels (1 for

cancer and 0 for non-cancer). The dataset was divided using

stratified sampling, with 80% designated for training and 20% for

validation. To ensure robust performance evaluation, fivefold cross-

validation was employed across all experiments. The training

process utilized the Adam optimizer with a learning rate of 0.001

and cross-entropy loss for error computation. To mitigate

overfitting, dropout was applied with a probability of 0.5 during

training. The model was trained for a maximum of 1,000 epochs,

with an early stopping criterion activated if the validation loss did

not improve for 20 consecutive epochs.
2.6 Validation metrics

This study utilized six metrics to assess model performance:

accuracy (ACC), sensitivity (SEN), specificity (SPE), area under the

receiver operating characteristic curve (AUC), F1-score, and

Matthews Correlation Coefficient (MCC). Each metric offers

unique insights into the classifier’s capabilities (Equations 11–17):

ACC =
TP + TN

TP + TN + FP + FN
(11)
TABLE 1 TCR sequence recognition model architecture
and hyperparameters.

Layer/
component

Parameter setting

Input encoding
1. TCR sequence encoded as L × 15 matrix.
2. Zero-padded to 20 × 15 if L < 20.

Multi-
scale convolution

1. Kernel widths: fixed at 15 (matches input
dimension).
2. Kernel heights: 2, 3, 4, 5.
3. Kernels per height: 4 (total 16 kernels).

Max pooling
1. Window size: 3.
2. Output: 3 × 4 matrix P.

Multi-head
self-attention

1. Attention heads: 2.
2. Hidden dimension: 4 (aligned with P).
3. Subspace projection for Q, K, V.

Bidirectional LSTM

1. Input dimension: 3.
2. Hidden dimension: context-aware (self-attention
adjusted).
3. Output: concatenated forward/backward states.

Fully connected layer
1. Units: 6.
2. Dropout: 50% regularization.
3. Activation: softmax (binary classification).

Output Probabilities for cancer/non-cancer classes.
LSTM, long short-term memory.
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SEN =
TP

TP + FN
(12)

SPE =
TN

TN + FP
(13)

precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1score =
2� precision� recall
precision + recall

(16)

MCC =
TP � TN − FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
p (17)

where TP, TN, FP, and FN represent true-positive, true-

negative, false-positive, and false-negative predictions, respectively.
3 Results

3.1 Model performance in recognizing
caTCRs

Due to the inability to directly utilize raw amino acid sequences

for model training, this study employed a biochemical feature-based

encoding strategy to convert these sequences into numerical form.

Focusing on the functional characteristics of antigen-binding sites

within the CDR3 region, 553 biochemical feature indicators of

amino acids were selected from the AAindex database for principal

component analysis (PCA). Through dimensionality reduction, a 20

× 20 amino acid feature matrix was derived, and the top 15 principal

components, which collectively accounted for over 95% of the

cumulative variance, were chosen to construct a standardized 20

× 15 AAindex coding matrix. For CDR3 sequences shorter than 20

amino acids, a zero-padding strategy was applied to encode them

uniformly into a 20 × 15 matrix structure.

In order to assess the performance of DeepCaTCR, we

conducted a comparative analysis with leading caTCR

recognition models, namely, DeepLION and BertTCR. This

evaluation utilized a consistent encoding scheme, training

dataset, learning rate, and batch size across all models.

Through fivefold cross-validation, DeepCaTCR demonstrated

superior performance in antigen-specific TCR recognition,

achieving an ACC of 0.807 ± 0.003 and AUC of 0.863 ± 0.003,

as presented in Table 2. Notably, DeepCaTCR outperformed

both DeepLION (ACC: 0.801, AUC: 0.854) and BertTCR (ACC:

0.760, AUC: 0.790), achieving the highest ACC and AUC values.

The sensitivity of DeepCaTCR (0.586) was 28% higher than that

of BertTCR (0.457), while its specificity (0.918) remained

the highest among all models evaluated. Furthermore, the

F1-score (0.669) and MCC (0.548) exceeded those of the

competing models.
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We conducted a detailed analysis of the performance metrics for

each fold and performed paired t-tests to assess statistical significance,

comparing each model against DeepCaTCR. The findings indicated

that BertTCR was significantly outperformed by DeepCaTCR across

all metrics (p < 0.0001), with the exception of specificity (Figure 2).

DeepLION demonstrated significantly lower performance than

DeepCaTCR in terms of ACC, AUC, and MCC (p = 0.01–0.02).

We posited that the suboptimal performance of BertTCR could be

attributed to its limited number offilters, which was initially set at six.

To investigate this hypothesis, we increased the number of filters in

BertTCR to nine, resulting in a significant enhancement in model

performance (p < 0.008, Supplementary Figure S1).
3.2 Functional analysis of DeepCaTCR key
modules

To further substantiate the contributions of the core

components within DeepCaTCR, we performed ablation studies

focusing on BiLSTM and MHSA. We developed variant models,

namely, DeepCaTCR-noBiLSTM, DeepCaTCR-noMHSA, and

DeepCaTCR-noBiLSTM-noMHSA. We subjected these ablation

variants to the same experimental conditions as the baseline

DeepCaTCR model, encompassing input data preprocessing,

shared embedding layer parameters, output layer architecture,

loss function, optimizer configuration, and train/test splits. The

sole alteration involved the exclusion of specific model components.

The comprehensive DeepCaTCR model demonstrated superior

performance across several metrics, achieving the highest accuracy

(0.807), AUC (0.863), specificity (0.918), F1-score (0.669), and MCC

(0.548). This underscores the synergistic advantages of integrating

BiLSTM and MHSA. Upon the exclusion of BiLSTM (DeepCaTCR-

noBiLSTM), there were notable declines in performance metrics: ACC

decreased by 1.5%, AUC by 1.7%, SPE by 2.5%, F1 by 1.8%, and MCC

by 5.1% (Table 2). Interestingly, SEN exhibited a slight improvement

(0.593 compared to 0.586), which may be attributed to the reduced

complexity of the model influencing class-specific predictions. The

removal of MHSA (DeepCaTCR-noMHSA) resulted in smaller yet

consistent reductions in ACC (0.9%), AUC (1.2%), SPE (2.2%), F1

(0.4%), and MCC (2.9%). Similar to the removal of BiLSTM, SEN

improved (0.602 compared to 0.586), suggesting that attention

mechanisms may trade off some sensitivity for specificity. The most

pronounced degradation in performance metrics (ACC: −2.0%, AUC:

−2.7%, F1: −4.2%,MCC: −7.1%) underscores the complementary roles

of BiLSTM and MHSA in feature extraction and context modeling.

Notably, SEN experienced a sharp decline (0.560 compared to 0.586),

indicating that the combined use of BiLSTM and MHSA enhances

recall for positive samples.
3.3 Model performance in cancer patient
identification

While DeepCaTCR exhibits strong capabilities in recognizing

cancer-associated sequences, its effectiveness in clinically
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distinguishing between cancer patients and healthy individuals

requires further validation through independent experiments. It is

important to note that accurately evaluating the overall immune

status presents substantial technical challenges. This difficulty arises

because antigen-specific TCRs constitute only a small fraction of an

individual’s TCR repertoire, typically less than 0.1%, and there is a

considerable background noise (43). To address this issue, the study

employed the iSMART antigen-specific clustering technique to

extract representative sequences from each database. This

approach enabled the quantification of an individual’s tumor

immune response by calculating the mean cancer probability, or

cancer score, of these characteristic sequences.

DeepCaTCR demonstrated robust discriminatory power across

diverse sample types and clinical scenarios, as quantified by the

mean cancer score of antigen-specific TCR clusters. TILs exhibited

significantly higher cancer scores than PBMCs from healthy donors

(p < 5e−07, Wilcoxon rank-sum test, Figure 3A). There was near-

perfect discrimination (AUC > 0.95) for all cancer types (Figure 3B,

Supplementary Table S3), with primary lung cancer (AUC = 1),

pancreatic cancer (AUC = 0.998), and melanoma (AUC = 0.994)

showing high specificity (SPE > 0.96) and sensitivity (SEN = 1.0).

Untreated cancer patients had significantly higher PBMC cancer

scores than healthy controls (Figure 3C, p < 0.0007), with ovarian

cancer (AUC = 0.997) and pancreatic cancer (AUC = 0.989) having

the leading performance (Figure 3D). Treated patients (Figure 3E)

displayed reduced cancer scores versus untreated cohorts, likely due

to the therapy-induced depletion of tumor-reactive T cells. Despite

lower scores, the most model-maintained AUC > 0.81

(Supplementary Table S3) was for refractory cancers

(glioblastoma: AUC = 0.814; bladder cancer: AUC = 0.83; CRC:

AUC = 0.919), although lung cancer discrimination declined (AUC

= 0.667), potentially reflecting prolonged T-cell exhaustion.

Notably, DeepCaTCR maintained high specificity in non-

cancer contexts. Evaluation of virus-infected and healthy cohorts

(Figures 3F, G, Supplementary Table 4) revealed consistently strong

performance metrics: YFV (AUC = 0.992, SPE = 1.0), GVHD (AUC

= 0.984, SPE = 0.933), and HCMV (AUC = 0.956, SPE = 0.899).

Healthy donors (AUC = 0.978, SPE = 0.955) and additional healthy

samples (AUC = 0.947, SPE = 0.89) further confirmed the model’s

ability to distinguish cancer-associated TCRs from benign immune

responses. Preliminary observations suggested that, despite several

elevated cancer scores, the scores within the healthy cohort remain
Frontiers in Oncology 07
relatively low. Subsequent validation using additional cohorts

comprising both healthy and virus-infected individuals

demonstrated that the cancer scores fall within anticipated ranges

(Figure 3F), indicating that the initial findings may be attributable

to the characteristics of the study population rather than

methodological flaws.

Further analysis of the correlation between cancer scores and

demographic variables such as age and gender yielded a Spearman’s

correlation coefficient of R = 0.033 (p = 0.66, Figure 3H), while a

comparison by gender using the Wilcoxon test resulted in a p-value

of 0.58 (Figure 3I), indicating no significant association.

Additionally, we examined the correlation between cancer scores

and TCR counts. In the initial healthy cohort (n = 176), a marginal

correlation was observed (R = 0.15, p = 0.044, Supplementary

Figure S2A). In the subsequent validation cohort (n = 82), a

significant but stronger correlation was found (R = −0.5, p = 2.1e

−06, Supplementary Figure S2B). However, in the combined

analysis (n = 258), no correlation was detected (R = 0.021, p =

0.74, Supplementary Figure S2C). The results suggest that cancer

scores are generally stable within healthy populations, unaffected by

age or gender, and not clearly associated with TCR counts. Elevated

scores may reflect population-specific characteristics or weak

biological factors.
3.4 Model diagnostic performance in early
cancer detection

Building on the exceptional recognition performance of

peripheral blood samples from early-stage breast cancer patients

demonstrated in the previous study (AUC = 0.955), this research

further validated the generalizability of DeepCaTCR for the early

diagnosis of multiple cancer types. The model’s capability to

differentiate between tumor stages was systematically evaluated by

collecting PBMC samples from patients with early (stage I–II) and

advanced (stage III–IV) primary treatment. Additionally,

independent healthy samples were collected as controls.

As illustrated in Figure 4A, the median cancer score for all

early-stage cancers was significantly elevated compared to that of

the healthy control group, as determined by the Wilcoxon test (p <

0.05, applicable across all cancer types). Furthermore, Kendall’s tau

coefficient demonstrated a positive correlation between cancer
TABLE 2 Performance comparison of caTCR recognition models.

Model ACC AUC SEN SPE F1 MCC

DeepCaTCR 0.807 ± 0.003 0.863 ± 0.003 0.586 ± 0.026 0.918 ± 0.010 0.669 ± 0.013 0.548 ± 0.009

DeepLION 0.801 ± 0.003 0.854 ± 0.004 0.577 ± 0.014 0.913 ± 0.009 0.659 ± 0.006 0.533 ± 0.007

BertTCR 0.760 ± 0.003 0.790 ± 0.004 0.457 ± 0.022 0.911 ± 0.009 0.559 ± 0.017 0.425 ± 0.009

DeepCaTCR-noBiLSTM 0.795 ± 0.006 0.848 ± 0.005 0.593 ± 0.032 0.895 ± 0.024 0.657 ± 0.007 0.520 ± 0.008

DeepCaTCR-noMHSA 0.800 ± 0.003 0.853 ± 0.005 0.602 ± 0.013 0.898 ± 0.011 0.666 ± 0.003 0.532 ± 0.007

DeepCaTCR-
noBiLSTM-noMHSA

0.791 ± 0.005 0.840 ± 0.006 0.560 ± 0.020 0.906 ± 0.014 0.641 ± 0.008 0.509 ± 0.009
ACC, accuracy; AUC, area under the receiver operating characteristic curve; SEN, sensitivity; SPE, specificity; MCC, Matthews Correlation Coefficient.
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scores and disease progression in both ovarian cancer (t = 0.629, p

= 0.0047) and pancreatic cancer (t = 0.359, p = 0.094). DeepCaTCR

achieved high AUCs for different stage cancers (stage I lung: 0.998;

stage I RCC: 0.947; stage II pancreatic: 0.934, Figure 4B,

Supplementary Table S5), with specificity consistently >86%

across types.

In the context of early-stage lung cancer identification,

DeepCaTCR demonstrated superior performance relative to all

evaluated benchmarks, as detailed in Table 3. DeepCaTCR

achieved an AUC of 0.998 (Figure 4C), surpassing DeepCAT’s

AUC of 0.912, while maintaining a balanced sensitivity of 100% and

specificity of 98.3%. In contrast, DeepLION2 and BertTCR
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exhibited lower specificity at comparable sensitivity levels, with

AUCs of 0.69 and 0.85, respectively. The MCC for DeepCaTCR was

0.945, compared to 0.719 for DeepCAT, highlighting its balanced

classification performance.
3.5 Variance-based cancer predictor to
enhance early cancer detection
performance

Addressing the limitations inherent in the average scoring

strategy for capturing the dynamic characteristics of the TCR
FIGURE 2

Comparison of model performance using fivefold cross-validation. (A–F) The results for six evaluation metrics: (A) ACC, (B) AUC, (C) SEN, (D) SPE,
(E) F1-score, and (F) MCC. The models under comparison include DeepCaTCR, DeepCaTCR-noBiLSTM, DeepCaTCR-noMHSA, DeepCaTCR-
noBiLSTM-noMHSA, DeepLION, and BertTCR. The box plots depict the distribution of each metric across the five folds, while individual data points
indicate the metric value for each fold. Statistical significance was evaluated using paired t-tests, with each model compared against DeepCaTCR as
the reference model. TCR, T-cell receptor; ACC, accuracy; AUC, area under the receiver operating characteristic curve; SEN, sensitivity; SPE,
specificity; MCC, Matthews Correlation Coefficient.
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The predictive performance was evaluated by DeepCaTCR utilizing the mean scorer. (A, C, E) Box plots and scatter plots illustrating the distribution
of cancer scores across various scenarios: (A) tumor-infiltrating lymphocytes (TILs) from different cancer types, (C) peripheral blood from untreated
cancer patients, and (E) peripheral blood from treated cancer patients. The sample sizes are indicated on the x-axis. Comparisons were conducted
with a cohort of healthy donors (n = 176), and statistical significance was assessed using the Wilcoxon rank-sum test. The red solid line denotes the
average predicted score for each donor on the y-axis. (B, D) ROC curves and AUC values for cancer patients, using healthy donors (n = 176) as the
control group. (B, D) The model’s performance in predicting TIL samples and untreated PBMC samples, respectively. (F) Box plots and scatter plots
that depict the distribution of cancer scores from various virus-infected or healthy donors. Comparisons were made with the untreated cancer
cohort (n = 137), employing the same statistical significance assessment method as in panel (A). (G) ROC curves and AUC values are presented for
distinguishing between different virus-infected and healthy donors, using the untreated cancer cohort (n = 137) as the control group. (H) A scatter
plot illustrates the association between age (x-axis) and cancer risk score (y-axis) within a cohort of healthy participants (n = 176). LOWESS smooth
curve was added on top of the scatter plot to display the trend of change. Spearman’s rank correlation analysis was conducted, with the correlation
coefficient (R) and statistical significance presented in the plot inset. (I) Comparative analysis of cancer scores between male and female healthy
individuals. The p-value derived from the Wilcoxon rank-sum test is indicated on the plot. ROC, receiver operating characteristic; AUC, area under
the receiver operating characteristic curve; PBMC, peripheral blood mononuclear cell.
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repertoire, this study introduces a variance-based repertoire scoring

method that markedly enhances the detection performance for

early-stage cancers. While average scoring can indicate the overall

tumor relevance of the TCR repertoire, it struggles to effectively

characterize the heterogeneous features of TCR cancer score

distribution during clonal amplification. Consequently, the

variance scoring system developed in this study successfully

captures the dynamic features of TCR clonal amplification during

the early immune response by quantifying the degree of dispersion

in cancer score distribution. As illustrated in Figure 5A, the

distribution of cancer scores among early-stage patients with

RCC, OV, PC, and lung cancer exhibited a more pronounced

trend of intergroup segregation following the implementation of

the variance scoring strategy (p < 0.001). This development
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facilitated the identification of more discriminative features for

the subsequent classification model.

The variance-based DeepCaTCR model demonstrates

consistent enhancements in the AUC relative to baseline

methodologies (Table 4, Figures 5B–F). In the context of

identifying pancreatic cancer patients, the AUC increased from

0.935 (mean scorer) to 0.972, representing an improvement of

DAUC = +0.037, while specificity rose from 0.862 to 0.966. For

ovarian cancer patient identification, the AUC increased from 0.852

to 0.931, maintaining high specificity (0.776 compared to 0.638 for

the average classifier). In the multi-cancer identification task, the

unified model achieved an AUC of 0.967, effectively balancing

sensitivity (0.969) and specificity (0.897), thereby underscoring its

applicability across various cancer types. These findings suggest that
FIGURE 4

Evaluation of DeepCaTCR’s performance in detecting different stages of cancer. (A) The raincloud plot presents cancer scores for various cancer
types at different stages in comparison to healthy controls (n = 58). Each cancer group is annotated with its type and stage, along with the sample
size in parentheses. p-Values derived from Wilcoxon rank-sum tests, which compare each cancer group to healthy controls, are displayed above
each comparison. Kendall’s tau correlation coefficient was employed to evaluate the potential upward or downward trend in cancer score with
increasing cancer stage. (B) ROC curves for DeepCaTCR across diverse cancer types and stages using the mean scorer. The legend specifies the
cancer type and stage, along with the AUC value for each curve. (C) ROC curves for different models in early-stage lung cancer. The legend lists the
model names and their associated AUC values. ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic curve.
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variance-based scoring can reduce the false-positive rate, as

evidenced by the increased specificity for RCC (0.914 compared

to 0.879 with the average scoring model) while preserving

sensitivity, which is crucial for early detection.
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At clinically actionable specificity thresholds, variance scores

demonstrated exceptional performance (Table 5). Specifically, at

a specificity level exceeding 98%, variance scores achieved a

sensitivity of 62.5%, compared to 53.1% for mean scores,

thereby significantly surpassing the performance of DeepCAT

(9.4%) and BertTCR (0%). When the specificity threshold was set

above 95%, the sensitivity of variance scores increased to 81.3%,

in contrast to 75% for the mean score method, indicating their

reliability in low-prevalence screening scenarios. Furthermore,

the variance-based scoring method exhibited greater robustness

in terms of AUC stability, as evidenced by a narrower 95%

confidence interval (0.934–0.999) compared to that of the

mean-based scoring method (0.895–0.986). The efficacy of the

variance-based scoring method may be attributed to its capacity

to quantify TCR clonal diversity during the early stages of tumor

development, a characteristic that is not captured by mean-

based methods.
FIGURE 5

Assessment of DeepCaTCR’s efficacy in identifying early-stage cancer. (A) The raincloud plot illustrates cancer scores for early-stage cancer in
contrast to healthy controls (n = 58). p-Values obtained from Wilcoxon rank-sum tests comparing each cancer group to healthy controls are
indicated above each comparison. (B) Evaluation of DeepCaTCR’s capability in early-stage cancer detection using the variance scorer, with ROC
curves depicted for various cancer types. (C–F) ROC curves for different models in early-stage cancer detection, with the legend providing model
names and their corresponding AUC values. ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic curve.
TABLE 3 Performance comparison with different models in early-stage
lung cancer.

Model AUC ACC SEN SPE F1-score MCC

DeepLION 0.776 0.809 1.0 0.776 0.606 0.581

DeepLION2 0.69 0.735 1.0 0.69 0.526 0.496

BertTCR 0.85 0.824 0.9 0.8103 0.6 0.5521

DeepCAT 0.912 0.897 1.0 0.879 0.741 0.719

DeepCaTCR 0.998 0.985 1.0 0.983 0.952 0.945
AUC, area under the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity;
SPE, specificity; MCC, Matthews Correlation Coefficient.
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3.6 Biological insights into TCR sequences
predicted by DeepCaTCR

To elucidate the biological relevance of TCR sequences

predicted by DeepCaTCR, key motifs, their functional

significance, and overlap with known cancer-associated TCRs

were analyzed (Figure 6). DeepCaTCR identified key amino acid

motifs in TCR sequences from the validation set and assigned

importance scores to each motif (Figure 6A). Visualization results

show that larger and darker residues correspond to higher

importance scores, indicating that these sequence patterns may

play a key role in antigen recognition. Among TCRs with high

prediction confidence (score > 0.95), certain motifs were highly

recurrent (Figure 6B). The most frequent motifs included “CSAR”

(140 occurrences), “CASP” (45 occurrences), and “PG” (35

occurrences). These motifs may represent conserved structural or

functional elements in cancer-associated TCRs. A heatmap analysis

revealed that DeepCaTCR-identified motifs are enriched in the
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McPAS-TCR (45) database (Figure 6C). “ASS” (24,730 occurrences)

and “ASSL” (5,759 occurrences) were among the most frequent

motifs in McPAS-TCR, aligning with their high frequency in

DeepCaTCR predictions. Other motifs like “AG” (4,831

occurrences) and “EA” (3,997 occurrences) further validated the

biological relevance of DeepCaTCR’s predictions.

We initially conducted a search for the top 22 high-scoring

TCRs (score > 0.98) across three major databases [TCRdb (46),

VDJdb (47), and McPAS-TCR (45)] but did not identify any exact

matches among cancer-associated TCRs. This outcome is likely

attributable to the exceptionally high diversity of TCR sequences.

Considering the significant heterogeneity across cancer types, the

absence of these 22 TCRs in existing databases is biologically

plausible. To evaluate potential partial matches, we applied

various mismatch tolerance criteria tailored to each database’s

functionalities. In TCRdb, we recorded near-matches with up to

two amino acid mismatches, as provided by the database. VDJdb

allowed for the extraction of similar sequences with an
TABLE 4 Performance comparison with different models in early-stage cancer detection across multiple cancer types.

Disease Model AUC ACC SEN SPE F1-score MCC

RCC

DeepCAT 0.829 0.691 1.0 0.638 0.488 0.454

BertTCR 0.61 0.794 0.5 0.845 0.417 0.302

DeepCaTCRMean 0.947 0.882 0.9 0.879 0.692 0.651

DeepCaTCRVariance 0.981 0.927 1.0 0.914 0.8 0.781

OV

DeepCAT 0.813 0.677 1.0 0.638 0.4 0.399

BertTCR 0.692 0.677 0.714 0.672 0.323 0.248

DeepCaTCRMean 0.852 0.677 1.0 0.638 0.4 0.4

DeepCaTCRVariance 0.931 0.8 1.0 0.776 0.519 0.521

PC

DeepCAT 0.759 0.651 1.0 0.621 0.313 0.339

BertTCR 0.628 0.603 0.8 0.586 0.242 0.21

DeepCaTCRMean 0.935 0.873 1.0 0.862 0.556 0.576

DeepCaTCRVariance 0.972 0.968 1.0 0.966 0.833 0.831

All cancers

DeepCAT 0.841 0.756 1.0 0.621 0.744 0.607

BertTCR 0.706 0.7 0.75 0.672 0.64 0.405

DeepCaTCRMean 0.94 0.867 0.875 0.862 0.824 0.72

DeepCaTCRVariance 0.967 0.922 0.969 0.897 0.899 0.842
AUC, area under the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; MCC, Matthews Correlation Coefficient; RCC, renal cell carcinoma; OV, ovarian
cancer; PC, pancreatic cancer.
TABLE 5 Model performance comparison for early-stage cancer detection across different specificity thresholds.

Model AUC (95% CI)
Sensitivity
(specificity > 98%)

Sensitivity
(specificity > 95%)

Sensitivity
(specificity > 90%)

DeepCAT 0.841 (0.760–0.921) 0.094 0.156 0.312

BertTCR 0.706 (0.587–0.825) 0 0 0.25

DeepCaTCRMean 0.94 (0.895–0.986) 0.531 0.75 0.781

DeepCaTCRVariance 0.967 (0.934–0.999) 0.625 0.813 0.875
AUC, area under the receiver operating characteristic curve.
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Informativeness score of 8 or higher, indicating high-confidence

hits. For McPAS-TCR, we conducted local searches using Python

scripts, identifying sequences with up to four mismatches, although

no hits were found with two or fewer mismatches.

A detailed breakdown is provided in Figure 6D, where blue blocks

denote partial database matches, such as “CSVEDRRRTGYTEAFF”

with five matches in TCRdb and one in McPAS-TCR. The analysis

revealed that 11 TCRs (50%) exhibited partial matches in at least one

database. For instance, the TCR sequence “CASSSGLAVPCNEQFF”

demonstrated four matches in TCRdb and two high-confidence

matches in VDJdb, in addition to seven hits in McPAS-TCR.

Another TCR, “CSAHPGGLAGAEQYF”, was found to have two

matches in TCRdb and seven in McPAS-TCR. Conversely, 11 TCRs

(50%) did not exhibit matches in any of the databases under the
Frontiers in Oncology 13
specified cr i ter ia , exempl ified by sequences such as

“CSAPRDSLRRADEQYF” and “CSARPRGPLAAEAFF”, suggesting

that these may represent previously uncharacterized cancer-

reactive TCRs.
4 Conclusion

In this study, the DeepCaTCR deep learning framework was

developed to enhance the recognition specificity of cancer-

associated TCRs. This was achieved by integrating a one-

dimensional variable convolutional kernel, bidirectional long- and

short-term memory units, and a self-attention mechanism,

resulting in a discriminative efficacy with an AUC of 0.863 in
FIGURE 6

Visualization of motifs and biological insights in DeepCaTCR predicted TCR sequences. (A) The visualization of key motifs and their corresponding
importance scores within TCR sequences derived from the test set. For each of the 10 representative TCR sequences, the amino acid residues
identified as critical motifs by DeepCaTCR are depicted. The size and color intensity of each residue are indicative of its importance score, with
larger and darker residues signifying higher scores. (B) This panel presents the frequency of key motifs in TCRs with high prediction confidence
(prediction score > 0.95). The bar plot provides a summary of the occurrence of top-scoring motifs across TCR sequences with high prediction
confidence. (C) Frequency of DeepCaTCR-identified key motifs in McPAS-TCR database. A heatmap shows the prevalence of predicted motifs in
McPAS-TCR, with darker colors indicating higher occurrence frequencies. (D) The overlap between the top 22 high-scoring TCR sequences and
known cancer-associated motifs sourced from public databases (TCRdb, VDJdb, and McPAS-TCR). Blue bars represent the number of TCRs that
match known cancer-associated motifs, while white bars indicate novel TCRs that do not have matches in the databases. TCR, T-cell receptor.
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cross-cancer validation. Additionally, the proposed variance scoring

strategy, which is based on TCRb CDR3 clonal amplification,

improved the sensitivity of early-stage cancer detection in

peripheral blood to 62.5% by quantifying the heterogeneous

features of the immunohistochemical repertoire. This approach

achieved an AUC of 0.967 in pan-cancer screening, offering a

novel solution to the technical challenge of detecting weak tumor

signals in liquid biopsy.
5 Discussion

In this study, we developed DeepCaTCR, a deep learning-based

framework for TCR repertoire analysis, aimed at improving the

efficacy of early cancer detection. A key innovation of this

framework is the introduction of a variance-based repertoire

scoring strategy, which addresses the limitations of traditional

average scoring methods in capturing the dynamic characteristics

of immune responses. This novel approach not only enhances the

characterization of these dynamics but also establishes a new

technical paradigm for pan-cancer early screening. The superior

performance of the variance scoring strategy is attributed to its

precise modeling of TCR clonal amplification biology. During the

initial stages of tumorigenesis, nascent antigen-specific T cells

undergo clonal expansion, leading to a highly heterogeneous TCR

distribution profile. Our findings indicate that this dynamic

evolutionary process is reflected in a significantly greater

dispersion in cancer score distribution. In contrast, the

conventional mean-value method, by smoothing the data,

diminishes the detection sensitivity of this critical biological

signal. Through rigorous mathematical modeling and clinical

validation, we established a quantitative association between the

variance of the TCR distribution and the strength of the tumor

immune response.

Despite the advancements achieved, several limitations persist

in this study. First, the existing validation predominantly addresses

solid tumors, and its applicability to hematological malignancies

remains unverified. Second, the occurrence of false positives

observed in the HCMV-infected cohort underscores the necessity

for an improved background filtering system tailored to infected

backgrounds. Lastly, this study utilized retrospective data,

necessitating prospective cohort studies to substantiate clinical

efficacy. Future research will concentrate on 1) integrating epitope

prediction data to refine the variance scoring algorithm, 2)

developing a dynamic scoring model informed by longitudinal

surveillance, and 3) creating a clinical decision support system to

accompany these advancements.
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