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Chongqing, China
Multiple myeloma (MM) is a common hematologic malignancy characterized by

clonal plasma cell proliferation. Despite significant therapeutic advancements

with proteasome inhibitors, immunomodulatory drugs, and anti-B-cell

maturation antigen (BCMA) therapies, the disease remains largely incurable.

Immunoparesis, a severe state of immune dysfunction, exhibits high

prevalence in MM patients and profoundly impacts prognosis. This review

summarizes the pathogenic mechanisms and clinical characteristics of

immunoparalysis, with a focus on its impact on prognosis and early-onset

infections, the effects of contemporary drug therapies on immunoparalysis,

and immune reconstitution.
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1 Introduction

Multiple myeloma (MM) is the second most common hematologic malignancy,

accounting for 10% of hematologic cancers (1, 2), with a median diagnosis age of 65

years (3). This disease predominantly affects older adults and is characterized by malignant

plasma cells that typically secrete monoclonal immunoglobulin, leading to end-organ

damage, including anemia, renal impairment, osteolytic lesions, and hypercalcemia.

Autologous stem cell transplantation (ASCT) remains the frontline treatment for MM.

Meanwhile, the advent of novel agents and advancements in immunotherapy, particularly

T-cell redirecting immunotherapies such as bispecific antibodies and chimeric antigen

receptor (CAR) T-cell therapies, have significantly improved survival outcomes (4).

Nevertheless, MM remains largely incurable, with infections still contributing

significantly to early mortality (5).

Immunoparesis, the suppression of one or more uninvolved immunoglobulins (i.e.,

polyclonal immunoglobulins) in MM patients, such as the reduction of IgA and/or IgM

levels in IgG MM patient, is a hallmark of MM and its precursor states, monoclonal

gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma

(SMM) (6, 7).It occurs in 80%–95% of MM patients (8, 9) and correlates with

poorer treatment outcomes, including reduced response depth and survival.

Notably, immunoparesis is not limited to a decrease in immunoglobulin levels but

can also involve multiple immunoglobulin isotypes. Reconstitution of polyclonal
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immunoglobulins serves as a dynamic marker for assessing

treatment efficacy and long-term outcomes (10, 11). Furthermore,

immunoparesis significantly increases the risk of infections in MM

patients, complicating their clinical management. This review

discusses the pathogenesis of immunoparesis, its clinical features,

its associations with cytogenetic abnormalities, and its

prognostic implications. Additionally, we examine the impact of

immunoparesis on infection risk, its recovery and reconstruction,

and the effects of modern therapeutic regimens on immunoparesis.

Lastly, we propose future research directions to enhance the

understanding of immunoparesis in the context of MM.

Relevant studies were identified by searching PubMed and Web

of Science (2000–2024) using keywords such as “immunoparesis”,

“multiple myeloma”, “immune reconstitution”, “immunoglobulin

suppression” and “immune recovery”.
2 Pathogenesis and cytogenetic
interplay of immunoparesis in multiple
myeloma

2.1 Mechanisms of immunoparesis

The pathogenesis of MM is complex, involving genetic

mutations (12, 13), chromosomal translocations (14–16), aberrant

signaling pathways (17, 18), and a supportive bone marrow

microenvironment (13, 19, 20). Key oncogenic events include IgH

translocations, such as t(11;14) and t(4;14), as well as chromosomal

abnormalities like 1q gain and 13q deletion. These alterations

promote cell cycle dysregulation and clonal expansion. In

addition, disease progression is also influenced by interactions

between myeloma cells and the bone marrow microenvironment.

These interactions stimulate the secretion of cytokines and

inflammatory mediators, including interleukin-6 (IL-6), insulin-

like growth factor-1 (IGF-1), B-cell activating factor (BAFF), a

proliferation-inducing ligand (APRIL), tumor necrosis factor-a
(TNF-a), and vascular endothelial growth factor (VEGF). These

soluble factors activate multiple signaling pathways, including NF-

kB, JAK/STAT, MAPK, and PI3K/Akt/mTOR, which promote

myeloma cell proliferation, survival, migration, and resistance to

therapy (19, 21, 22).

Recent studies suggest that immunoparesis in MM may be

closely related to interactions between anti-B-cell maturation

antigen (BCMA) and its ligands, BAFF and APRIL (23,

24).BCMA, a transmembrane glycoprotein belonging to the

tumor necrosis factor (TNF) receptor superfamily, is highly

expressed on both normal and malignant plasma cells and serves

as a hallmark surface antigen (25). Upon binding with BAFF or

APRIL, BCMA promotes plasma cell survival, proliferation, and

polyclonal immunoglobulin secretion (26–28). However,

membrane-bound BCMA can be cleaved by g-secretase(GS), a
multi-subunit protease complex, to generate soluble BCMA

(sBCMA), which is released into the peripheral blood (27, 29).

sBCMA competitively bind to BAFF and APRIL, thereby blocking

their interaction with membrane-bound BCMA. This interference
Frontiers in Oncology 02
disrupts the plasma cell maturation and function, leading to

impaired immunoglobulin synthesis and secretion, and ultimately

contributing to immune dysfunction and the development of

immunoparesis. The above mechanisms are shown in Figure 1 (30).
2.2 Immunoparesis and cytogenetic
abnormalities

Cytogenetic abnormalities are among the most common

predictors of poor prognosis in MM (31–34). High-risk

abnormalities, such as t(4;14), t(14;16), t(14;20), ≥3 copies of the

1q21 chromosomal band (1q21+), deletions of the 1p chromosomal

arm (del(1p)), and deletions of the 17p13 chromosomal band (del

(17p)) (35), are strongly associated with disease progression.

Evidence suggests that in newly diagnosed MM patients, primary

cytogenetic abnormalities intensify the severity of immunoparesis.

Specifically, patients with high-risk alterations, including t(4;14), t

(14;16), or t(14;20), had a significantly higher proportion of

polyclonal immunoglobulins suppressed below the normal range.

Mechanistically, these cytogenetic abnormalities alter the bone

marrow microenvironment, remodel the plasma cell niche, and

suppress normal plasma cell function, ultimately reduce

immunoglobulin production (36).But to date, no more

comparable studies have been reported in this field.
3 Incidence and clinical features of
immunoparesis

Immunoparesis is more prevalent in MM patients aged >65

years (37), with a reported incidence of 85%–90% in newly

diagnosed cases (3, 11). The incidence further increases to 90%–

95% in relapsed/refractory MM (RRMM) (7), likely due to

enhanced immune dysfunction caused by tumor resistance and

immune escape. The prevalence of immunoparesis correlates with

disease progression; early-stage MM exhibits a lower incidence

(50%–60%), whereas advanced-stage MM demonstrates rates

exceeding 90%. Specifically, among active MM cases,

immunoparesis prevalence rises from 63% in Durie-Salmon (D-S)

stage I to 90% in stage III (38). A Greek study reported

immunoparesis rates of 77%, 88%, and 94% in International

Staging System (ISS) stages 1, 2, and 3, respectively (9).

Moreover, immunoparesis is significantly associated with

laboratory abnormalities, including decreased hemoglobin levels,

reduced platelet counts, lower M-protein levels, and increased

infiltration of bone marrow plasma cells(BMPC) (9, 39). While it

occurs across all M-protein subtypes, studies offer conflicting

conclusions regarding which subtype is most closely associated. A

small retrospective study (n = 49) found that patients with IgG-type

MM had significantly lower levels of polyclonal immunoglobulins

compared to those with IgA or IgM types, suggesting stronger

isotype-specific immunosuppression in the IgG subtype (40). This

study utilized serum electrophoresis, which is limited in

differentiating monoclonal from polyclonal immunoglobulins. In
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contrast, a larger prospective cohort study (n = 1,755) using

nephelometry reported a higher incidence of immunoparesis in

patients with IgA-type MM than those with IgG-type (9). This

association remained significant after multivariate regression

analysis. We speculate that differences in cohort size and testing

methodology account for the discrepancies between the two studies.

Emerging evidence suggests that immunoparesis is not only a

clinical feature of MGUS and SMM but may also drive disease

progression. In MGUS patients, suppression of two or more

uninvolved immunoglobulins significantly increased the risk of

progression to MM (OR = 19.1), with prognostic value comparable
Frontiers in Oncology 03
to the IgA subtype, elevated M-protein, and abnormal free light chain

ratios (41). Moreover, the combination of immunoparesis and an

abnormal bone marrow plasma cell phenotype helps identify high-

risk MGUS patients, with a 5-year progression risk of up to 46% (42).

In SMM, deeper immunoglobulin suppression has similarly been

linked to faster progression (43). Specifically, patients with

suppression of two immunoglobulin types experienced a median

time to progression of only 32 months, compared to 159 months in

those without suppression. Additionally, some researchers

incorporated immunoparesis into their high-risk SMM evaluation

model, reflecting its association with increased tumor burden (44).
FIGURE 1

Mechanisms of Immunoparesis in multiple myeloma. Cytokines produced through interactions between myeloma cells and the bone marrow
microenvironment, such as IL-6, IGF-1, BAFF, APRIL, TNF-a, and VEGF, activate signaling pathways including NF-kB, JAK/STAT, RAS/MAPK, and PI3K/
Akt/mTOR. These pathways promote myeloma cell proliferation, survival, migration, angiogenesis, and drug resistance. BCMA is highly expressed on
plasma cells and binds BAFF and APRIL to support plasma cell survival and polyclonal immunoglobulin production. g-secretase(GS) cleaves
membrane-bound BCMA to generate soluble BCMA (sBCMA), which competes with membrane BCMA for binding to BAFF. This disrupts BCMA
signaling, impairs plasma cell function, reduces immunoglobulin synthesis, and contributes to immunoparesis in multiple myeloma.
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4 Prognostic and infection-related
consequences of immunoparalysis in
multiple myeloma

4.1 Impact on prognosis

Despite significant advancements in therapeutic strategies for

MM, the disease remains largely incurable, with a 10-year survival

rate of merely 17% (45, 46). This underscores the pressing need for a

more nuanced understanding of prognostic factors and the

establishment of reliable risk stratification systems to better identify

high-risk patients, guide treatment intensification, and improve

prognostic accuracy. To date, several prognostic systems, including

the International Staging System (ISS) (47) and its revised version, the

Revised International Staging System (R-ISS) (48), have been

established. The R-ISS integrates key factors such as b2-
microglobulin, lactate dehydrogenase (LDH), and high-risk

cytogenetic abnormalities. More recently, the introduction of

sensitive markers like minimal residual disease (MRD) detection

has improved clinical practice (45, 49). Research consistently shows

that immunoparesis is significantly associated with inferior survival

in MM patients, with greater severity correlating with worse

outcomes (9, 50).These findings suggest that immunoparesis may

serve as a valuable predictive biomarker for MM prognosis. Table 1

offers a comprehensive summary of the effects of immunoparesis on

the prognosis of MM patients.

4.1.1 For newly diagnosed multiple myeloma
patients

At diagnosis, patients with immunoparesis typically experience

worse overall survival (OS) and progression-free survival (PFS)

compared to those without it (38). In a cohort of 1,755 newly

diagnosed multiple myeloma (NDMM) patients, reported preserved

uninvolved immunoglobulins correlated with longer median OS

compared to those with suppressed levels (55 vs. 41.5 months, P <

0.001), and immunoparesis remained an independent prognostic factor

in multivariate analysis (HR = 0.781, P = 0.039) (9). Geng et al.

classified immunoparesis as deep (any uninvolved immunoglobulin

<50% of the lower normal limit) or partial (≥2 suppressed isotypes),
Frontiers in Oncology 04
both of which were linked to significantly worse OS and PFS even after

propensity score matching (50). However, the study was limited by its

single-center, retrospective design and relatively small sample size.

Although propensity matching helped control confounding factors,

selection bias could not be fully excluded. Additionally, a larger

retrospective study analyzed 2,558 NDMM patients by stratifying

them into three groups based on the degree of polyclonal IgM

suppression. Median PFS decreased with increasing IgM suppression

—1.97, 1.79, and 1.71 years across the least, intermediate, and most

suppressed groups, respectively (P < 0.001). No similar trend was

observed for IgG or IgA (52). These findings suggest that IgM may

serve as a more sensitive prognostic marker, though this could also

relate to its lower baseline concentration and greater susceptibility

to decline.
4.1.2 For relapsed multiple myeloma
In relapsed MM, immunoparesis remains associated with adverse

outcomes, particularly at first relapse where it often coincides with

higher tumor burden and shorter remission durations (7, 53). A study

of 258 patients with first relapse stratified immunoparesis both

qualitatively and quantitatively (7). Qualitatively, patients were

categorized into three groups: no immunoparesis (no suppression of

uninvolved immunoglobulins), partial immunoparesis (suppression of

at least one but not all), and complete immunoparesis (suppression of

all uninvolved immunoglobulins). Although OS did not differ

significantly among groups, 2-year PFS declined progressively (36%,

25%, and 20%), suggesting a strong link between the extent of

immunoparesis and disease progression. Quantitative analysis used

the average relative difference (ARD) between polyclonal

immunoglobulin levels and the lower limit of normal, categorizing

patients into no immunoparesis (ARD ≥ 0%), mild immunoparesis

(ARD 0%−50%), and deep immunoparesis (ARD ≤−50%). Patients

with deep immunoparesis had significantly worse OS and PFS

compared to those with mild or no suppression. Interestingly, only

IgM suppression showed a statistically significant association with

prognosis, consistent with findings in newly diagnosed cohorts. This

supports the hypothesis that IgM may be a more sensitive indicator of

impaired immune surveillance.
TABLE 1 Studies investigating the prognostic impact of immunoparalysis in patients with multiple myeloma.

Study (author,
year)

Cohort
(n)

OS PFS

ReferenceWith
immunoparesis

No
immunoparesis

With
immunoparesis

No
immunoparesis

Kastritis,et al., 2014 1755 41.5months 55months 25months 60months (9)

Chakraborty,et al., 2020 258 3‐year OS 40%-42% 3‐year OS 60% 2‐year PFS 20%-25% 2‐year PFS 36% (7)

Gao,et al., 2019 108
estimated OS of not
reach

61months 32months 55months (51)

Geng,et al., 2021 287 45.6months 30.9months 27.6months 25.6months (50)

González-Calle,et al.,
2017

169 7.3years 11.3years 27.9 months 60.4months (11)
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In summary, immunoparesis is associated with poor outcomes

in both newly diagnosed and relapsed MM, with IgM suppression

showing consistent prognostic relevance across studies. However,

most supporting data are retrospective and affected by

heterogeneity in patient populations, definitions, treatment

regimens, transplant status, and maintenance therapy, which may

contribute to inconsistent results. Although multivariate analyses

(e.g., HR = 0.781, P = 0.039) support its independent prognostic

value, immunoglobulin suppression as a standalone marker has

limitations and may be influenced by disease burden and treatment

response. Future research should aim to standardize grading criteria

and assess its additive value within multifactorial models.
4.2 Impact on infections

Infections are frequent and serious complications in MM,

accounting for a substantial proportion of early morbidity and

mortality (54–57). Approximately 45% of deaths within the first six

months following diagnosis are attributed to infections (39, 58), with

the highest risk occurring during the initial post-diagnosis period and

treatment for relapsed or refractory disease (54, 59, 60). Modern

therapies, including proteasome inhibitors, immunomodulatory

drugs, and monoclonal antibodies, may further weaken host

immune defenses, thereby increasing infection risk. Consequently,

infection prevention and management are critical in MM treatment.

Immunoparesis, which impairs humoral immunity, increases

susceptibility to infections (61). A recent retrospective study

involving 430 newly diagnosed patients reported that 59.5%

experienced ≥Grade 3 infections within the first three months.

Respiratory infections predominated, and bacterial infections

constituted the majority of identified cases, findings consistent

with observations from comparable studies (62). Patients with

immunoparesis exhibited significantly higher early infection rates

compared to those without immunoglobulin suppression. Based on

these findings, a predictive model incorporating immunoparesis

was developed to assess early infection risk in MM, suggesting that

immunoparesis may negatively impact prognosis by increasing

susceptibility to infections. In contrast, other studies argue that

the adverse prognostic impact of immunoparesis cannot be

primarily explained by elevated infection rates (38). Thus, the role

of immunoparesis in mediating poor outcomes through infection

remains inconclusive and warrants further investigation.
5 Recovery and reconstitution of
immunoparesis

Immunoparesis is recognized as a poor prognostic indicator in

MM, prompting researchers to explore whether reversing this

condition during treatment can lead to clinical benefits.

Several studies have examined the restoration of polyclonal

immunoglobulins in various therapeutic contexts (11, 37, 51). In

particular, patients undergoing ASCT often show a gradual
Frontiers in Oncology 05
recovery of immunoglobulin levels within the first year (51). This

increase may reflect the reconstitution of the immune system and

could be linked to improved long-term outcomes.

Analysis of a 295-patient ASCT cohort revealed that individuals

achieving immunoglobulin recovery within one year had significantly

improved PFS (60.4 vs. 27.9 months) and OS (11.3 vs. 7.3 years)

compared to those without recovery (11). Earlier recovery was linked

to better outcomes, with median PFS of 69.3, 52.9, and 27.9 months

for patients recovering within 6 months, between 6–12 months, and

those who did not recover within one year, respectively (P < 0.001).

Additionally, a higher proportion of normal plasma cells (nPCs) in

bone marrow at day 100 post- ASCT was associated with

immunoglobulin recovery, suggesting that early nPC reconstitution

may serve as a predictive marker for subsequent immune restoration,

consistent with observations reported in other studies (63).

Recovery patterns have also been noted in patients undergoing

allogeneic stem cell transplantation (alloSCT) and found

that a majority experienced gradual recovery of polyclonal

immunoglobulins within one year, particularly those with non-

relapsing patients (64). These findings highlight the potential clinical

relevance of immune reconstitution after alloSCT. Nonetheless, due to

the small sample size and lack of multivariate analysis, the conclusions

remain exploratory.

In newly diagnosed MM patients not undergoing transplantation,

polyclonal immunoglobulin recovery during therapy has similarly been

linked to improved survival (65). Even after adjusting for known

prognostic variables such as ISS stage, LDH, response depth,

and treatment regimen, this association remained statistically

significant, underscoring the independent prognostic value of

immune reconstitution.

Overall, immunoglobulin recovery correlates with improved

survival in MM patients, but the variability across studies, patient

populations, and treatment regimens calls for further research. Future

studies should standardize definitions of immunoglobulin recovery and

integrate it with other prognostic factors such as MRD and immune

phenotyping to clarify its role in multifactorial prognostic models.
6 Impact of modern therapeutic
regimens on immunoparesis

Current frontline pharmacologic treatment strategies for MM

primarily rely on combination regimens that include proteasome

inhibitors (e.g., bortezomib, V), immunomodulatory agents (e.g.,

lenalidomide, R), corticosteroids, and monoclonal antibodies (e.g.,

daratumumab, D) (66, 67). These therapies have significantly

improved response depth and patient survival, and their effects on

immune function are gaining increasing attention. Recent studies

have demonstrated that induction regimens based on V and R, such

as RD, VD, and VRD, not only effectively reduce tumor burden but

also promote the recovery of uninvolved immunoglobulins,

suggesting a potential role in alleviating immunoparesis (24). This

effect may be attributed to the ability of R and V to inhibit the BAFF/

APRIL/BCMA signaling axis (68).
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In parallel, therapeutic strategies targeting soluble B-cell

maturation antigen (sBCMA) present novel opportunities for

mitigating immune dysfunction. Preclinical animal studies have

shown that small-molecule g-secretase inhibitors (GSIs) can block

BCMA shedding, enhance its membrane-bound expression, and

reduce circulating sBCMA levels, thereby improving CAR-T cell

recognition and cytotoxicity against MM cells (29). However,

whether GSIs can independently alleviate immunoparesis by

reducing sBCMA production or enhance long-term prognosis,

remains to be determined. Future studies should explore the

immunomodulatory effects of GSIs outside of CAR-T therapeutic

contexts, particularly their ability to restore uninvolved

immunoglobulin production and reverse immunoparesis.
7 Summary and perspectives

Immunoparesis, defined by suppression of uninvolved polyclonal

immunoglobulins, is common in MM. It is strongly associated with

inferior prognosis and increased infection risk. Evidence shows that

early recovery of uninvolved immunoglobulins, particularly within

one year post-ASCT, correlates with improved PFS and OS.

Therefore, dynamic monitoring of immunoglobulin levels during

treatment may serve as an important tool for assessing immune

reconstitution and long-term treatment response.

Future efforts should aim to incorporate immunoparesis into

established prognostic models such as ISS, R-ISS, MRD status, and

immune phenotyping. This could help develop composite scoring

systems that combine clinical and immune-related factors. We

recommend establishing a standardized stratification framework

for immunoparesis based on both qualitative and quantitative

criteria to improve cross-study comparability and clarify its

prognostic relevance. Immunoparesis may serve as a surrogate

marker for immune competence. Future studies could use it to

stratify patients and predict immune responses in vaccine trials,

infection risk assessment, and CAR-T eligibility. Future prospective

trials should consider using immunoglobulin recovery as a clinical

endpoint to assess the immune effects of therapies such as IMiDs,

monoclonal antibodies, or cellular therapies. Clinical studies could

also integrate biomarkers based on immunoglobulin recovery into

treatment decision-making and further investigate immunoparesis

as a potential therapeutic target.
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