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and Shan Wang2*
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Chongqing, China, 2Department of Surgical Oncology, National Clinical Research Center for Child
Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,
China International Science and Technology Cooperation Base of Child Development and Critical
Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
Purpose: [18F]FDG PET/CT serves as an alternative imaging modality for

neuroblastoma in cases where [123I]MIBG yields negative results or is

unavailable. [18F]mFBG, a novel PET tracer for neuroblastoma imaging, requires

further clinical validation. This preliminary study aims to evaluate the efficacy of

[18F]mFBG PET/CT compared to [18F]FDG PET/CT in detecting neuroblastoma.

Methods: In this retrospective investigation, 56 pediatric patients were enrolled.

Each patient underwent both [18F]mFBG PET/CT and [18F]FDG PET/CT within one

week. Two children underwent a second paired [18F]FDG-[18F]mFBG PET/CT

scan. In total, 58 paired scans (mean age 47.6 ± 38.0 months, range 6–108

months) were performed. Two experienced readers measured normal organ

uptake (SUVmean), lesion uptake (SUVmax), and tumor-to-background ratio (TBR).

A lesion-by-lesion analysis was conducted to compare detection rates between

[18F]mFBG and [18F]FDG.

Results: Twenty paired scans exhibited negative findings on both [18F]mFBG and

[18F]FDG studies. Among the remaining 38 scans, 8 (21.05%) were [18F]mFBG-

positive/[18F]FDG-negative, 1 (2.63%) was [18F]FDG-positive/[18F]mFBG-negative,

and 29 (76.32%) were positive on both tracers. In these 38 scans, [18F]mFBG PET/

CT identified 431 lesions, whereas [18F]FDG PET/CT detected only 162 lesions

(p<0.001). Six of eight [18F]mFBG-positive/[18F]FDG-negative cases were

histopathologically confirmed as neuroblastoma. The mean TBR of [18F]mFBG

PET/CT(6.68 ± 5.76) was significantly higher (p<0.001) than that of [18F]FDG PET/

CT (4.49 ± 2.88).

Conclusion: [18F]mFBG PET/CT detected more neuroblastoma lesions than [18F]

FDG PET/CT, suggesting it may be a more viable alternative when standard [123I]

MIBG scanning is not feasible.
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Introduction

Neuroblastoma is a malignant solid tumor arising from neural

crest, accounting for approximately 8% of pediatric cancers and

nearly 15% of cancer-related fatalities in children. Approximately

50% of patients present with soft and/or distant skeletal metastases

at diagnosis, a key prognostic factor for poor outcome (1, 2). The 5-

year event-free survival rate is typically less than 50% (3, 4),

underscoring the critical importance of precise staging for

optimal treatment planning and clinical monitoring.

The norepinephrine transporter (NET), a transmembrane

protein responsible for norepinephrine reuptake, is highly

expressed in neuroblastoma cells. Iodine-123-labeled meta-

iodobenzylguanidine ([123I]MIBG), a synthetic norepinephrine

analogue, is the most widely used radiopharmaceutical for NET

imaging (5). Currently, [123I]MIBG planar whole-body scintigraphy

remains the gold standard for neuroblastoma nuclear imaging (6–

8). However, [123I]MIBG scintigraphy has several limitations,

including a 2-day imaging protocol, the need for thyroid

blockade, limited spatial resolution, and frequent requirement for

procedural sedation during scanning (8, 9). Moreover, only four

hospitals in China currently have access to [123I]MIBG.

Positron emission tomography (PET) offers significant

advantages over conventional scintigraphy, including shorter scan

time, superior sensitivity, higher spatial resolution, and more

straightforward radiotracer uptake quantification (10). Several

PET tracers have shown promise for neuroblastoma imaging,

such as [18F]FDG, [18F]F-DOPA, [124I]MIBG, [68Ga]

DOTATATE, with studies demonstrating their ability to detect

more tumor lesions compared to paired [123I]MIBG scans (11–14).

The NCCN guidelines recommend [18F]FDG PET/CT as second-

line imaging for MIBG-negative neuroblastoma cases (7). In China,

where [123I]MIBG remains largely unavailable, [18F]FDG PET/CT

has become the de facto standard for evaluating neuroblastic

tumors and metastatic sites. Studies have demonstrated the

clinical utility of [18F]FDG PET/CT in neuroblastoma, reporting

higher detection accuracy than [123I]MIBG scintigraphy in selected

patient cohorts (15–17). Furthermore, multiple studies have

investigated the prognostic relevance of [18F]FDG PET/CT in

pediatric neuroblastoma cases (18–20). However, [18F]FDG has

limited specificity for skeletal metastases due to high physiological

bone marrow uptake, particularly following treatment (8).

Meta-[18F]fluorobenzylguanidine ([18F]mFBG), an MIBG

analog, similarly targets NET-expressing cells (21). This tracer has

demonstrated favorable safety profi les, biodistribution

characteristics, kinetic properties, and lesion detection capability

(22). Comparative studies have shown similar physiological and

pathological distributions between [18F]mFBG PET/CT and [123I]

MIBG scintigraphy, with the former offering superior spatial

resolution, improved tumor delineation, and enhanced lesion

detection (23–25). Nevertheless, in regions where [123I]MIBG is

unavailable, it remains unclear whether [18F]mFBG PET/CT should

be prioritized over [18F]FDG PET/CT as the preferred

imaging modality.
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This preliminary study aims to evaluate the diagnostic

performance of [18F]mFBG PET/CT versus [18F]FDG PET/CT in

neuroblastoma assessment, seeking to determine its potential as a

superior imaging alternative.
Materials and methods

Study design and patients

This retrospective study was conducted following approval by

the Institutional Review Board of XXX Hospital from December

2023 to August 2024. Pediatric neuroblastoma patients meeting the

following inclusion criteria were enrolled: (a) histopathological

confirmed neuroblastoma diagnosis; (b) age > 6 months; (c) legal

guardian consent for study participation; (d) ability to complete

both [18F]mFBG PET/CT and [18F]FDG PET/CT scans within a 7-

day interval; and (e) no therapeutic interventions between scans.

Exclusion criteria included pregnancy. Written informed consent

was obtained from all legal guardians and from patients aged >8

years. The histopathological analysis was utilized as the primary

diagnostic reference standard. For lesions inaccessible to biopsy,

clinical follow-up data supplemented by conventional imaging (CT/

MRI) as secondary reference standards were utilized.
[18F]mFBG PET/CT and [18F]FDG PET/CT
imaging

The synthesis method for [18F]mFBG has been previously

documented (26). The imaging studies were performed utilizing a

time-of-flight (TOF) and point spread function (PSF) PET/CT

scanner (uMI780, Shanghai United Imaging Healthcare Co., LTD,

China). Both radiotracers ([18F]mFBG and [18F]FDG) were

administered via slow intravenous injection at a dose of 2 MBq/

kg (minimum activity: 20 MBq), followed by saline flush,with no

fasting requirement for [18F]mFBG imaging. PET acquisition

commenced ≥60 minutes post-injection with a 2-minute

acquisition per bed position (25), preceded by a low-dose CT

scan (80–100 kV, 30–50 mAs) for attenuation correction (24, 25).

Images reconstruction employed an ordered subsets expectation

maximization algorithm (2 iterations, 10 subsets) with corrections

for CT-based attenuation, decay, random events, and scatter,

yielding final PET images with 1.5 mm slice thickness.
Lesion detection and image interpretation

Two experienced nuclear medicine physicians (XXX and XXX)

independently evaluated anonymized scans for pathological lesions,

with discordant interpretations resolved through consensus discussion

involving a third senior reader (XXX). Pathological neuroblastoma

lesions were defined as focal areas of [18F]FDG or [18F]mFBG uptake in

soft tissue or bone/bone marrow that exceeding both adjacent tissues
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and contralateral reference areas, while absence of such distinct focal

activity was classified as negative (24, 27, 28). To minimize

confounding factors in [18F]FDG interpretation, strict protocols were

implemented (1): comprehensive prescan clinical assessments

documenting surgical history, treatment timelines, and recent febrile/

activity status; and (2) expert image analysis applying stringent

diagnostic criteria that classified diffuse low-to-moderate bone

marrow uptake as negative (especially during post-treatment

recovery), with all findings clinically correlated. Quantitative analysis

measured maximum/mean standardized uptake values (SUVmax/mean)

for both lesions and normal organ backgrounds, enabling comparison

of [18F]mFBG and [18F]FDG detection performance. Tumor-to-

background ratios (TBR) were calculated by dividing lesion SUVmax

by site-specific background SUVmean (liver for hepatic lesions, bone/

bone marrow for bone/bone marrow lesions, gluteal muscle for other

lesions) (24, 29).
Statistical analysis

Owing to the low prevalence of neuroblastoma, the sample size

recruited was determined by practical considerations. For

continuous data, normality tests (Shapiro - Wilk test) were

performed. Data meeting normal distribution criteria are now

presented as mean ± standard deviation (SD), while non - normal

data retain the median and range description. Differences in lesion

detection per region and lesion uptake were analyzed using Mann -

Whitney U test between [18F]mFBG PET/CT and [18F]FDG PET/
Frontiers in Oncology 03
CT studies. The McNemar test and Mann - Whitney U tests was

employed to compare the diagnostic performance and TBR values

of the two techniques, respectively. Statistical analyses were

performed using SPSS software (version 26, SPSS Inc., Chicago,

IL, USA). The statistical significance was defined as a p-value <0.05.
Results

Clinical characteristics of the participants

Sixty-five pediatric patients with neuroblastoma who

underwent PET/CT imaging were initially enrolled. After

applying exclusion criteria, 56 patients (28 females and 28 males,

mean age 47.6 ± 38.0 months, range 6–108 months) were included

in the final analysis. Exclusion criteria comprised: 6 patients who

failed to complete both [18F]mFBG and [18F]FDG PET/CT scans,

and 3 patients whose paired scans exceeded the one-week interval

requirement. Notably, two children underwent a second set of

paired scans during treatment response assessment, resulting in a

total of 58 analyzable [18F]FDG-[18F]mFBG PET/CT scan pairs.

The clinical indications for scanning included: treatment response

evaluation (33 scans, 56.89%), pretreatment staging (14 scans,

24.14%), end-of-therapy assessment (6 scans, 10.34%), follow-up

monitoring (4 scans, 6.89%), and recurrence detection (1 scan,

1.72%) (Figure 1, Table 1).

The primary tumor distribution analysis revealed 45

retroperitoneal cases, with remaining sites including mediastinum
FIGURE 1

The flow diagram shows participant selection details.
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(n=4), pelvis (n=2), neck (n=2) and paravertebral/epidural area

(n=2), and spermatic cord(n=1). Notably, the spermatic cord has

not been previously reported as a primary site for neuroblastoma.

According to the International Neuroblastoma Risk Group (INRG)

staging system, 34 patients (60.71%) presented with stage M disease,

while 35 patients (62.50%) were classified as high-risk. The median

number of prior chemotherapy cycles at imaging was 6 (range

0-10).

No related adverse effects were observed following [18F]mFBG

administration. Scan duration showed no significant difference

between modalities ([18F]mFBG: 7.4 ± 2.8 min vs. [18F]FDG: 7.2

± 3.0 min). Sedation was administered to 11 children during [18F]

mFBG scans (mean age 1.8 ± 0.8 years) and 10 children during [18F]

FDG scans (mean age 1.6 ± 1.0 years).
Comparison of detection sensitivity
between [18F]mFBG PET/CT and [18F]FDG
PET/CT: patient-based analysis

Twenty paired scans demonstrated concordant negative

findings (13 treatment response evaluations, 4 EOT, and 3 follow-
Frontiers in Oncology 04
up scans), consistent with disease remission. Discordant results

included 8 [18F]mFBG-positive/[18F]FDG-negative scans and 1

[18F]FDG-positive/[18F]mFBG-negative scan, while 29 scans

showed positive on both modalities. The overall concordance rate

between [18F]mFBG and [18F]FDG PET/CT was 84.48% (49/58)

(representative examples shown in Figure 2).

Patient-based analysis revealed [18F]mFBG PET/CT detected

significantly more soft tissue and skeletal lesions (63.79%, 37/58)

compared to [18F]FDG PET/CT (51.72%, 30/58, p=0.039), with the

difference being particularly pronounced in chemotherapy-treated

patients. In the treatment response evaluation subgroup (n=33),

[18F]mFBG demonstrated superior detection rates (60.60%, 20/33)

versus [18F]FDG (42.42%, 14/33, p=0.031). However, no significant

difference emerged between modalities (p=1.000) for initial staging

(n=14), EOT evaluation (n=6), follow-up (n=4), or recurrence

assessment (n=1) subgroups (combined detection rates: [18F]

mFBG 68.00% [17/25] vs. [18F]FDG 64.00% [16/25]). Among 34

M-stage patients, [18F]mFBG maintained significantly higher

positivity rates (64.70%, 22/34) than [18F]FDG (47.06%, 16/

34, p=0.031).

Histopathological confirmation was obtained for six of eight

[18F]mFBG-positive/[18F]FDG-negative cases, all verifying active
TABLE 1 Patients and tumor characteristics.

Characteristics

[18F]mFBG PET/CT [18F]FDG PET/CT

Positive
(N=36)

Negative
(N=20)

Total
(N=56)

Positive
(N=30)

Negative
(N=26)

Total
(N=56)

Age (months*)
50 ± 28.7
(9–106)

44.5 ± 27.3
(6–108)

47.6± 28.0
(6–108)

47.2 ± 28.9
(6–106)

46.1 ± 26.1
(12–108)

47.6± 28.0
(6–108)

Gender

Male 20 8 28 18 10 28

Female 16 12 28 12 16 28

INRG Stage

L1 10 1 11 9 2 11

L2 4 7 11 5 6 11

M 22 12 34 16 18 34

Risk

Low 11 1 12 10 2 12

Intermediate 3 6 9 4 5 9

High 22 13 35 16 19 35

Indication for scan
(58 paired scans)

Positive
(N=37)

Negative
(N=21)

Total
(N=58)

Positive
(N=30)

Negative
(N=28)

Total
(N=58)

Initial staging 14 0 14 14 0 14

Treatment efficacy
assessment

20 13 33 14 19 33

EOT assessment 2 4 6 1 5 6

Follow-up 0 4 4 0 4 4

Recurrence 1 0 1 1 0 1
*Age is expressed as the mean± SD, with a range in parentheses. INRG, International Neuroblastoma Risk Group; EOT, end-of-therapy.
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neuroblastoma (Figure 3). Conversely, the solitary [18F]FDG-

positive/[18F]mFBG-negative cases showed no malignant cells on

pathological examination (Figure 4).
Lesion-based comparative analysis of [18F]
mFBG and [18F]FDG PET/CT performance

The lesion-based evaluation demonstrated superior detection

capability of [18F]mFBG PET/CT, which identified 431 total lesions

(130 soft tissue, 301 skeletal) in 37 positive scans, compared to only

162 lesions (86 soft tissue, 76 skeletal) detected by [18F]FDG PET/

CT in 30 positive scans (Figure 5). Among 29 scan pairs positive on

both modalities, [18F]mFBG showed greater sensitivity for soft

tissue lesions in 11 cases (37.93%), equivalent detection in 16

cases (55.17%), and reduced detection in 2 cases (6.89%), while

for skeletal lesions it demonstrated superior detection in 23 cases

(79.31%), comparable results in 4 cases (13.79%), and inferior

performance in 2 cases (6.89%). Stratified analysis by INRG stage

revealed comparable performance in early-stage (L1/L2) and low/

intermediate-risk patients, while [18F]mFBG significantly

outperformed [18F]FDG in metastatic (M stage) and high-risk

groups (Table 2). Although both modalities detected more lesions
Frontiers in Oncology 05
at initial diagnosis and treatment response evaluation, only the

efficacy assessment subgroup reached statistical significance.

Quantitative analysis showed significantly higher mean TBR for

[18F]mFBG (6.68 ± 5.76) versus [18F]FDG (4.49 ± 2.88, p<0.001),

with particularly notable differences in skeletal lesions ([18F]mFBG

6.72 ± 6.06 vs. [18F]FDG 3.26 ± 1.71, p<0.001) compared to soft

tissue lesions ([18F]mFBG 6.56 ± 4.88 vs. [18F]FDG 5.71 ±

2.88, p=0.180).
Clinical impact on therapeutic decision-
making

The detection discrepancy between imaging modalities

significantly influenced treatment strategies in three of eight [18F]

mFBG-positive/[18F]FDG-negative cases, promoting therapeutic

modifications involving surgical intervention followed by systemic

therapy. The remaining five cases, while confirming skeletal

metastases through [18F]mFBG imaging, maintained their original

staging, risk classification, and treatment protocols.

A representative case involved a patient with primary right

cervical neuroblastoma (initially staged as non-metastatic) whose

post-operative [18F]mFBG PET/CT revealed previously undetected
FIGURE 2

An 8-year-old boy with high-risk left retroperitoneal neuroblastoma received 1 cycle of chemotherapy. (a) [18F]mFBG images. Pathological uptake
(red arrows) with SUVmax 8.9 and TBR 12.5 was noted in the left retroperitoneal mass, and detailed showed in axial images. (b) [18F]FDG images.
Pathological uptake (blue arrows) with SUVmax 5.8 and TBR 11.9 was noted in the left retroperitoneal mass, and detailed show in axial images.
Besides, residual activity of mFBG and FDG was found in the left thoracic entrance and retroperitoneal lymph nodes.
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tibial metastases (upstaged to M), subsequently receiving

chemotherapy, whereas concurrent [18F]FDG imaging only

demonstrated expected inflammatory uptake at the surgical site.

Conversely, the solitary [18F]FDG-positive/[18F]mFBG-negative

case underwent parent-requested surgical excision that

histopathologically confirmed the absence of malignant cells,

validating the [18F]mFBG negative finding.
Discussion

This prospective study evaluated the diagnostic performance of

[18F]mFBG PET/CT in 56 neuroblastoma patients through 58

paired scans with [18F]FDG PET/CT, demonstrating excellent

safety with no adverse reactions observed. Both modalities

showed comparable acquisition times (approximately 7 minutes),

consistent with prior reports (24, 25). Our findings reveal [18F]

mFBG’s superior diagnostic sensitivity versus [18F]FDG in both

patient-based (63.79% [37/58] vs. 51.72% [30/58], p=0.039) and

lesion-based analyses (431 vs. 162 lesions detected, p<0.001).

Quantitative assessment showed significantly higher mean TBR

for [18F]mFBG (6.68 ± 5.76) compared to [18F]FDG (4.49 ± 2.88,

p<0.001), with particularly notable differences in skeletal lesion

detection. Pathological confirmation was obtained in seven
Frontiers in Oncology 06
surgically-treated cases (per parental request), with six [18F]

mFBG-positive/[18F]FDG-negative lesions histologically verified

as neuroblastoma, while the single [18F]FDG-positive/[18F]mFBG-

negative case showed no malignant evidence. These results

substantiated [18F]mFBG PET/CT’s superior specificity for post-

treatment evaluation, suggesting its potential as a more reliable

imaging biomarker than [18F]FDG PET/CT for therapeutic

monitoring in neuroblastoma patients.

Our results demonstrate that [18F]mFBG PET/CT

outperformed [18F]FDG PET/CT in detecting skeletal lesions,

identifying 269 additional metastases, including skull lesions that

were obscured by physiological [18F]FDG uptake (Figure 6). The

statistically superior performance in treatment response assessment

(compared to initial staging) likely reflects the predominance of

early-stage disease (9 L1, 3 L2, and only 2 M stage cases) in our

staging cohort, where lower lesion burden limited comparative

sensitivity. Several methodological constraints must be

acknowledged, including limited histopathological validation due

to ethical and practical biopsy restrictions, lack of direct

comparison with [123I]MIBG imaging, and reliance on CT/MRI

and clinical follow-up rather than pathological confirmation. These

limitations highlight the necessity for future multi-center

prospective trials to validate [18F]mFBG PET/CT against [123I]

MIBG SPECT/CT, define i t s ro le in comprehens ive
FIGURE 3

A 3-year-old girl suffered high-risk right retroperitoneal neuroblastoma with bone metastases and underwent resection of lesions followed by 8
cycles of chemotherapy. Post-therapy images were acquired. (a) [18F]mFBG images. Pathological uptake (red arrows) with SUVmax 5.1 and TBR 4.9
was noted in the abdominal paraaortic lymph nodes, and detailed showed in axial images. And residual activity of mFBG was found in bone/bone
marrow in multiple parts of the body. (b) [18F]FDG images. No pathological uptake was found.
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neuroblastoma assessment, and refine imaging protocols across

different clinical scenarios.

Among the 35 patients categorized within the high-risk group,

28 exhibited poorly differentiated pathological types. The number of

positive cases identified through [18F]mFBG PET/CT and [18F]FDG

PET/CT was 17 and 13, respectively. Within the high-risk cohort,

10 cases demonstrated MYCN amplification, with 5 cases positive

for [18F]mFBG PET/CT and 4 for [18F]FDG PET/CT. In the

subgroup characterized by poorly differentiation and MYCN

amplification, the difference in positivity rates between [18F]FDG

PET/CT and [18F]mFBG PET/CT was not statistically significant,

with P values of 0.125 and 1.00, respectively. Previous researches

suggest that patients with poorly differentiated tumors and MYCN

amplification were more likely to be MIBG-negative, indicating that

they might particularly benefit from [18F]FDG PET/CT imaging.

However, this study did not observe a higher positivity rate for [18F]

FDG PET/CT, compared to [18F]mFBG PET/CT in patients with

poorly differentiated pathological types and MYCN amplification.

This finding could be attributed to the limited sample size, alongside

the fact that [18F]mFBG PET/CT offers higher resolution and

sensitivity than MIBG. Moreover, the criteria for high-risk

classification encompass more than just differentiation status and

MYCN amplification.
Frontiers in Oncology 07
Two pediatric patients underwent sequential paired [18F]FDG-

[18F]mFBG PET/CT scans at different therapeutic time points, with

each scan pair analyzed independently. The follow-up [18F]mFBG

PET/CT demonstrated reduced tumor burden (both in lesion

number and TBR values) compared to baseline scans, while [18F]

FDG PET/CT failed to show comparable treatment-related changes.

This differential response pattern suggests [18F]mFBG’s superior

utility for therapeutic monitoring. Furthermore, the technical

advantages of [18F]mFBG PET/CT - including superior spatial

resolution and whole-body coverage - enabled enhanced tissue

delineation and more precise anatomical localization of

pathological uptake, even in regions adjacent to areas of

physiological tracer accumulation (22, 25, 29, 30).

The administration of [18F]mFBG in our study demonstrated

an excellent safety profile, with all patients tolerating the procedure

well - findings that align with previous clinical reports (25, 29, 31).

Importantly, the majority of pediatric subjects (particularly valuable

in neuroblastoma cases where most patients are <5 years old)

successfully completed the imaging procedure without requiring

sedation (32–34).

In our protocol, we selected a 1-hour post-injection acquisition

time for PET/CT imaging to optimize patient convenience while

maintaining diagnostic quality. This decision aligns with existing
FIGURE 4

A 2-year-old boy suffered low-risk left retroperitoneal neuroblastoma and followed by 2 cycles of chemotherapy. Post-therapy images were
acquired. (a) [18F]mFBG images. No residual activity was found. (b) [18F]FDG images. Abnormal activity (blue arrows) with SUVmax 5.0 and TBR 11.6
was found in the right retroperitoneal lymph node.
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FIGURE 5

Therapy response evaluation of a 4-year-old boy suffered high-risk right retroperitoneal neuroblastoma underwent resection of lesions followed by
3 cycles of chemotherapy. (a) [18F]mFBG images. Pathological uptake was found in extensive lymph nodes and bone/bone marrow (red arrows).
(b) [18F]FDG images. No residual activity was found.
TABLE 2 The number of lesions detected by two examination methods.

Characteristics
[18F]FDG PET/CT [18F]mFBG PET/CT

P
Soft tissues BBM Total Soft tissues BBM Total

INRG stage

L1 14 0 14 14 0 14 P<1.00

L2 4 0 4 3 0 3 P<1.00

M 68 76 144 113 301 414 P<0.001

Risk group

Low 15 0 15 15 0 15 P<1.00

Intermediate 3 0 3 2 0 2 P<1.00

High 68 76 144 113 301 414 P<0.001

Indication for scan

Initial staging 28 9 37 30 34 64 0.18

Efficacy evaluation 51 67 118 94 265 359 0.001

EOT assessment 1 0 1 0 2 2 P<1.00

Follow-up 0 0 0 0 0 0 P<1.00

Recurrence 6 0 6 6 0 6 P<1.00
F
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BBM, bone/bone marrow; INRG, International Neuroblastoma Risk Group; EOT, end of therapy.
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literature: Pandit-Taskar et al. demonstrated improved lesion

detection and tumor-to-background contrast with scans obtained

beyond 1-hour post-injection (22), while Atia Samim et al. Reported

stable tumor uptake of [18F]mFBG between 1–2 hours post-

administration, with only minimal background uptake reduction

at the later time-point (25).

Our study has several important limitations that should be

acknowledged. The most significant constraint is the inability to

directly compare our results with the current gold standard [123I]

MIBG SPECT/CT, primarily due to limited availability of this trace

in many regions, especially Southwest China (6, 9, 35, 36). This

highlights the urgent need for alternative PET tracers with

enhanced diagnostic capabilities. Additionally, the relatively small

sample size across different categories (End of Therapy, Follow-up,

and Relapse) may introduce chance variations, limiting the

reliability of statistical analyses. While [18F]FDG PET/CT offers

superior spatial resolution and is particularly valuable for MIBG-

negative cases, its diagnostic value is compromised by nonspecific

bone/bone marrow uptake during post-treatment recovery and

intense physiological brain uptake, which can obscure true

pathology (14, 15, 37–39). Another potential limitation of [18F]
Frontiers in Oncology 09
mFBG is its limited availability, as it requires cyclotron production,

which may affect broader clinical implementation.

In our study, [18F]mFBG PET/CT emerges as promising

alternative, sharing the same norepinephrine transporter

mechanism as [123I]MIBG SPECT/CT while overcoming

conventional limitations through PET’s superior spatial resolution

and quantitative capabilities (22, 24, 25, 32). However, the

interpretation of our findings should consider that most patients

(42/56) had undergone prior surgery and chemotherapy, which

likely suppressed tumor metabolism and consequently reduced

[18F]FDG detection rates. To address these limitations, future

studies should include more treatment-naïve patients and

implement a synchronous trimodality imaging approach ([¹²³I]

mIBG/[18F]mFBG/[18F]FDG) to minimize potential temporal

biases and provide more comprehensive evaluations.
Conclusion

This pilot study highlights the superior diagnostic performance

of [18F]mFBG PET/CT over [18F]FDG PET/CT in neuroblastoma
FIGURE 6

Therapy response evaluation of a 4-year-old boy with high-risk right retroperitoneal neuroblastoma underwent resection of lesions followed by 8
cycles of chemotherapy. (a) [18F]mFBG images. Pathological uptake was found in the skull (red arrows). (b) [18F]FDG images. No residual activity was
found in the same site.
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evaluation, suggesting that [18F]FDG PET/CT should not be

routinely used for this purpose. The significantly higher lesion

detection rate with [18F]mFBG PET/CT, particularly for skeletal

metastases, has critical clinical implications for accurate staging and

treatment monitoring. When [123I]MIBG scintigraphy is

unavailable, [18F]mFBG PET/CT emerges as a more reliable

alternative than [18F]FDG PET/CT. Nevertheless, large-scale

prospective trials directly comparing [18F]mFBG PET/CT with

the current gold-standard [123I]MIBG imaging are warranted to

validate these findings and potentially redefine standard

neuroblastoma imaging protocols.
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