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Introduction: Early detection is a cornerstone of cancer control, yet its

quantitative influence on tumor–immune interactions remains underexplored

in mathematical oncology.

Methods: We formulated a nonlinear tumor–immune interaction model

consisting of two coupled ordinary differential equations for tumor growth and

immune response. Early detection was represented by a saturating function

(Michealis-Menten term) dependent on tumor size and awareness level. The

system was nondimensionalized to reduce parameters and ease analysis.

Equilibria were derived, and both local and global stability were analyzed.

Numerical simulations, phase portraits, bifurcation and sensitivity analyses were

conducted to assess system behavior and parameter influence.

Results: Two biologically meaningful equilibria were identified. Stability analyses

established the conditions for sustained tumor-free states. Simulations

demonstrated that higher awareness significantly enhances early detection,

thereby suppressing tumor growth. Phase portraits revealed stable tumor–

immune dynamics, while sensitivity results highlighted awareness- and

detection-related parameters as the most critical for tumor control.

Discussion: The model quantifies the role of awareness-driven early detection in

shaping tumor–immune outcomes. Results underscore the importance of public

awareness campaigns, screening initiatives, and early intervention strategies for

effective cancer management. This framework bridges mathematical modeling and

policy, offering understanding into optimizing awareness-based control measures.
KEYWORDS

breast cancer, modeling, sensitivity analysis, early detection, immune response,
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1 Introduction

Breast cancer remains one of the most challenging and

predominant malignancies worldwide, requiring innovative ways

to understand its progression and improve early detection schemes

(1, 2). It initiates with genetic mutations, which lead to uncontrolled

cell growth, eventually forming a tumor inside the breast. This

evolution involves various stages, which include hyperplasia,

carcinoma in situ, invasive carcinoma, and metastasis (3, 4).

Recent studies have highlighted the role of cancer stem cells in

tumor origination and development (5–7).

Early detection methods, such as mammography, biomarker

analysis, and MRI, are critical for detecting breast cancer at its most

treatable stage. Additionally, a large-scale study comparing the

effectiveness of digital and film mammography in early breast cancer

detection found that digital mammography is particularly beneficial for

younger women and for those with dense breast tissue (8). An

individual may notice signs or symptoms of breast cancer under

standard care, prompting them to seek for medical evaluation and

eventually receiving a proper diagnosis. In contrast, earlier detection

occurs when an individual without any noticeable signs or symptoms is

diagnosed through a specialized screening examination (9). Recent

evolving technologies, such as AI-assisted imaging and liquid biopsies,

show potential in improving the accuracy of early detection (10).

Lee and Zelen (2003) studied a stochastic model for predicting

breast cancer mortality, focusing on the effects of early detection and

treatment. The model estimates survival probabilities based on tumor

progression and the timing of diagnosis, providing insights into the

impact of screening programs on breast cancer outcomes. It further

found that early detection of breast cancer through screening

significantly reduces mortality by identifying tumors at a more

treatable stage (9, 10).

The immune system plays a crucial role in recognizing and

eliminating cancer cells (11). Schreiber et al. (12) reviewed the

mechanisms of cancer immunoediting, demonstrating how the

immune system can both suppress and promote tumor growth,

and highlighting the importance of a balanced immune response,

where key players include cytotoxic T lymphocytes (CTLs), natural

killer (NK) cells, and macrophages. Recent research has also focused

on the role of regulatory T cells and myeloid-derived suppressor

cells in modulating the antitumor immune response (13, 14).

Mathematical modeling has emerged as a powerful tool in oncology,

offering insights into tumor growth dynamics and the complex

interactions between cancer cells and the immune system (11, 14–22).

The application of mathematical models to cancer research has a rich

history, dating back to the seminal work of Norton and Simon in 1977,

who proposed a Gompertzian model of tumor growth (23). Since then,

numerous models have been developed to capture various aspects of

cancer biology, including the pivotal role of the immune system in tumor

suppression and progression (23, 24). Recent advancements in early

detection technologies have significantly improved breast cancer

outcomes. However, the precise impact of early detection on tumor–

immune dynamics remains incompletely understood.

Mathematical modeling offers a unique opportunity to explore

these interactions and potentially optimize screening protocols (25).
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These models range from simple ordinary differential equations to

complex agent-based models and have been instrumental in

predicting treatment outcomes and optimizing therapy schedules

(26). The study in (26) emphasized the importance of collaboration

between mathematicians, biologists, and clinicians in developing

and validating predictive models for cancer treatment. While

optimal control theory provides a framework for personalized

treatment, more research is needed to develop and validate

personalized models that account for individual patient variability.

Optimal control theory involves determining the best

intervention strategies to achieve desired outcomes, such as

minimizing tumor size while maximizing immune response.

Lenhart (27) applied optimal control theory to biological models,

illustrating how this approach can be used to design optimal

treatment schedules for cancer patients, balancing efficacy and

side effects. This approach has been applied to various cancer

treatment modalities, including chemotherapy, immunotherapy,

and radiotherapy (28). The study in (29) explores the interactions

between tumor cells and the immune system, including immune

surveillance, immune evasion, and immunoediting.

Recent advances in this field have led to the development of the

cancer immunogram, a framework for understanding the

multifaceted nature of tumor–immune interactions (30). Stability

analysis involves examining the equilibrium points of the ODE

system to understand the conditions under which the system

remains stable or undergoes changes, such as tumor regression or

progression (31–34). Advanced techniques, such as bifurcation

analysis, have been applied to study the qualitative changes in

system behavior under varying parameters (34–36).

More recently (37), analyzed long-term trends in breast cancer

incidence, concluding that improved screening has led to increased

detection of early-stage cancers but has had a limited impact on the

incidence of advanced disease. Building on the work of Schreiber

et al. (38), conducted a comprehensive analysis of the tumor

microenvironment, revealing the prognostic significance of

various immune cell subsets in different cancer types.

Recently (39), discussed the integration of mathematical

modeling with clinical data to develop personalized treatment

approaches in oncology. Building on this foundation, Sharifi et al.

developed an optimal control framework for combination

immunotherapy, demonstrating how mathematical modeling can

guide the design of more effective treatment protocols (40).

Combining early detection methods with an understanding of

the immune response provides a comprehensive strategy for

managing breast cancer. Early detection is critical for identifying

treatable stages of the disease, while the immune response plays a

significant role in controlling tumor growth. Recent studies, such as

those by (41), have highlighted the potential of using immune

biomarkers in conjunction with traditional screening methods to

improve early detection and prognosis prediction.

Modeling and optimal control theory offer a structured

approach to determining the best intervention strategies,

balancing efficacy and safety. This approach can lead to

personalized treatment plans that maximize patient outcomes

(42–44). Recent work by (45) has demonstrated the potential of
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using optimal control theory to design adaptive therapy protocols

that may delay or prevent the onset of drug resistance in cancer

treatment. Recent advances in single-cell sequencing technologies

offer new opportunities to characterize tumor heterogeneity and

develop more precise models (41, 45).

Advancing the field requires collaboration between oncologists,

immunologists, mathematicians, and data scientists. Such

interdisciplinary efforts can lead to the development of more

sophisticated models and effective treatment strategies. Initiatives

like the Physical Sciences Oncology Network (PSON) are fostering

such collaborations, but more work is needed to bridge the gap

between theoretical models and clinical practice (46). While many

mathematical models show promise in simulating cancer dynamics,

there is a need for rigorous validation using clinical data.

The work of (39) provides a framework for integrating

mathematical modeling into clinical trials, but wider adoption of

these approaches is needed. As our understanding of cancer biology

evolves, mathematical models need to be updated to incorporate new

insights. For example, recent discoveries about the role of the

microbiome in cancer progression and treatment response by (46)

present new challenges and opportunities for model development. As

models become more complex, incorporating multiple scales and

high-dimensional data, there is a need for advanced computational

methods to solve and analyze these models efficiently (42).

Mathematical modeling has played a vital role in understanding

the progression and treatment of breast cancer. Several studies have

proposed models capturing key aspects of tumor dynamics,

treatment response, and microenvironmental interactions (39, 42).

Benzekry et al. developed a mathematical model using systems of

ordinary differential equations to explore and investigate systemic

interactions between primary and metastatic tumors, focusing

particularly on breast cancer. Their work demonstrated that distant

tumors could exert inhibitory or stimulatory effects on each other’s

growth. This suggests the need for a systemic view of tumor control

beyond localized therapy (47). The role of cancer stem cells in breast

cancer response to radiotherapy, using a spatial mathematical model,

was examined in (48), highlighting the significance of the spatial

distribution of stem-like and proliferative cells within a tumor. Their

findings showed that treatment outcomes were not only dependent

on the quantity of cancer cells but also on their spatial organization

and phenotypic heterogeneity.

Pérez-Garcıá et al. (49) proposed a nonlinear mathematical

model to analyze the combined effects of chemotherapy and

radiotherapy on tumor growth. Although the model is not limited

to breast cancer, it is generalizable and applicable to solid tumors. The

study generally offered insights into the design of optimal treatment

schedules and conditions for tumor eradication, underscoring the

impact of treatment timing and intensity on tumor dynamics.

An agent-basedmodeling (ABM) approach is now being employed

to simulate the progression of ductal carcinoma in situ (DCIS), a

common form of early-stage breast cancer (50). Their multi-scale

model integrated cellular behaviors with tissue-level structures,

enabling the study of spatial tumor growth, intraductal invasion, and

treatment effects. This work emphasized the utility of in silico platforms

in understanding the heterogeneity and morphology of early breast
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lesions. Macklin and Lowengrub focused on the influence of the tumor

microenvironment on breast cancer development. They introduced a

hybrid model that coupled mechanical pressure, nutrient diffusion, and

extracellular matrix interactions. Their simulations revealed that tumor

shape and invasion patterns were significantly affected by

microenvironmental conditions, demonstrating the importance of

spatial and physical factors in tumor progression (51).

More recent efforts have extended these frameworks using

advanced methodologies. Dołęga-Kozierowski et al. integrated

numerical modeling with AI and image fusion to produce

personalized 3D breast cancer models for enhanced prediction of

tumor growth and spatial behavior (52). A virtual twin

computational model that predicts neoadjuvant therapy outcomes

in individual patients based on imaging and clinical data was

introduced in (53). These studies illustrate a growing trend

toward data-driven, patient-specific modeling. Li and Thirumalai

presented a model focusing on phenotypic heterogeneity,

particularly HER2 status, and showed how this influences

treatment sequencing and resistance (54). In a related study, Yang

et al. developed a model to track breast cancer cell population

dynamics under doxorubicin exposure, quantifying drug resistance

at the cellular level (55). Idrees et al. applied fractal–fractional

calculus to breast cancer dynamics, enabling more accurate

depiction of memory and nonlocal effects in tumor growth (15).

Recent advances in early detection and tumor–immune interaction

modeling have highlighted the importance of integrating biological

data and modern computational tools to improve breast cancer

diagnosis and treatment outcomes. Zeng et al. (56) demonstrated the

potential of combining serum Raman spectroscopy with convolutional

neural networks for rapid and accurate identification of breast cancer

subtypes, providing a powerful tool for early detection. Pang et al. (57)

investigated the prognostic significance of systemic immune-

inflammation indices in HER2-positive metastatic breast cancer,

emphasizing the critical role of immune markers in clinical decision-

making. Similarly, Liu, Zhang, and Zhao (58) identified

transmembrane protein 100 as a biomarker for malignant

progression and chemosensitivity, underscoring the molecular basis

for individualized treatment strategies.

From an immunotherapy perspective, Zhu et al. analyzed the

efficacy of PD-1 inhibitor therapy combined with the GP regimen in

advanced triple-negative breast cancer, reflecting current trends in

combining immune checkpoint blockade with chemotherapy (59).

In addition, Cui et al. (60) developed a nomogram to predict

radiation-induced dermatitis, aiding in personalized radiation

treatment planning. Advances in artificial intelligence have also

contributed to model-informed oncology, where it is applied as

causal representation learning for radiology report generation,

bridging imaging and clinical semantics in cancer care (61).

Despite the richness of existing models, most do not explicitly

incorporate the role of early detection and public awareness in

controlling tumor growth. This is a crucial gap given the known

benefits of early diagnosis in reducing breast cancer mortality. The

model proposed in the present study addresses this by introducing an

awareness-driven early detection mechanism, mathematically embedded

into the tumor growth dynamics. This novel approach allows for
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quantitative evaluation of how awareness campaigns, screening

programs, and public health interventions can influence cancer

outcomes—an area not sufficiently explored in previous literature.

We adopt the mathematical model in (17) and incorporate an

awareness term that signifies early detection of breast cancer to

stress the importance and effect of early detection in the treatment

of breast cancer. The motivation for this research is driven by the

urgent need to enhance early detection methods and treatment

strategies for breast cancer. By bridging the gap between theoretical

modeling and clinical practice, this study aims to provide valuable

tools and insights that can inform both researchers and healthcare

professionals in their efforts to reduce breast cancer mortality and

improve the quality of life for patients.

This study is organized as follows: Section 1 provides the

introduction. The model is presented in Section 2, while Section 3

deals with the stability and sensitivity analysis of the model. We

introduce the optimal control problem and its analysis in Section 4.

We present the numerical simulations in the last section, followed

by the conclusion and discussion.
2 Presentation of the model

The model in (17) is given in (Equation 1) as follows:

dC(t)
dt = a1C(t)(1 −

C(t)
a2

) − a3C(t)(
L(t)

a4+L(t)
),

dL(t)
dt = a5L(t)(1 −

L(t)
a6

)( C(t)
a7+C(t)

) − a8C(t)L(t) − a9L(t),
(1)

Where C(t) represents the population of breast cancer cells at

time t,L(t) represents the population of cytotoxic T lymphocytes,a1
is the tumor intrinsic growth rate,a2 is the carrying capacity for

breast cancer cells, a3 represents the rate at which tumor cells are

killed by lymphocytes, a4 is the saturation constant for the killing of

tumor cells by lymphocytes, a5 is proliferation rate of lymphocytes,

a6   is carrying capacity for lymphocytes, a7 represents saturation

constant for lymphocyte proliferation, a8   is the rate of lymphocyte

death due to cancer cells, and a9 is the natural death rate of

lymphocytes due to apoptosis. Our mathematical model given in

(Equation 2) is an extension of (17) by incorporating the early

detection term as follows:

dC(t)
dt = a1C(t)(1 −

C(t)
a2

) − a3C(t)(
L(t)

a4+L(t)
) − f (C),

dL(t)
dt = a5L(t)(1 −

L(t)
a6

)( C(t)
a7+C(t)

) − a8C(t)L(t) − a9L(t),
(2)

Where f (C) is the effect of early detection, which is a function of

C,   the tumor size. This effect is influenced by tumor size C(t),

detection threshold ~C, and awareness parameter a : The function

f (C) expressed in (Equation 3) is considered to follow the

Michaelis–Menten term (62–66). Thus, it is given as follows:

f (C) =
KC(t)

a + a~CC(t)
, (3)

where K represents the maximum effect of early detection, C(t) is

the tumor size at timet,  ~C represents the tumor size threshold for

detection,a is a constant that ensures the function behaves properly for
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small C(t) by providing a baseline detection effectiveness, anda is the

awareness parameter. We can observe that high awareness (a) makes

early detection more effective, lowering the overall impact of tumor

size. Conversely, low awareness makes early detection less effective,

allowing the tumor to grow more before detection has a significant

effect. This term ensures that as C(t) grows, detection saturates,

reflecting that detection effectiveness reaches a maximum point.

For ease of analysis, we nondimensionalize our model to reduce

the number of parameters involved. The nondimensionalized

model is given by:

dx
dt = x(1 − x) − bx( y

g +y ) −
kx

a+dx ,

dy
dt = ry(1 − y)( x

m+x ) − sxy − hy,
(4)

where,

x =
C
a2

,   y =
L
a6

,   t = a1t,   b =
a3a6
a1a2

,   g =
a4
a6

,   k =
K
a1

,   d

= a �C,  a =
a
a2

,   r =
a5
a1

,m =
a7
a2

,  s =
a8a2
a1

,  h =
a9
a1

:

2.1 Positivity and boundedness

In this section, we showed that our solutions are positive and

bounded, ensuring that the results are biologically feasible

and robust.

Theorem 2.1: The solution x(t) and y(t) of system (Equation 4)

is positive ∀   t > 0, if x(0) > 0 and y(0) > 0 (67, 68).

Proof. Let x(0) > 0 and y(0) > 0. Then, from the first equation

of system (Equation 4), we write:
dx
dt = x(1 − x) − bx( y

g +y ) −
k x

a+dx :Now define,

M1 = max
t≥0

b(
y

g + y
) +

k
a + dx

� �
≤   b +

k
a
:

So,

dx
dt

≥ x( − x −M1) = −x(x +M1) :

Now, consider

dz
dt

= −z(z +M1),   z(0) =   x0 > 0:

This is a standard Ricatti-type inequality that ensuresz(t) > 0,

and by comparison theorem (69, 70)

x(t) ≥ z(t) > 0   ⇒   x(t) > 0   ∀   t > 0:

Similarly, from the second equation of system (Equation 4),

dy
dt

= ry(1 − y)(
x

m + x
) − sxy − hy :

Clearly, the right-hand side has the form:

dy
dt

≥ −y(sx + h) ≥ −M2y,         where M2 = max
t≥0

(sx + h) :
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So we consider,

dz
dt

= −M2z,   z(0) = y0 > 0   ⇒   z(t) = y0e
−M2t > 0:

Then,

y(t) ≥ z(t) > 0   ⇒   y(t) > 0   ∀   t > 0:

Thus, x(t) > 0 andy(t) > 0, implies that all solutions

are positive.

Theorem 2.2: The solution x(t) and y(t) of system (Equation 4)

is bounded ∀   t ≥ 0 (69, 70).

Proof.We aim to show that x(t) and y(t) are bounded for t ≥ 0

. From the first equation,

                       dx
dt = x(1 − x) − bx( y

g +y ) −
kx

a+dx

⇒                     dx
dt ≤ x(1 − x) :

This is a classical logistic equation. The solution is bounded

above by 1. So, by comparison theorem (70),

x(t) ≤ 1 if x(0) ≤ 1, and x(t) → 1 as t → ∞ :

Therefore, x(t) ≤ max 1,   x(0)f g,   sox(t) is bounded.
Similarly, for the second equation,

dy
dt

= ry(1 − y)(
x

m + x
) − sxy − hy :

We have, dydt ≤ ry(1 − y). Thus, y(t) ≤ 1 if y(0) ≤ 1,   and y(t)
→ 1 ast → ∞ :.

Thus, y(t) ≤ max 1,   y(0)f g,   so y(t) is bounded. Therefore, x
(t) and y(t) are bounded.
2.2 Equilibrium analysis

In this section, we find the equilibrium points and state the

conditions for their existence. To evaluate these points, we set the

right-hand side of model (4) to zero and solve simultaneously forx

andy.

x(1 − x) − bx(
y

g + y
) −

kx
a + dx

= 0

ry(1 − y)(
x

m + x
) − sxy − hy = 0:
2.2.1 Cancer-free equilibrium
The first steady state, referred to as the cancer-free

equilibriumE0 = (0,   0), occurs when both the cancer and immune

cells are eradicated (71, 72).
2.2.2 Coexistence equilibrium
The second steady state is the coexistence equilibrium (73, 74)

obtained as follows:
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x(1 − x) − bx(
y

g + y
) −

kx
a + dx

= 0   (5)

ry(1 − y)(
x

m + x
) − sxy − hy = 0: (6)

We aim to express the coexistence equilibrium values x∗ and y∗,
such that x∗ > 0 and y∗ > 0, with y∗ in terms of x∗. Starting with

(Equation 6), we solve for y∗ in terms of x∗:

             r(1 − y*)( x*
m+x* ) = sx* + h

⇒        (1 − y*) = (m+x*)(sx*+h)
rx* :

⇒   y* = 1 −
(m + x*)(sx* + h)

rx*
:

Now substitute this expression in (Equation 5) we have,

1 − x* − b(
y*

g + y*
) =

kx*
a + dx*

,

where y* = 1 − (m+x*)(sx*+h)
rx* : This yields a single nonlinear

equation in terms of x*, which can be solved numerically to

obtain the coexistence steady state.

This steady state offers insights into the potential long-term

dynamics of the disease and may guide strategies for its control

and management.
2.3 Stability analysis

We now assess the local stability of the model at the death

equilibrium point by examining the eigenvalues of the Jacobian

matrix evaluated at this steady state. Consider the Jacobian matrix

given by:

J(x,   y) =
1 − 2x − by

(g +y) −
ka

(a+dx)2 − bg x
(g +y)2

ry(1 − y)( m
(m+x)2 ) − sy x

m+x (r − 2ry) − sx − h

2
4

3
5 (7)

Theorem 2.3: The steady state E0 is locally asymptotically stable

if k > a (75, 76).

Proof. Evaluating the Jacobian matrix (7) at the death steady

state E0 = (0,   0), we have (75):

J(0,   0) =
1 − k

a 0

0 −h

" #
:

Thus, the eigenvalues ofJ(0,   0) are given byl1 = 1 − k
a

andl2 = −h : Observe that l2 < 0 and l1 < 0 if and only ifk > a :

Thus, the steady stateE0 is locally asymptotically stable if k >

a (76).

Theorem 2.4: The steady state E0 is globally asymptotically

stable ifk > a and r
m < b

g + s (77).

Proof. Define the following linear function by

V(x, y) = x + y :
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O b s e r v e t h a t t h i s f u n c t i o n V(x, y) > 0 f o r

all(x, y) ≠ (0,   0),  V(0,   0) = 0,   and radially unbounded (x + y →

∞,  V → ∞). Therefore, V(x,   y) is positive definite and hence a

Lyapunov function (77). Now,

dV
dt

=
dx
dt

+
dy
dt

:

Substituting the system equations we have,

dV
dt = x(1 − x) − bx y

g +y

� �
− kx

a+dx

h i
+ ry(1 − y) x

m+x

� �
− sxy − hy

h i
≤ x − bxy

g − kx
a + rxy

m − sxy − hy

= x 1 − k
a

� �
+ y x r

m −
b
g − s

� �
− h

h i
< 0

  if k > a and  r
m < b

g + s :

Thus, dVdt < 0 ifk > a and r
m < b

g + s :Hence, the equilibrium

point is globally asymptotically stable (77).
3 Sensitivity analysis

In this section, we conduct a sensitivity analysis, an important

technique for assessing how the model’s solution responds to

changes in its parameters. We examine the sensitivity of tumor

concentration to each parameter, evaluating it through forward

sensitivity index analysis.

Figure 1 presents the graph of the sensitivity analysis. The bar

plot illustrates the sensitivity of tumor concentrationx(T) to each

parameter. Parameters shown in green reduce tumor concentration

when increased, whereas those in red cause it to rise. This visual
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quickly allows identification of the parameters are most influential

for control strategies. The most influential parameter in reducing

tumor isk (effect of early detection), followed bya (awareness)

and(b ,   r) immune response. Enhancing awareness and immune

response reduces tumor concentration, as shown in Figure 1. High

immune decay(h) or low immune effectiveness(g ) increases tumor

burden. Table 1 provides a detailed description of the

sensitivity analysis.
4 Numerical simulations

In this section, we use the parameter values from Table 2 to

present the numerical simulations of model (2) showing the impact

of early detection on tumor growth, using MATLAB version 2017b

to draw Figures 1–12 (25, 78, 79).

Figure 2 presents a time-series comparison of tumor

concentration with and without early detection. The tumor

shrinks rapidly to nearly zero, indicating that early detection is

highly effective in controlling tumor growth. However, without

early detection, tumor concentration stabilizes at a higher level,

indicating persistent tumor presence. This graph clearly illustrates

the significant role of early detection in reducing tumor burden.

Figure 3 shows the value of the early detection term, which is a

function of tumor concentration at various levels. This graph does

not show the tumor level but rather the effectiveness of the early

detection term. The blue curve(a   =   0:05) lies higher, meaning that

at every level ofx, the early detection term is stronger and removes

more tumor. In contrast, the purple curve (a = 0.8) lies lower,

meaning that at every level ofx, the early detection term is weaker and
FIGURE 1

Normalized forward sensitivity index.
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removes less tumor. When smalla (i.e., high awareness) implies a

stronger early detection term, which leads to greater tumor reduction.

Conversely, a largea (i.e., low awareness) implies a weaker detection

term, resulting in less effective tumor reduction. In general, stronger

early detection leads to greater tumor reduction.

Figure 4 present a bifurcation diagram illustrating how the

equilibrium values of the system’s variables change as the

parameterb (tumor–immune interaction rate) varies. The blue

curve fluctuates dramatically, suggesting complex tumor

dynamics asb increases. Multiple bifurcation points may occur,

where small changes inb lead to large shifts in tumor’s steady state.

Tumor concentration values are on the order of10−6, indicating very

small steady-state tumor populations; however, they are not

identically zero, showing persistence of tumor even under high

immune killing.

The green curve, representing immune cells, is almost flat and

near zero, indicating minimal change in immune cell equilibrium

with varyingb . This might suggest immune suppression or

exhaustion in the model. Sharp oscillations in the curve indicate

nonlinear, and possibly chaotic, tumor responses to changes inb . The
bifurcation analysis used the cancer-free equilibriumE0 = (0,   0), and

the observed transition illustrates a forward (supercritical) bifurcation

with respect tob .
Bifurcation analysis with respect to the awareness levela is

shown in Figure 5. As the awareness parameter increases, the tumor

equilibrium decreases. This indicates that a higher level of

awareness, more effective campaigns, or earlier screening

significantly reduce tumor size. There is no sharp bifurcation

point; however, there is a continuous decline in tumor equilibrium.

Figure 6 referred to bifurcation analysis with respect to the early

detection strengthk . Ask increases, the tumor equilibrium value

decreases. This implies that stronger early detection significantly

suppresses tumor growth. The transition appears smooth, without

any abrupt bifurcation point.

Figure 7 is a 3D graph of time (x-axis), awareness level (y-axis),

and tumor size (z-axis). At low awareness levels (left side of the y-

axis), the tumor starts at a certain size and grows rapidly over time

(higher z-values). When awareness increases (moving right on the

y-axis), the tumor shrinks more quickly. This implies that at high

awareness levels, the tumor is detected early and controlled, leading

to the tumor size dropping to almost zero early and remaining

suppressed throughout the time span.

Figure 8 shows the phase portrait of Tumor–Immune

Dynamics, where the x- and y-axes represent the concentrations

of tumor cells and immune cells actively engaged in tumor

suppression, respectively. The trajectory illustrates how the state

of the system evolves over time in the phase space defined by tumor

size and immune response. It starts with a low tumor burden and

low immune activity, and as time progresses, the system moves

along the path shown.

Biologically, this indicates that both tumor cells and immune

response start at low levels, representing a situation immediately

after tumor initiation, when the tumor is small and not yet strongly

detected by the immune system. The progression along the curve

implies that as tumor size increases slightly, the immune system
TABLE 1 Sensitivity index.

Parameter
Sensitivity

index
Interpretation

b −9.57
Tumor decreases strongly with higher
immune effectiveness.

g +4.28
Tumor increases with more immune
saturation (less efficient killing).

k −47.92
Tumor decreases sharply with stronger
early detection/removal.

a −10.18
Tumor decreases as awareness (early
detection factor) improves.

d +0.57
Tumor increases slightly with higher
nonlinearity in early detection.

r −1.49
Tumor decreases moderately with more
immune activation.

m +1.00
Tumor increases as immune activation
saturates earlier.

s +0.25
Tumor increases slightly with higher
immune cell death from tumor.

h +8.97
Tumor increases significantly with higher
immune cell decay.
TABLE 2 Parameter values.

Parameter
Optimized

value
Unit

Reference/
source

b 0.5 time−1

Kaur et al. (19),
Mohammad and Arafa
(20), Ryser et al. (25),
Siegel et al. (36):

g 0.1 Dimensionless Kaur et al. (19)

k 3.0 time−1 Arafa and Elnaggare (42)

a 0.65 Dimensionless

Optimized, WHO
reports, Arafa and
Elnaggare (42), Ryser
et al. (25), Siegel
et al. (36)

d 1.0 Dimensionless Assumed

r 1.0 time−1
Singh et al. (43), Kaur
et al. (19)

m 0.1 Dimensionless Kaur et al. (19)

s 0.3 cell−1time−1 Singh et al. (43)

h 0.1 time−1
Mohammad and
Arafa (20)

x(0) 0.35 Dimensionless
Optimized (within 0.1–
0.5 range)

y(0) 0.08 Dimensionless
Optimized (within 0.01–
0.2 range)

t 0–50 time Assumed
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begins to activate. The upward trajectory suggests that the immune

system is responding proportionally to the tumor presence. The

curve indicates a positive, nonlinear relationship between tumor

size and immune response. This suggests that the immune system

becomes increasingly responsive as tumor cells proliferate. This

aligns with known biological phenomena, in which the immune

system often remains inactive until the tumor burden exceeds a

certain threshold that triggers recognition and response. The curve

gradually flattens, indicating that even as tumor size grows, the

immune response increases more slowly. This indicates immune
Frontiers in Oncology 08
exhaustion or checkpoint inhibition effects. It also represents

suboptimal immune activation, where increasing tumor size is not

met with a proportionate immune escalation.

The basin of attraction in Figure 9 shows how the final tumor

concentration depends on the initial conditions of the system—

specifically the initial tumor cell population x(0) and initial immune

cell population (0). When y(0) is moderately high (e.g., >0.5) and

x(0) is not too high, the tumor is often reduced to low final levels

(dark purple). This indicates that immune cells successfully

suppress tumor growth. Light yellow zones indicate initial
FIGURE 2

Tumor dynamics with and without early detection.
FIGURE 3

Effect of early detection on tumor size.
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conditions where the tumor persists or grows, possibly due to low

initial immune presence, a large initial tumor load overwhelming

the immune system, or insufficient early detection (k ,  a).
Figure 9 underscores the importance of early immune

intervention and tumor detection. There are immune presence

thresholds below which the tumor cannot be controlled. This

supports the value of early detection campaigns and strategies to

boost immune function in breast cancer treatment.

Figure 10 gives the phase portrait with vector fields, nullclines,

and trajectories for system (3). The vector field (gray arrows) shows

the direction of movement or dynamics of the system (small

arrows). It illustrates how the state of the system changes over

time. For example, at a point(x, y), the arrow indicates how tumor

and immune levels change next.
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For the nullclines, we can observe the tumor nullcline, where

tumor size does not change (blue line), the immune nullcline (red

dashed line), and their intersection (black dot), which gives the

coexistence steady state. The coexistence steady state, as shown in

the graph, is (0.25, 0.70). If the system reaches this point, it will remain

there. This tells us that the tumor stabilizes at 25% maximum size,

while the immune response stabilizes at 70%. Each line represents a

simulation from different initial conditions (IC) described in Table 3.

Observe that all trajectories converge toward the equilibrium

point, confirming local stability. The direction of flow confirms that

the system naturally regulates tumor growth, depending on the

strength of the immune response. In conclusion, this phase portrait

demonstrates stable tumor–immune dynamics: the immune system

can contain the tumor at moderate levels, depending on initial
FIGURE 4

Bifurcation analysis with respect to b.
FIGURE 5

Bifurcation analysis with respect to a.
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FIGURE 6

Bifurcation analysis with respect to k.
FIGURE 7

3D graph of tumor growth.
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FIGURE 8

Phase portrait of tumor-immune dynamics.
FIGURE 9

Basin of attraction.
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conditions, and the system is locally stable around the equilibrium

point (0.25, 0.7), validating our stability analysis.

Figure 11 compares the evolution of immune cell concentrations

over time under two scenarios—with and without early detection.

Early detection reduces tumor burden, which in turn lowers immune

stimulation and causes a decrease in immune cell levels. In contrast,

the absence of early detection results in a more active tumor presence,

which sustains higher immune response levels over time. This figure
Frontiers in Oncology 12
clearly demonstrates the impact of early detection in reducing

immune activation demand, thereby supporting the effectiveness of

early cancer diagnosis in controlling immune–tumor dynamics.

Figure 12 demonstrates the model fitting of tumor concentration

over time. The blue line represents the mathematical model

predictionx(t), and the red dots represent synthetic real tumor

data. The model provides a good fit, effectively capturing tumor

growth dynamics over the observed time period.
FIGURE 10

Phase portrait with vector field and nullclines.
FIGURE 11

Immune dynamics with and without early detection.
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Due to the lack of access to patient-specific tumor concentration

data, the data used for model fitting are synthetic, designed to

emulate realistic growth trends. This approach is supported in the

literature as a valid method for validating mathematical oncology

models (16, 25).
5 Discussion and conclusion

We consider a mathematical model of breast cancer with

cytotoxic lymphocytes, incorporating the effect of early detection

in treating the disease. The model was nondimensionalized to

simplify analysis by reducing the number of parameters involved.

Two steady states were obtained: cancer-free state and a coexistence

states. Local and global stability analyses were conducted using a

suitable Lyapunov function, and conditions for stability was stated.

A sensitivity analysis was conducted to determine how sensitive the

solution of the model is to changes in parameters.

We explored the sensitivity of tumor concentration to each

parameter using the forward sensitivity index analysis. Figure 1
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shows the sensitivity analysis graph, where the most influential

parameter in reducing tumor isk (effect of early detection), followed

bya (awareness), andb ,   r (immune response). Improving

awareness and immune response helps reduce tumor

concentration, as observed in Figure 1, while high immune

decay(h) or low immune effectiveness(g ) worsens tumor burden.

A comparison of tumor concentration with and without early

detection shows that the tumor shrinks rapidly to nearly zero,

indicating that the early detection mechanism is highly effective at

controlling tumor growth. However, tumor concentration stabilizes

at a higher level, indicating its persistent presence due to the lack of

early detection intervention. These results clearly demonstrate the

significant role of early detection in reducing tumor burden.

More so, bifurcation diagrams were presented with regards tob
(immune response),k (early detection parameter), anda (awareness

campaign). As the awareness and early detection parameters increase,

the tumor equilibrium decreases, indicating that higher levels of

awareness, more effective campaigns, or earlier screening significantly

reduce tumor size. Figure 9 shows the basin of attraction,

emphasizing the importance of early immune intervention and

tumor detection. There are thresholds of immune presence below

which the tumor cannot be controlled. This supports the value of

early detection campaigns and immune function enhancement as

clinical strategies in breast cancer treatment.

In conclusion, despite the threat, severity, and deadly nature of

breast cancer, early detection and awareness campaigns are key to

curing or improving patients’ lives, as indicated by the

mathematical model and supported by numerical simulations in

this study. Thus, relevant authorities should emphasize the need to

strengthen early detection and awareness campaigns among the

populace to curb the menace posed by this deadly disease.
TABLE 3 Simulation from different initial conditions.

Color
Initial

condition(x, y)
Interpretation

Blue [0.3, 0.6]
Higher tumor start, moderate

immune response

Orange [0.2, 0.8] Moderate tumor, strong immune

Green [0.25, 0.5] Lower immune start

Red [0.1, 0.9] Low tumor, high immune
FIGURE 12

Model fitting of tumor concentration over time.
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6 Limitations

We believe that the current model provides valuable insights

into the interplay between tumor dynamics and immune response,

particularly under the influence of awareness-driven early

detection; however, it has some limitations:
Fron
a. The immune response is modeled as a single population of

immune cells. In reality, the immune system comprises

various components—such as helper T cells, cytotoxic T

cells, and regulatory T cells—that interact in complex ways

not captured in this study.

b. The model does not account for time delays in immune

activation, tumor recognition, or treatment response. Such

delays can significantly affect system dynamics and stability.

c. The model does not incorporate control or treatment

optimization. Although early detection is considered,

optimal intervention strategies—such as optimal control,

drug therapy schedules, or awareness campaign intensities

—are not explored in this study.

d. The model does not capture memory effects using the

concept of fractional calculus.

e. Another key limitation is the lack of real-world patient data

integration. All parameter values in this study are based on

literature or reasonable assumptions. We acknowledge that

empirical validation is essential for enhancing the predictive

and practical relevance of the model.

f. Due to the complex nonlinear structure of the model and

the algebraic complexity of expressions at the coexistence

equilibrium, it was not analytically tractable to determine

stability using classical mathematical techniques such as

linearization or Lyapunov analysis.
7 Future research directions

To address these limitations and enhance the model, future

research could explore the following avenues:
a. Incorporate multiple immune compartments: Extend the

model to include multiple immune cell types and cytokine

interactions, capturing more detailed tumor-immune dynamics.

b. Introduce time delay differential equations: Investigate the

impact of immune response delays and diagnosis/treatment

lag on tumor control and system stability.

c. Add spatial dimensions via PDEs or agent-based models:

Develop spatially explicit models or hybrid approaches that

combine ODEs with agent-based modeling (ABM) to

simulate spatial structure and tumor–immune heterogeneity.

d. Explore optimal control strategies: Introduce control

functions for early detection efforts, immunotherapy

dosing, awareness campaigns, or a combination of these

to identify cost-effective strategies for tumor suppression
tiers in Oncology 14
using Pontryagin’s Maximum Principle or numerical

optimal control methods.

e. Compare with clinical data for specific cancer types:

Calibrate and validate the model using real patient data

from breast cancer or other tumor types to improve

relevance and potential for clinical application.

f. Incorporate real patient datasets: As part of future research,

extend the model to incorporate real patient datasets. This

will enable parameter fitting, model refinement, and more

robust empirical validation, enhancing applicability in

clinical and public health decision-making.
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Appendix

1. Nondimensionalization

Consider the dimensionalized model equations below:
dC(t)
dt = a1C(t)(1 −

C(t)
a2

) − a3C(t)(
L(t)

a4+L(t)
) − KC(t)

a+a ~CC(t)
, dL(t)dt =

a5L(t)(1 −
L(t)
a6

)( C(t)
a7+C(t)

) − a8C(t)L(t) − a9L(t) :T o

nondimensionalize this model, we make the following change of

variables as follows:

L e t x = C
a2
,   y = L

a6
, a n d t = a1t : T h e n , C = a2x,  L = a6y,

also dC
dt = a2 : a1

dx
dt and dC

dt = a6 : a1
dy
dt :Substituting in the first and

second equation of the model we have,

a2 : a1
dx
dt = a2 : a1x(1 −

a2x
a2

) − a3a2x(
a6y

a4+a6y
) − ( Ka2x

a+a~Ca2x
),a6 : a1

dy
dt = a5 : a6y(1 −

a6y
a6

)( a2x
a7+a2x

) − a8a2x : a6y − a9a6y :T h i s

implies that,
dx
dt = x(1 − x) − bx( y

g +y ) − ( k x
a+dx ),

dy
dt = ry(1 − y)( x

m+x ) − sxy −
hy,whereb = a3a6

a1a2
,   g = a4a6,   k = K

a1
,   d = a �C,  a = a

a2
,   r = a5

a1
,m

= a7
a2
,  s = a8a2

a1
, andh = a9

a1
:Thus, the nondimensionalized model is

given by
dx
dt = x(1 − x) − bx( y

g +y ) −
k x
a+dx ,

dy
dt = ry(1 − y)( x

m+x ) − sxy −
hy :2. Theorem 2.4: The steady stateE0 is globally asymptotically

stable ifk > a and r
m < b

g + s [72 & 81].

Proof. Define the following linear function by

V(x, y) = x + y :Observe that this functionV(x, y) > 0 for

all(x, y) ≠ (0,   0),  V(0,   0) = 0,   and radially unbounded …

Therefore,V(x,   y) is positive definite and hence a Lyapunov

function. Now,
dV
dt = dx

dt +
dy
dt :Substituting the system equations we have,

dV
dt = ½x(1 − x) − bx( y

g +y ) −
kx

a+dx� + ½ry(1 − y)( x
m+x ) − sxy −

hy� :Observe that,
1.x(1 − x) ≤ x :.

2 . bx( y
g +y ) ≥

bxy
g +y ≥

bxy
g   ⇒ −   bx( y

g +y ) ≤ − bxy
g :

3. kx
a+dx ≥

kx
a   ⇒  − kx

a+dx ≤ − kx
a :4.ry(1 − y)( x

m+x ) ≤
rxy
m .

Adopting the inequalities in serial 1 to 4, we have
dV
dt = ½x(1 − x) − bx( y

g +y ) −
kx

a+dx� + ½ry(1 − y)( x
m+x ) − sxy −

hy� ≤ x − bxy
g − kx

a + rxy
m − sxy − hy     = x(1 − k

a ) + y½x( r
m −

b
g −

s ) − h� < 0i f k > a a n d r
m < b

g + s : T h u s , dV
dt < 0 i f k > a

and r
m < b

g + s :.
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