AUTHOR=Byeon Haewon , Alsaadi Mahmood , Vijay Richa , Assudani Purshottam J. , Kumar Dutta Ashit , Bansal Monika , Singh Pavitar Parkash , Soni Mukesh , Bhatt Mohammed Wasim TITLE=Explainable multi-view transformer framework with mutual learning for precision breast cancer pathology image classification JOURNAL=Frontiers in Oncology VOLUME=Volume 15 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2025.1626785 DOI=10.3389/fonc.2025.1626785 ISSN=2234-943X ABSTRACT=Breast cancer remains the most prevalent cancer among women, where accurate and interpretable analysis of pathology images is vital for early diagnosis and personalized treatment planning. However, conventional single-network models fall short in balancing both performance and explainability—Convolutional Neural Networks (CNNs) lack the capacity to capture global contextual information, while Transformers are limited in modeling fine-grained local details. To overcome these challenges and contribute to the advancement of Explainable AI (XAI) in precision cancer diagnosis, this paper proposes MVT-OFML (Multi-View Transformer Online Fusion Mutual Learning), a novel and interpretable classification framework for breast cancer pathology images. MVT-OFML combines ResNet-50 for extracting detailed local features and a multi-view Transformer encoding module for capturing comprehensive global context across multiple perspectives. A key innovation is the Online Fusion Mutual Learning (OFML) mechanism, which enables bidirectional knowledge sharing between the CNN and Transformer branches by aligning both intermediate feature representations and prediction logits. This mutual learning framework enhances performance while also producing interpretable attention maps and feature-level visualizations that reveal the decision-making process of the model—promoting transparency, trust, and clinical usability. Extensive experiments on the BreakHis and BACH datasets demonstrate that MVT-OFML significantly outperforms the strongest baseline models, achieving accuracy improvements of 0.90% and 2.26%, and F1-score gains of 4.75% and 3.21%, respectively. By integrating complementary modeling paradigms with explainable learning strategies, MVT-OFML offers a promising AI solution for precise and interpretable breast cancer diagnosis and prognosis, supporting informed decision-making in clinical settings.