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Visualized clinical–radiomics
model for predicting the
efficacy of surufatinib in
hepatic metastases of
neuroendocrine neoplasms
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Qi Wang2 and Fei Yin1*

1Department of Gastroenterology, Fourth Hospital of Hebei Medical University, Shijiazhuang,
Hebei, China, 2Department of CT and MRI, Fourth Hospital of Hebei Medical University, Shijiazhuang,
Hebei, China
Background: Hepatic metastatic neuroendocrine neoplasms (HM-NENs) have

few treatment biomarkers and low survival rates. We created a clinical–radiomics

fusion model to predict surufatinib efficacy in HM-NENs and presented it as a

nomogram, meeting unmet requirements in precision hepatology.

Methods: This study included 76 HM-NEN patients (131 hepatic metastases)

treated with surufatinib. SlicerRadiomics was used to extract radiomics features

from arterial phase computed tomography (APCT). The least absolute shrinkage

and selection operator (LASSO) was used to select radiomics features and

calculate a radiomics score (Radscore). Multivariable logistic regression analysis

was utilized to create the clinical–radiomics fusion model, which included

clinical characteristics and Radscore and was displayed as a nomogram. The

area under the receiver operating characteristic curve (ROC) was used to assess

model performance, and internal validation was done using the bootstrap

resampling approach.

Results: After multivariate logistic regression analysis, the Radscore, Ki67 antigen

(Ki67), number of hepatic metastases, and extrahepatic metastasis were included

as predictors in the final model. The area under the curve (AUC) of the clinical–

radiomics fusion model to predict the response of surufatinib of HM-NENs was

0.928 (95% CI: 0.885 - 0.971). The AUC verified by bootstrap is 0.928 (95% CI:

0.881–0.965), indicating a good performance of the fusion model.

Conclusion: The clinical–radiomics fusion model can effectively identify patients

with HM-NENs sensitive to surufatinib therapy. The nomogram provided

clinicians with a convenient and dependable tool for decision-making.
KEYWORDS

hepatic metastatic neuroendocrine neoplasms, surufatinib, clinical-radiomics model,
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1 Introduction

Neuroendocrine neoplasms (NENs) are a varied group of

cancers that originate from the diffuse neuroendocrine systems

(1). NENs can occur anywhere in the body, with lung and

gastrointestinal pancreatic NENs being the most common (2, 3).

The diagnostic capabilities for NENs have improved over time due

to advancements in endoscopic techniques and biomarker

technologies. The incidence rate has increased sixfold in the last

40 years (4). At present, the primary treatment modalities for NENs

encompass surgical resection, chemotherapy, radiotherapy, and

immunotherapy. Beyond these, targeted therapy also serves as a

therapeutic option. NENs, characterized by abundant vascular

supply, dense capillary networks, and elevated vascular

endothelial growth factor (VEGF) expression, present

opportunities for anti-angiogenic therapy (5).

Surufatinib, an oral tyrosine kinase inhibitor (TKI) developed in

China, targets the VEGF receptor (VEGFR), fibroblast growth

factor receptor 1 (FGFR1), and colony-stimulating factor 1

receptor (CSF1R), achieving synergistic antitumor activity

through both anti-angiogenic and immunomodulatory effects (6).

Surufatinib was approved in China in December 2020 and June

2021 for extra-pancreatic and pancreatic NENs, respectively, based

on the SANEN-ep and SANEN-p studies (7, 8). Consequently,

surufatinib became China’s first novel NEN-targeted medication

and the first TKI worldwide to treat all NEN subtypes. Previous

research has shown that NENs have a relative tendency for the liver,

regardless of initial location, with approximately 82% of NEN

patients developing hepatic metastases during the course of their

illness (9, 10). Patients with HM-NENs experienced a 6.1-fold

higher risk of mortality than those without metastases, with their

5-year overall survival rate ranging from 13% to 54%. The 5-year

survival rate for pancreatic HM-NENs was 13%–54% compared

with 75%–99% in the absence of metastasis (11, 12). Therefore,

identifying patients who are sensitive to surufatinib is of crucial

importance. In this study, a novel radiomics-based approach is

proposed to address this need.

How to quickly and non-invasively screen patients who are

sensitive to surufatinib is an urgent problem to be solved. APCT was

widely utilized for tumor diagnosis and therapy assessment, and it

helped identify optimal candidates via pretreatment imaging (13–

15). Radiomics, an emerging technology quantifying tumor

heterogeneity via imaging features, has shown promise in
Abbreviations: HM-NENs, hepatic metastatic neuroendocrine neoplasms; Ki67,

Ki67 antigen; NSE, neuron-specific enolase; Mrecist, Modified Response

Evaluation Criteria In Solid Tumors; ROC, receiver operating characteristic

curve; AUC, area under the curve; DCA, decision curve analysis; LASSO, least

absolute shrinkage and selection operator; NPV, negative predictive value; PPV,

positive predictive value; Radscore, radiomics score; APCT, arterial phase

computed tomography; ROI, region of interest; CR, complete response; PR,

partial response; SD, stable disease; PD, progressive disease; VOI, volume

of interest

Frontiers in Oncology 02
oncology prognosis (16). Previous studies have shown that

radiomics models of liver MRI can help predict the chronicity of

drug-induced liver injury (17). This study integrates radiomics

features and clinical characteristics to develop a fusion model for

predicting the short-term efficacy of surufatinib in HM-NENS,

providing clinicians with an accurate, practical, and visible

prediction tool.
2 Materials and methods

2.1 Patients

This retrospective study was approved by the Research Ethical

Committee of The Fourth Hospital of Hebei Medical University.

We evaluated the medical data of HM-NEN patients treated with

surufatinib at the Fourth Hospital of Hebei Medical University from

January 2018 to December 2024.

Patients were included if (1) age ≥18 years with

histopathologically confirmed NENs, (2) received surufatinib

therapy, (3) hepatic metastases with ≥1 measurable lesion at

baseline, (4) expected survival ≥3 months, and (5) availability of

APCT within 1 month before treatment.

Patients were excluded if (1) local therapies were administered

during follow-up, (2) concurrent malignancies other than NENs,

and (3) poor image quality or incomplete clinical data. The patient

selection process was shown in Figure 1. We included a total of 131

hepatic metastatic lesions in 76 patients with HM-NENs. Of these

76 patients, 16 were effective and 60 were ineffective for treatment

with surufatinib.

We conducted a clinical follow-up 3 months after administering

surufatinib. mRECIST was a modified response criteria for solid

tumors. It was especially well suited to assessing targeted treatment

for hepatic metastases by concentrating on changes in arterial phase

imaging (18). In this study, we used the mRECIST assessment

criteria to determine the efficacy of target lesions of hepatic

metastases in patients. The following categories were included: (1)

complete response (CR): absence of all target lesions, (2) partial

response (PR): at least 30% reduction in the total diameters of target

lesions, using the baseline sum diameters as a reference, (3) stable

disease (SD): there is not enough shrinking to qualify for PR or

enough rise to qualify for PD, and (4) progressive disease (PD): At

least 20% rise in the total of the diameters of target lesions, based on

the smallest sum on examination, or the appearance of one or more

additional lesions. Patients’ responses to surufatinib were divided

into two groups: effective (CR + PR) and ineffective (SD + PD).
2.2 Clinical characteristics

Demographic characteristics, Ki67, grade, neuron-specific

enolase (NSE), gamma-glutamyl transferase (GGT), alpha-

fetoprotein (AFP), the diameter of hepatic metastasis, therapy

method, surgery, number of hepatic metastases, extrahepatic

metastasis, and tumor location were analyzed.
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2.3 Image segmentation

APCT imaging was conducted using the scan (IQon Spectral CT,

Philips Healthcare, Amsterdam, Netherlands), a 256-slice CT system,

with the following parameters: tube voltage of 120 kVp, automatic

tube current modulation, slice thickness of 5.0 mm, reconstruction

increment of 5.0 mm, gantry rotation time of 0.5 s, pitch factor of

0.973, and a standard reconstruction algorithm with a reconstruction

section thickness of 1 mm. The APCT images were imported into the

3D Slicer 5.6.2 software (https://www.slicer.org/) in DICOM format.

All images were resampled to the same size of 1 × 1 × 1 mm³ and

denoised using wavelet filtering. The region of interest (ROI) was
Frontiers in Oncology 03
manually designated by two clinicians with over 10 years of clinical

experience, who were uninformed of the clinicopathological

variables and prognosis of the patients. When differences of

opinion arose during the drawing process, these were resolved via

mutual negotiation. The largest diameter of the hepatic metastases

(>1 cm measurable lesion) was selected, and the volume of interest

(VOI) was manually drawn layer by layer along the tumor’s edge. A

maximum of two hepatic metastases were chosen as target lesions

per patient. To evaluate the intra- and inter-observer repeatability

of ROI segmentation, 46 randomly selected hepatic metastases were

re-segmented by the same observer (observer 1) twice at 2-week

intervals. Simultaneously, the 46 randomly selected hepatic
FIGURE 1

Flowchart of this study.
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metastases were segmented by another observer (observer 2) to

evaluate inter-observer repeatability.
2.4 Feature extraction and model
construction

3D image texture features were extracted from 131 hepatic

metastases using the SlicerRadiomics plugin (https://github.com/

AIM-Harvard/SlicerRadiomics) in 3D Slicer 5.6.2. The Z-score

method was used to standardize the radiomics features. We used

intra- and inter-group correlation coefficients (ICC) to evaluate

feature extraction repeatability between observers. Radiomic

features with ICC <0.75 were excluded. Spearman correlation

analysis was used to remove strongly correlated radiomics

features, removing those with correlations larger than 0.90.

Tenfold cross-validation was performed to determine the

hyperparameters in LASSO (19). Finally, a Radscore was

calculated by linearly combining the selected features. For the

clinical characteristics, multivariate analysis using a backward

stepwise selection method was executed via logistic regression to

identify independent predictors of efficacy with p <0.05. The

Radscore was integrated with clinical characteristics to construct a

fusion model. We calculated the AUC, sensitivity, and specificity of

the model to evaluate the performance of the model. Internal

validation of the model was conducted using bootstrap with 1,000

iterations. The bootstrap approach is crucial in our small-sample

studies as it does not need to rely on large-sample assumptions and

generates pseudo-samples through resampling to reconstruct the

statistical distributions, thus enabling a robust estimation of

uncertainty (20). The mean values obtained from these 1,000

resampling procedures were used to evaluate the model’s

performance. It ensured a complete evaluation of the model’s

generalization capacity as well as a realistic estimation of its

discriminatory power over multiple data subsets typical of the

underlying population.
2.5 Statistical analyses

The statistical analysis was conducted using R 4.4.2 (https://

cran.r-project.org/). Continuous data with a normal distribution

were reported as mean ± standard deviation (SD). Continuous data

that did not follow a normal distribution were reported as median

(upper and lower quartiles). Categorical data were represented

using frequencies and percentages. Chi-square test was used to

compare categorical variables. Mann–Whitney U-test was used to

compare continuous variables that did not conform to a normal

distribution. For variables with p <0.05 in the univariate analysis, we

performed a multivariate logistic regression using backward

stepwise selection based on the Wald statistic. Correlation
Frontiers in Oncology 04
analysis was conducted using Spearman correlation. Calibration

curves were plotted to assess the fit of the model. Decision curve

analysis (DCA) was used to quantify the NEN benefit under

different threshold probabilities and to assess the clinical utility of

the model. A p-value <0.05 was considered statistically significant.
3 Results

3.1 Patients’ characteristics

A total of 76 patients with 126 hepatic metastases were eligible

for inclusion in this study. The mean age was 62 years, and 48.68%

of the patients were male. According to mRECIST, the therapeutic

effect of surufatinib was CR/PR in 16 (21.05%) patients and SD/PD

in 60 (78.95%) patients. The patients’ characteristics are shown

in Table 1.

In the 76 patients eligible for this study, there were 131 target

hepatic metastases. There were no significant differences in AFP,

GGT, and surgery between the effective group (CR + PR) and the

ineffective group (SD + PD). The other baseline characteristics,

including the diameter of the hepatic metastasis, number of hepatic

metastases, extrahepatic metastasis, tumor location, NSE, Ki67,

grade, and Radscore, were substantially different between the two

groups (Table 2).
3.2 Feature extraction and radiomics
signature building

A total of 851 radiomics features were extracted for each lesion.

Among them, there were 14 shape features, 18 first-order features,

24 gray-level co-occurrence matrix (GLCM) features, 16 gray-level

size zone matrix (GLSZM) features, 16 gray-level run length matrix

(GLRLM) features, five neighboring gray tone difference matrix

(NGTDM) features, 14 gray-level dependence matrix (GLDM)

features, and 744 wavelet features. Features with ICC of less than

0.75 were excluded, and Spearman correlation analysis was used to

remove duplicate features with correlation coefficients larger than

0.90 with other features. After analysis, 60 radiomics features were

selected, as shown in Supplementary Table S1. The best radiomics

features closely related to efficacy were selected by using LASSO

with 10-fold cross-validation. Original_RootMeanSquared,

Original_Correlation, Original_LongRunLowGrayLevelEmphasis,

O r i g i n a l _ B u s y n e s s , W a v e l e t _ L L H _ M e d i a n ,

W a v e l e t _ L LH _C l u s t e r S h a d e ,W a v e l e t _ L LH_ Im c 1 ,

W a v e l e t H _ L L H H _ R u n V a r i a n c e , a n d

Wavelet_LLH_SizeZoneNonUniformityNormalized were the

optimal radiomics features. Supplementary Figure S1 shows the

procedure of LASSO screening. The calculation formula of

Radscore is shown below.
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Radscore = −0:429� Original _ RootMeanSquared + 1:054

�Original _ Correlation + 0:023

�Original _ LongRunLowGrayLevelEmphasis + 0:406

�Original _ Busyness − 0:162

�Wavelet _ LLH_Median + 0:118

�Wavelet _ LLH_ClusterShade + 0:960

�Wavelet _ LLH_ Imc1 − 0:948

�WaveletH _ LLHH_RunVariance + 0:308

�Wavelet _ LLH_ SizeZoneNonUniformityNormalized

Radscore was significantly associated with the response of HM-

NENs to surufatinib (p = 0.000), with an AUC of 0.852 (95%

confidence interval [CI],0.767–0.922) (Figure 2B).
3.3 Development of visualized predictive
models

In univariate and multivariate logistic regression analysis (Table 3),

Radscore (p = 0.000), Ki67 (p = 0.005), the number of hepatic

metastases (p = 0.050), and extrahepatic metastasis (p = 0.009) were

identified as independent clinical risk variables. A fusion model that

incorporated the independent predictors was developed. The fusion

model was displayed as a nomogram, providing clinicians with an

effective tool for identifying HM-NEN patients who were susceptible to

surufatinib treatment (Figure 3). The AUC of the fusion model was

0.928 (95% CI: 0.885–0.971). The AUC verified by bootstrap is 0.928

(95% CI: 0.881–0.965) (Figure 2). Figure 4A shows the calibration

curve of the fusion model. The ideal curve aligned with the calibration

prediction curve, validating the superior goodness-of-fit of the fusion

model. The decision curve of analysis (DCA) is shown in Figure 4B,

where the horizontal axis represents the risk threshold probability, and

the vertical direction represents the normalized NEN benefit. DCA

indicated that the fusion model provided a greater NEN clinical benefit

at the appropriate risk thresholds.
4 Discussion

There were individual differences in the responses of patients

with HM-NENs to treatment with surufatinib. In our study, more
TABLE 1 Patients’ characteristics.

Variable (Total) N = 76

Agea 61.88 ± 11.15

Sex

Male 37 (48.68)

Female 39 (51.32)

NSE

≤100 15 (19.74)

>100 61 (80.26)

Ki67 [median (IQR)] 27.50 [7.50, 80.00]

AFP, ng/mL [median (IQR)] 4.60 [2.72, 10.20]

GGT, U/L [median (IQR)] 28.75 [18.45, 53.22]

Grade

1 7 (9.21)

2 29 (38.16)

3 8 (10.53)

4 32 (42.11)

Number of hepatic metastases

Oligometastasis 29 (38.16)

Multiple metastases 36 (47.37)

Diffuse metastasis 11 (14.47)

Diameter of the hepatic metastasis

1–3 cm 52 (68.42)

3–5 cm 21 (27.63)

>5 cm 3 (3.95)

Tumor location

EP-NEN 47 (61.84)

PNEN 29 (38.16)

Extrahepatic metastasis

No 43 (56.58)

Yes 33 (43.42)

Surgery

No 52 (68.42)

Yes 24 (31.58)

Therapy method

Surufatinib + octreotide +
chemotherapy and/or immunotherapy

8 (10.53)

Surufatinib + octreotide 18 (23.68)

Surufatinib + chemotherapy and/
or immunotherapy

36 (47.37)

Surufatinib 14 (18.42)

(Continued)
TABLE 1 Continued

Variable (Total) N = 76

Response

CR + PR 16 (21.05)

SD + PD 60 (78.95)
Unless otherwise indicated, the data are numbers of patients, with percentage in parentheses.
NSE, neuron-specific enolase; Ki67, Ki67 antigen; AFP, alpha-fetoprotein; GGT, gamma-
glutamyl transferase; EP-NEN, extra-pancreatic neuroendocrine neoplasms; P-NEN,
pancreatic neuroendocrine neoplasms.
aData are means ± standard deviation.
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than half of the patients were ineffective on surufatinib (60 out of 76

patients). Therefore, it was necessary to construct an efficient,

simple, and visualized prediction tool for clinicians to predict in

advance how patients will benefit from the drug and reduce their

financial burden. Radiomics, as a novel technology, has the

potential to serve as a quantitative decision support tool, and its

integration with clinically relevant information could greatly

improve clinical prediction capabilities (21, 22). In this study, a

clinical–radiomics fusion model was developed and illustrated by a

nomogram. The AUC of the fusion model was validated within

bootstrap as 0.928 (95% CI: 0.881 - 0.965), demonstrating good

predictive performance. Clinicians using this nomogram could

efficiently identify patients with HM-NENs who would benefit

from surufatinib.

So far, there have been almost no studies on the therapeutic

efficacy of surufatinib in HM-NENs. In our study, we developed a

personalized visualization combination model that predicted the

therapeutic response of hepatic metastases to surufatinib based on

the patient’s pre-dose APCT. Our study aligned with Lambin’s

“radiomics signature” concept, where multidimensional data

integration enabled a more comprehensive assessment of tumor

treatment response (23). Poor therapy response was predicted by

elevated Radscore and Ki67 as well as more hepatic and

extrahepatic metastases.

While tumor diameter was not an independent predictor of

surufatinib efficacy in our study, other HM-NEN prognostic studies

highlight the value of quantitative tumor load assessments. One

study analyzed the value of quantitative tumor load analysis on

baseline MRI in predicting survival in patients with HM-NENs

receiving intra-arterial therapy and found that tumor load was a

strong independent prognostic factor for overall survival (24, 25).

Tumor load was determined by a combination of tumor diameter

and the number of tumors; however, our research revealed that

tumor diameter was not an independent predictor of surufatinib

efficacy. This was attributed to the small percentage of patients in

our study who had tumor diameters larger than 5 cm, which totaled

only three (3.95%). Previous studies have shown that larger hepatic

metastases (>5 cm) exhibited hypoxic microenvironments with

lower drug penetration, which was associated with worse

responses to targeted therapies (26, 27). The number of hepatic

metastases as an independent predictor also reflected tumor load in

one way. In deeper subsequent studies, as Zhang et al.

demonstrated, circLIFR-007 exerts inhibitory effects on the

proliferation and metastasis of breast cancer cells both in vivo

and in vitro (28). As Zeng et al. demonstrated, circMYBL2

promoted the tumorigenesis and aggressiveness of breast cancer

(29). Along this line, we can also explore the molecular mechanisms

associated with HM-NENs, which may provide a novel targeted

therapy for patients with HM-NENs.

Our study does have some limitations: (1) a retrospective single-

center design with a small sample size necessitates testing in multi-
TABLE 2 Baseline characteristics of effective and ineffective groups in
the HM-NENs.

Variable
Effective

group (n = 27)
Ineffective

group (n = 104)
p

NSE 0.010

≤100 10 (37.04) 14 (13.46)

>100 17 (62.96) 90 (86.54)

Ki67
[median (IQR)]

15.00 [5.00, 30.00] 30.00 [7.25, 80.00] 0.050

Grade 0.010

1 3 (11.11) 10 (9.62)

2 16 (59.26) 36 (34.62)

3 4 (14.81) 9 (8.65)

4 4 (14.81) 49 (47.12)

Tumor location 0.035

EP-NEN 11 (40.74) 68 (65.38)

PNEN 16 (59.26) 36 (34.62)

Diameter of the
hepatic metastasis

0.016

1–3 cm 24 (88.89) 62 (59.62)

3–5 cm 3 (11.11) 35 (33.65)

>5 cm 0 (0.00) 7 (6.73)

Number of
hepatic metastases

0.018

Oligometastasis 12 (44.44) 35 (33.65)

Multiple metastases 15 (55.56) 48 (46.15)

Diffuse metastasis 0 (0.00) 21 (20.19)

Extrahepatic
metastasis

0.002

No 23 (85.19) 52 (50.00)

Yes 4 (14.81) 52 (50.00)

Surgery 0.531

No 20 (74.07) 68 (65.38)

Yes 7 (25.93) 36 (34.62)

AFP, ng/mL
[median (IQR)]

3.88 [2.82, 5.90] 5.32 [2.72, 12.07] 0.182

GGT, U/L
[median (IQR)]

24.30 [18.90, 44.65] 33.95 [19.10, 67.97] 0.152

Radscore
[median (IQR)]

0.78 [0.38, 1.15] 1.81 [1.25, 2.38] <0.001
Unless otherwise indicated, the data are numbers of patients, with percentage in parentheses.
HM-NENs, hepatic metastatic neuroendocrine neoplasms; NSE, neuron-specific enolase;
Ki67, Ki67 antigen; AFP, alpha-fetoprotein; GGT, gamma-glutamyl transferase; EP-NEN,
extra-pancreatic neuroendocrine neoplasms; P-NEN, pancreatic neuroendocrine neoplasms.
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center studies; single-center data may introduce selection bias, (2)

the use of APCT images alone—integration with multiparametric

MRI may improve accuracy, and (3) variations in scan parameters,

reconstruction algorithms, and segmentation methods pose feature

reproducibility challenges. While standardized techniques

decreased these impacts, more preprocessing and feature

extraction optimization are required. This study solely looked at
Frontiers in Oncology 07
the radiomics within the tumor and ignored the area surrounding it.

In the future, the region of interest (ROI) around the tumor should

be investigated to extract more radiomics properties.

Despite these limitations, this study demonstrated notable

strengths. In the field of HM-NENs and surufatinib efficacy

prediction, research employing clinical–radiomics models and

visualized nomograms remained relatively scarce. This study
FIGURE 2

ROC curves of the model for predicting the efficacy of surufatinib in the treatment of HM-NENs. (A) Clinical–radiomics fusion model. (B) Radiomics
model.
TABLE 3 Univariate and multivariate logistic regression analyses of the risk factors for the efficacy of HM-NENs.

Variable
Univariable analysis Multivariable analysis

OR (95% CI) P-value OR (95% CI) P-value

Radscore 7.273 (3.431–18.94) 0 8.808 (3.433–30.18) 0.00s0*

Ki67 1.02 (1.006–1.036) 0.008 1.035 (1.012–1.063) 0.005*

Grade 1.712 (1.138–2.667) 0.012

GGT 1.004 (0.999–1.012) 0.242

AFP 1.068 (1.009–1.18) 0.114

Diameter of the
hepatic metastasis

4.936 (1.724–21.01) 0.01 4.050 (1.058–22.29) 0.067

Therapy method 1.534 (0.95–2.508) 0.082

Surgery 1.513 (0.606–4.16) 0.394

Number of hepatic metastases 2.007 (1.051–4.059) 0.042 3.795 (1.108–16.58) 0.050*

NSE 3.782 (1.425–9.941) 0.007

Extrahepatic metastasis 5.75 (2.041–20.63) 0.002 10.57 (2.137–79.68) 0.009*

Sex 0.898 (0.378–2.1) 0.804

Age 1.003 (0.964–1.042) 0.898

Tumor location 0.364 (0.149–0.858) 0.022
HM-NENs, hepatic metastatic neuroendocrine neoplasms; NSE, neuron-specific enolase; Ki67, Ki67 antigen; AFP, alpha-fetoprotein; GGT, gamma-glutamyl transferase.
*p < 0.05.
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pioneered a novel exploratory pathway and established a

foundat ion for subsequent mult icenter , large-sample

investigations. Radiomics technology enabled the extraction of

radiomics features from CT images, and the models integrating

clinical characteristics demonstrated effective predictive capabilities

for surufatinib therapeutic response. The clinical–radiomics fusion

models exhibited greater objectivity and comprehensiveness than

traditional clinical evaluation methods. This advancement not only

facilitated more informed clinical decision-making during

treatment planning but also offered innovative perspectives and

methodologies for personalized therapeutic strategies.
Frontiers in Oncology 08
In conclusion, the APCT-based clinical–radiomics model with an

AUC of 0.928 offered a noninvasive and visible analytical tool for the

customized therapy of HM-NENs. Continued advances in radiomics

technology promise to increase its role in precision medicine,

eventually increasing treatment outcomes and survival rates.
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FIGURE 3

Nomogram for predicting the efficacy of surufatinib in HM-NENs.
FIGURE 4

Calibration curve (A) and decision curve (B) of the clinical–radiomics fusion model. Calibration curves indicate the goodness-of-fit of the fusion
model.
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