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Background: Sinonasal inverted papilloma (IP) is a benign tumor of the sinonasal

mucosa, which may become malignant. Machine learning (ML) has been applied

to improve the accuracy in the diagnosis of various diseases, but no studies have

evaluated the performance of ML for IP diagnosis. This systematic review and

meta-analysis aimed to explore the diagnostic performance of ML for IP.

Methods:We systematically searched articles from PubMed, Cochrane, Embase,

and Web of Science up to July 22, 2025. The quality assessment of diagnostic

accuracy studies tool (QUADAS-2) was used to assess the risk of bias, and the

bivariate mixed-effect model was used for meta-analysis.

Results: 17 studies involving 3321 participants were included. In the validation set,

the sensitivity and specificity of ML constructed based on radiomics for

identifying IP and malignant tumors were 0.84 (95%CI: 0.77-0.89) and 0.82

(95% CI: 0.74 ~ 0.88), respectively. The sensitivity and specificity of ML

constructed based on radiomics and clinical features for identifying IP and

malignant tumors were 0.85 (95%CI: 0.78-0.90) and 0.87 (95% CI: 0.80 ~

0.92), respectively.

Conclusion: Our study shows that ML has a favorable performance in the

differential diagnosis of IP. More prospective studies are needed to validate and

develop universal tools.

Systemic Review Registration: https://www.crd.york.ac.uk/PROSPERO/view/

CRD42023430417, identifier CRD42023430417.
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1 Introduction

Sinonasal inverted papillomas (IPs) are benign but locally

aggressive tumors that arise from the Schneiderian membrane in

the sinus cavity with a high rate of recurrence and a tendency

toward malignant transformation (1). The incidence of this tumor is

0.2 to 1.5/100,000 people per year with a higher incidence in men,

and it affects individuals of all age groups (1). The clinical

symptoms and imaging characteristics of IP closely resemble

malignant tumors, often leading to diagnostic confusion.

However, their prognosis and treatment strategies differ

significantly (2). Therefore, accurate preoperative diagnosis of

sinus tumors is essential for developing appropriate treatment

strategies and assessing patient outcomes.

The diagnosis of IP can be made from clinical manifestations,

imaging and pathological examination. However, the results are not

satisfactory (1), especially in areas with underdeveloped medical

resources. Radiomics, a field focusing on extracting image features

quantitatively from standard medical imaging, has emerged as a

valuable tool for improving diagnostic accuracy, prognosis

assessment, and predictive capabilities in clinical decision support

systems (3). Radiomics is widely used in the qualitative analysis,

therapeutic effect evaluation and prognosis prediction of various

tumors, and has developed rapidly in the field of tumor

management (4).

Most studies have been conducted to distinguish IP from

malignant tumors, while few studies focus on evaluating the

diagnostic performance of machine learning methods. Therefore,

we conducted this study to explore the diagnostic value of machine

learning methods in IP diagnostics.
2 Materials and methods

2.1 Study registration

This study was conducted in accordance with reporting guidelines

for systematic reviews and meta-analyses (PRISMA_2020) and

prospectively registered on Prospero.
2.2 Eligibility criteria

Inclusion criteria were as follows:
Fron
1. The participants of this systematic review were individuals

with nasal lesions;

2. The included studies were case-control studies, cohort

studies and cross-sectional studies;

3. Studies has to construct a machine learning model for

differential diagnosis of sinonasal inverted papilloma;

4. Some studies had difficulty achieving external validation,

but they only provided K-fold cross-validation or internal

validation of random sampling. Although it might overstate

the accuracy of the model, its value was still fairly
tiers in Oncology 02
representative. Therefore, studies without external

validation were also included in this systematic review

and meta-analysis.

5. Studies that used the same dataset to construct different

machine learning models were also included;

6. Studies written in English were included.
Exclusion criteria were as follows:
1. The research types were meta-analyses, reviews, guides,

expert opinions, etc.;

2. Studies that only performed univariate analysis but did not

construct a machine learning model were excluded;

3. The outcome indicators such as the Roc, c-statistic, c-index,

sensitivity, specificity, accuracy, recovery rate, accuracy

rate, confusion matrix, diagnosis four-cell table, F1 score,

and calibration curve were missing to evaluate the accuracy

of the machine learning models;

4. Studies with a sample size of less than 20 cases

were excluded.
2.3 Data sources and search strategy

We searched the literature via PubMed, Cochrane, Embase, and

Web of Science, up to July 22, 2025. The retrieval used subject-

specific and free-text keywords, and the subject headings

encompassed “machine learning” and “Nose Neoplasms”, with no

restriction on the region. The detailed search strategy is shown in

Supplementary Table S1.
2.4 Study selection

We used endnotes to filter the literature. The literature

screening was completed by two investigators. After completion,

they cross-checked their results to ensure accuracy. Disputes, if any,

were resolved by a third investigator.
2.5 Data extraction

Prior to data extraction, we designed a standardized spreadsheet

that included information such as title, first author, year of

publication, country of author, type of study (case-control, cohort

study (retrospective, prospective), nested cohort study, case-cohort

study), patient origin (single center, multicenter, registry database),

diagnostic criteria for inverted papilloma, reference subjects,

number of inverted papilloma cases, total number of cases, the

number of inverted papilloma cases in the training set, total number

of cases in the training set, generation method of validation set

[internal validation (random sampling, K-fold cross-validation,

leave one method), external validation (prospective, multicenter)],

overfitting method, number of cases of inverted papilloma in
frontiersin.org
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validation set, number of cases in validation set, variable screening/

feature selection method, type of model used, and modeling

variables (radiomics, clinical features).

The data extraction was completed by three independent

investigators. After completion, they cross-checked their results to

ensure accuracy. Dissents, if any, were resolved by a third investigator.
2.6 Risk of bias in studies

The risk of bias in the included studies was assessed using the

diagnostic test evaluation tool QUADAS-2 (5). It assesses the risk of

bias in data compilation and the clinical applicability of the original

diagnostic test. QUADAS-2 is composed of 4 domains: patient

selection, index test, reference standard, and flow and timing (5).

Each domain contains several specific questions with three response

options: “yes,” “No,” or “inconclusive,”. The responses correspond

to a “low,” “high,” or “uncertain” risk of bias, respectively. If the

answers to all the questions are “yes”, then the risk of bias is deemed

to be low; if any of the questions receive “no”, then there is a

possibility of bias, and the evaluator must determine the risk of bias

according to the established guidelines. An “uncertain” risk means

that the literature lacks detailed information to make a conclusive

judgment. Supplementary Figure S2 provides a comprehensive

overview of the risk of bias assessment using the QUADAS-2

approach for each study included in the analysis.
2.7 Outcomes

Results Measures included sensitivity, specificity, positive

likelihood ratio, negative likelihood ratio and diagnostic odds

ratio. Sensitivity and specificity were extracted from the ROC

curve and combined with the number of cases, a four-cell

diagnostic table was made.
2.8 Synthesis methods

Data analysis was conducted by using Stata15.0 (StataCorp

LLC, College Station, TX). A bivariate mixed-effect model was

used to analyze the differential diagnosis of IP. The combined

sensitivity, specificity, positive likelihood ratio, negative likelihood

ratio, diagnostic odds ratio and 95% confidence interval (95% CI) of

the effect size were calculated, and the area under the integrated

receiver operating characteristic (SROC) curve was estimated. The

Deek funnel plot was used to assess publication bias. P<0.05

indicated a significant difference between/among treatments.
3 Results

3.1 Study selection

We initially identified 2,111 studies, of which 193 were

duplicates (143 duplicated articles were automatically detected by
Frontiers in Oncology 03
software and 50 duplicated articles were manually removed). After

screening the title and abstract, 1,885 articles were further deleted,

and the full texts of the remaining 33 articles were downloaded.

Subsequently, we evaluated the full texts and discarded 16 articles

for several reasons: three conference abstracts were published

without peer review; in 10 studies, the control events were non-

IP, and only image segmentation was performed; two studies did

not construct a complete model; and one study investigated the

accuracy of unresponsive machine learning. Finally, we included 17

studies for further analysis (6–22). The literature screening process

is illustrated in Supplementary Figure S1.
3.2 Study characteristics

The 17 eligible studies were published between 2016 and 2024.

Among the included studies, 13 studies focused on IP and

malignancy (6–10, 13–15, 18, 19, 21–23); 3 studies investigated

inverted papilloma and nasal polyps (11, 16, 17), and one study

investigated inverted papilloma and sinusitis (12). Of the studies that

identified IP and malignancy, eight studies constructed a machine

learningmodel based on radiomics (7, 9, 10, 13–15, 18, 23), and seven

studies constructed a machine learning model based on radiomics

and clinical features (6–9, 13, 14). Studies on IP and nasal polyps

constructed machine learning models using radiomics, whereas the

studies on IP and sinusitis constructed machine learning models

based on radiomics and clinical features. Six studies focused on

automatic segmentation from images using deep learning methods

(6, 11, 13, 14, 16, 18). Table 1 lists the basic features of the

included studies.
3.3 Risk of bias in studies

In the included retrospective study, a diagnostic model based on

machine learning was constructed, and the modeling variables were

mostly radiomic characteristics. Therefore, no high risk of bias was

found. The modeling variables in the included studies were

radiomic features, identifying diseases according to machine

learning rules. Therefore, knowledge of the gold standard does

not create a risk of biased results. IP was diagnosed by pathological

biopsy, so the risk of bias in all studies was low. There is an

appropriate time interval between the IP evaluation test and the

gold standard. Each patient receives the same gold standard. The

evaluation results are shown in Supplementary Figure S2.
3.4 Meta-analysis

3.4.1 IP vs. malignant tumors
3.4.1.1 Training set

Twelve studies (6–10, 13–15, 19, 21–23) employed machine

learning to differentiate IP from malignant tumors. The pooled

sensitivity, specificity, positive likelihood ratio, negative likelihood

ratio, and diagnostic odds ratio of machine learning to differentiate
frontiersin.org
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TABLE 1 Basic features of the included studies.

n

Number of
sinonasal
inverted
papilloma
cases in
validation
set

Total
number
of cases in
validation
set

Model type

g 45 69
Stepwise logistic regression,
Decision curve

Logistic regression

Logistic regression

g 50 79 Logistic regression

g 13 18 CNN

g 7 22 CNN

g 67 140 logistic regression

g

25
23

58
54

logistic regression (LR),
support vector machine
(SVM), Decision tree (DT),
and K-nearest
neighbor (KNN)

g 33 59 logistic regression

Decision tree

g
8 22 Logistic regression

CNN

g 24 52 Logistic regression
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First
author

Year Country
Study
type

Patient
source

Number of
sinonasal
inverted
papilloma
cases

Total
number
of cases

Number of
sinonasal
inverted
papilloma
cases in
training set

Total number
of cases in
training set

Generation
of validatio
set

Meng
Qi (24)

2023 China
Case-
control

Single
center

135 209 90 140 Random sampli

Marn Joon
Park (7)

2023 Korea
Case-
control

Single
center

325 370 301 345

Duo
Zhang (8)

2023 China
Case-
control

Single
center

21 104 21 104

Yang
Yan (9)

2022 China
Case-
control

Single
center

144 236 94 157 Random sampli

George S.
Liu (10)

2022 America
Case-
control

Multi-
center

64 90 51 72 Random sampli

Xinyao
Li (11)

2022 China
Case-
control

Single
center

52 136 45 114 Random sampli

Zengxiao
Zhang (12)

2022 China
Case-
control

Single
center

267 540 200 400 Random sampli

Jinming
Gu (13)

2022 China
Case-
control

Single
center

106 247 58 135
10- fold cross
verification,
Random sampli

Han
Zhang (19)

2020 China
Case-
control

Single
center

113 197 80 138 Random sampli

Chong
Hyun
Suh (15)

2021 Korea
Case-
control

Single
center

41 62 41 62

TAO
REN (16)

2021 China
Case-
control

Single
center

49 136 39 114
10- fold cross
verification,
Random sampli

Benton
Girdler (17)

2021 Korea
Case-
control

Single
center

100 297 100 297

Shu-cheng
Bi (18)

2021 China
Case-
control

Multi-
center

126 244 102 192 Random sampli
n
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n

n
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n
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IP from malignant tumors were 0.85 (95% CI: 0.81-0.88), 0.88 (95%

CI: 0.83-0.91), 6.8 (95%CI: 4.7-9.8), 0.17 (95%CI: 0.13-0.23), and 40

(95%CI: 22-70), respectively (Figures 1A, B). Publication bias was

not detected among these models in the training set (Figure 1C).

The prevalence of IP in the included studies was 33%. Based on this

prevalence, we established a prior probability of 33%. If the machine

learning suggested IP, then the posterior probability of diagnosis of

IP in positive patients was 77% and that of diagnosis of IP in

negative patients was 8% (Figure 1D).

Eight studies (7, 9, 10, 13–15, 21, 23) constructed machine

learning models based on radiomic for the differential diagnosis

of IP and malignant tumors. The analysis showed that the

sensitivity, specificity, positive likelihood ratio, negative

likelihood ratio and diagnostic odds ratio of the models for

identifying IP and malignant tumors were 0.85 (95% CI: 0.80-

0.88), 0.88 (95%CI: 0.82-0.91), 6.8 (95%CI: 4.7-9.8), 0.18 (95%

CI: 0.13-0.24), 38 (95%CI: 21-68), respectively (Figures 2A, B).

Publication bias was not identified among these models in the

training set (Figure 2C), and the prevalence of IP in the included

studies was approximately 34%. Based on this prevalence, we

established a prior probability of 34%. If the machine learning

suggested IP, then the posterior probability of diagnosis of IP in

positive patients was 78% and that of diagnosis of IP in negative

patients was 8% (Figure 2D).

Eight studies (6–9, 13, 14, 19, 22) constructed machine learning

model based on radiomic and clinical features to differentiate IP

from malignant tumors. The analysis showed that the sensitivity,

specificity, positive likelihood ratio, negative likelihood ratio and

diagnostic odds ratio were: 0.88 (95% CI: 0.85 ~ 0.91), 0.92 (95%CI:

0.90 ~ 0.94), 11.4 (95%CI: 9.1 ~14.3), 0.13 (95%CI: 0.10 ~ 0.17), and

88 (95%CI: 61 ~ 128), respectively (Figures 3A, B). Publication bias

was not observed among these models in the training set

(Figure 3C), and the prevalence of IP in the included studies was

about 32%. Based on this prevalence, we established a prior

probability of 32%. If the machine learning suggested IP, then the

posterior probability of diagnosis of IP in positive patients was 84%

and that of diagnosis of IP in negative patients was 6% (Figure 3D).

3.4.1.2 Validation set

Six studies validated the performance of machine learning to

differentiate IP from malignant tumors (9, 13, 14, 18, 23, 24). The

sensitivity, specificity, positive likelihood ratio, negative likelihood

ratio, and diagnostic odds ratio of machine learning to differentiate

IP from malignant tumors were 0.83 (95% CI: 0.79 ~ 0.86), 0.81

(95% CI: 0.74 ~ 0.86), 4.4 (95% CI: 3.2 ~6.0), 0.21 (95% CI: 0.17 ~

0.27), and 21 (95% CI: 13 ~ 33), respectively (Figures 4A, B).

Publication bias was identified among these models in the

validation set (Figure 4C), and the prevalence of IP in the

included studies was about 50%. Based on this prevalence, we

established a prior probability of 50%. If the machine learning

suggested IP, then the posterior probability of diagnosis of IP in

positive patients was 81% and that of diagnosis of IP in negative

patients was 18% (Figure 4D).

Five studies validated the performance of radiomics-based

models for the differential diagnosis of IP and malignant tumors
T
A
B
LE

1
C
o
n
ti
n
u
e
d

Fi
rs
t

au
th
o
r

Y
e
ar

C
o
u
n
tr
y

St
u
d
y

ty
p
e

P
at
ie
n
t

so
u
rc
e

N
u
m
b
e
r
o
f

si
n
o
n
as
al

in
ve

rt
e
d

p
ap

ill
o
m
a

ca
se
s

T
o
ta
l

n
u
m
b
e
r

o
f
ca

se
s

N
u
m
b
e
r
o
f

si
n
o
n
as
al

in
ve

rt
e
d

p
ap

ill
o
m
a

ca
se
s
in

tr
ai
n
in
g
se
t

T
o
ta
l
n
u
m
b
e
r

o
f
ca

se
s
in

tr
ai
n
in
g
se
t

G
e
n
e
ra
ti
o
n

o
f
va

lid
at
io
n

se
t

N
u
m
b
e
r
o
f

si
n
o
n
as
al

in
ve

rt
e
d

p
ap

ill
o
m
a

ca
se
s
in

va
lid

at
io
n

se
t

T
o
ta
l

n
u
m
b
e
r

o
f
ca

se
s
in

va
lid

at
io
n

se
t

M
o
d
e
l
ty
p
e

Li
so
ng

Z
ha
ng

(1
9)

20
20

C
hi
na

C
as
e-

co
nt
ro
l

Si
ng
le

ce
nt
er

19
0

26
8

19
0

26
8

Lo
gi
st
ic
re
gr
es
si
on

S. R
am

ku
m
ar

(2
3)

20
17

A
m
er
ic
a

C
as
e-

co
nt
ro
l

Si
ng
le

ce
nt
er

22
46

16
33

P
ro
sp
ec
ti
ve

va
lid

at
io
n

6
13

R
yo
su
ke
Y
ui

(2
1)

20
23

Ja
pa
n

C
as
e-

co
nt
ro
l

Si
ng
le

ce
nt
er

21
53

21
53

Fo
ld

cr
os
s
ve
ri
fi
ca
ti
on

C
N
N

Y
im

in
R
en

(2
2)

20
24

C
hi
na

C
as
e-

co
nt
ro
l

Si
ng
le

ce
nt
er

37
86

37
86

fo
ld

cr
os
s
ve
ri
fi
ca
ti
on

Lo
gi
st
ic
re
gr
es
si
on
frontiersin.org

https://doi.org/10.3389/fonc.2025.1628999
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qin et al. 10.3389/fonc.2025.1628999
(9, 13, 14, 18, 23). The sensitivity, specificity, positive likelihood

ratio, negative likelihood ratio, and diagnostic odds ratio of

radiomics-based models for identifying IP and malignant tumors

were 0.84 (95% CI: 0.77 ~ 0.89), 0.82 (95%CI: 0.74 ~ 0.88), 4.7 (95%

CI: 3.3 ~6.9), 0.20 (95%CI: 0.14 ~ 0.29), 24 (95%CI: 13 ~ 43),

respectively (Figures 5A, B). There was no publication bias among

these models in the validation set (Figure 5C), and the prevalence of

IP in the included studies was about 50%. Based on this prevalence,

we established a prior probability of 50%. If the machine learning

suggested IP, then the posterior probability of diagnosis of IP in

positive patients was 83% and that of diagnosis of IP in negative

patients was 16% (Figure 5D).

Four studies (9, 13, 14, 24) validated the performance of machine

learning models based on radiomic and clinical features to differentiate

IP from malignant tumors. The analysis of these models revealed that
Frontiers in Oncology 06
the sensitivity, specificity, positive likelihood ratio, negative likelihood

ratio, and diagnostic odds ratio were 0.85 (95% CI: 0.78 ~ 0.90), 0.87

(95%CI: 0.80 ~ 0.92), 6.5 (95%CI: 4.0 ~10.5), 0.18 (95%CI: 0.12 ~ 0.26),

and 37 (95%CI: 18 ~ 77), respectively (Supplementary Figure S3A, B).

There was no publication bias among these models in the validation

set (Supplementary Figure S3C), and the prevalence of IP in the

included studies was about 47%. Based on this prevalence, we

established a prior probability of 47%. If the machine learning

suggested IP, then the posterior probability of diagnosis of IP in

positive patients was 85% and that of diagnosis of IP in negative

patients was 13% (Supplementary Figure S3D).

3.4.2 IP vs. benign lesions
Benign lesions, including sinusitis and nasal polyps, share

similar clinical symptoms with IP and thus require distinction.
FIGURE 1

(A) Forest map of machine learning for identifying IP and nasal malignancies in the training set. (B) SROC of machine learning for identifying IP and
nasal malignancy in the training set. (C) Funnel plot of machine learning for identifying IP and nasal malignancies in the training set. (D) Nomogram
of machine learning for identifying IP and nasal malignancies in the training set.
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There were three studies on the differential diagnosis of IP and nasal

polyps (11, 16, 17), with the sensitivity and specificity ranges of

(0.7140~0.9060) and (0.8160~0.8970), respectively. In one study,

the sensitivity and specificity of differential diagnosis of IP and

sinusitis (12) ranged from 0.9212 to 0.9548 and 0.8899 to

0.9097, respectively.
3.5 Clinical features that play an important
role in the machine learning process

Three studies (7, 14, 25) constructed machine learning models

based on clinical features for the differential diagnosis of IP and
Frontiers in Oncology 07
malignant tumors. The sensitivity and specificity were

(0.5858~0.8790) and (0.4660~0.8001), respectively. Therefore, the

role of clinical features should be considered in the development of

machine learning models in the future.
4 Discussion

It has been found that the differential diagnosis of IP and

malignancy relying on radiomics alone does not yield the best results.

Therefore, we recommend integrating clinical features to improve the

effectiveness of machine learning in IP differential diagnosis.

Imaging methods (such as CT or MRI) the first choice for the IP

diagnosis (26, 27). In particular, there have been limited attempts to
FIGURE 2

(A) Forest map of machine learning based on radiomic for identifying IP and nasal malignancies in the training set. (B) SROC of machine learning
based on radiomic for identifying IP and nasal malignancy in the training set. (C) Funnel plot of machine learning based on radiomic for identifying IP
and nasal malignancies in the training set. (D) Nomogram of machine learning based on radiomic for identifying IP and nasal malignancies in the
training set.
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explore the diagnostic accuracy of CT or MRI for IP. Li Z et al. (28)

investigated the diagnostic performance of dynamic contrast-

enhanced MRI-derived parameters in distinguishing IP from

squamous cell carcinoma. The AUC of the combination of the

volume of extravascular extracellular space and rate constant was

0.831, with a specificity of 83% and sensitivity of 76.5%. However,

effective preoperative diagnosis of IP remained a challenge.

Radiomics methods can help determine the extent of tumors.

This study evaluated the diagnostic performance of radiomics-

based models in distinguishing IP from malignant tumors and

benign lesions, which can not only improve the accuracy of

diagnosis but also help increase the probability of complete
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surgical resection of tumors (20). Our analysis showed that the

radiomics-based models showed high sensitivity [0.84 (95%CI:

0.77-0.89)] and specificity [0.82 (95% CI: 0.74 ~ 0.88)] in the

validation set. This highlighted the importance of expanding the

application of radiomics in the differential diagnosis of IP.

While our study focused on radiomics, we could not ignore the

differences in clinical variables between IP andmalignancy, such as age,

smoking, and alcohol dependence. For instance, Hong SL et al. (29)

discovered a correlation between smoking and malignant

transformation in IP patients.

We found that there may be a high degree of bias in the modeling

process. First, the number of cases in the modeling process should
FIGURE 3

(A) Forest map of machine learning based on radiomic and clinical features for identifying IP and nasal malignancies in the training set. (B) SROC of
machine learning based on radiomic and clinical features for identifying IP and nasal malignancy in the training set. (C) Funnel plot of machine
learning based on radiomic and clinical features for identifying IP and nasal malignancies in the training set. (D) Nomogram of machine learning
based on radiomic and clinical features for identifying IP and nasal malignancies in the training set.
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exceed 20, however, only a few included studies meet this condition,

whichmay lead to overfitting of the constructedmodels. Second, model

validation is required. At present, common clinical validation methods

can be divided into internal validation and external validation. Internal

verification is established according to the specific distribution trend of

the data, mainly using random sampling. Random sampling can’t

change the data distribution to some extent; Therefore, it does not

explain the universality of this model. Only one study used prospective

external validation and the remaining studies used random sampling.

Third, there was a lack of consideration of overfitting in the included

literature. Fourth, variable screening methods were different. Fifth, the

selection of the model was predominantly based on logistic regression.
Frontiers in Oncology 09
While logistic regression is valuable in clinical applications with strong

interpretability, there are limitations related to its application

in radiomics.

Furthermore, another aspect that should be considered in the

implementation of radiomics is the ignorance of variations in

equipment, both across different manufacturers and different

parameters within the same manufacturer. This oversight failed to

address the potential effects of equipment over-configuration. This

limitation highlights that radiomics is still in the theoretical stage

and it is difficult to implement. It is important to formulate

standardized research guidelines for future research and promote

the development of radiomics according to the research guidelines.
FIGURE 4

(A) Forest map of machine learning for identifying IP and nasal malignancies in the validation set. (B) SROC of machine learning for identifying IP and nasal
malignancy in the validation set. (C) Funnel plot of machine learning for identifying IP and nasal malignancies in the validation set. (D) Nomogram of machine
learning for identifying IP and nasal malignancies in the validation set.
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For the first time, we explored the use of AI to distinguish IP

from benign lesions and malignant tumors, and confirmed the

feasibility of this approach. However, there are some limitations.

First, due to the limited number of included studies, we did not

specifically discuss different machine learning types under the same

modeling variables. The predictive performance of various machine

learning methods varies greatly. Future research should consider

comparing the diagnostic performance of different machine

learning methods for IP and developing intelligent assessment

tools using the best performing machine learning methods.

Secondly, the validation set is mainly generated by random

sampling, and an independent external validation data set is
Frontiers in Oncology 10
lacking. Therefore, the results of the validation set need to be

further verified.
5 Conclusions

Artificial intelligence methods can greatly improve the

diagnosis of IP and reduce the misdiagnosis rate, thereby

providing favorable support for clinical work, such as the

formulation of surgical plans, frequency of postoperative re-

examination, and the assessment of prognosis. Furthermore,

artificial intelligence methods can be used to accurately identify
FIGURE 5

(A) Forest map of radiomics-based models for identifying IP and nasal malignancies in the validation set. (B) SROC of radiomics-based models for
identifying IP and nasal malignancy in the validation set. (C) Funnel plot of radiomics-based models for identifying IP and nasal malignancies in the
validation set. (D) Nomogram of radiomics-based models for identifying IP and nasal malignancies in the validation set.
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the extent of a tumor, thus greatly increasing the probability of

complete surgical resection and reducing the risk of recurrence.

However, due to the small number of included studies, more

prospective studies are needed to validate and develop universal

radiomics-based diagnostic tools.
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