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Single-cell sequencing combined 
with machine learning to identify 
glioma biomarkers and 
therapeutic targets 
Yu Yan, Zhengmin Chu, Qi Zhong and Genghuan Wang* 

Department of Neurosurgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China 
Background: The purpose of this study is to utilize single-cell sequencing data to 
explore glioma heterogeneity and identify key biomarkers associated with 
glioblastoma multiforme (GBM) relapse using machine learning. 

Methods: Single-cell sequencing and transcriptome data for gliomas were 
obtained from the GEO (GSE159416, GSE159605, and GSE186057) and TCGA 
databases. A prognostic model based on differentiation-related genes (DRGs) was 
constructed using weighted correlation network analysis, univariate Cox regression, 
and LASSO analysis. Key genes were identified using LASSO and SVM-RFE, with 
intersecting genes selected as the final set of key genes. Further analyses examined 
immune infiltration patterns and functional pathways. Importantly, we analyzed the 
relationship between prognostic-related genes and ubiquitination, and further 
characterized the characteristics of ubiquitination-related prognostic genes. In 
addition, we performed CCK-8 assays, colony formation, Transwell invasion 
assays, apoptosis assays to determine the role of ETV4 in glioma. 

Results: Examination of single-cell RNA-seq data from the GEO database 
revealed three distinct cell differentiation stages in glioma tissues. Marker 
genes for each of these cell states were combined to form DRGs. A 16-gene 
DRG signature was developed for predicting the survival of glioma patients. 
Machine learning identified four important genes with high AUCs in both training 
and test sets. Notably, 13 out of 16 genes in the DRG signature are ubiquitin­
related, highlighting the involvement of ubiquitination in GBM. Moreover, we 
reported that inhibition of ETV4 attenuates cell proliferation and invasion in 
glioma cells. 

Conclusion: Our prognostic model, based on the differentiation-related gene 
signatures, may be valuable for predicting prognosis and immunotherapy 
response in glioma patients. Characterizing these ubiquitination-associated 
features may elucidate the molecular mechanisms driving GBM progression 
and offer novel insights for its diagnosis and treatment. Additionally, machine 
learning identified four biomarkers with potential for aiding in the diagnosis and 
treatment of GBM. 
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1 Introduction 

Glioblastoma Multiforme (GBM) is the most common and 
aggressive primary brain tumor, characterized by invasive growth 
and resistance to conventional treatments (1, 2). The five-year 
survival rate for patients with GBM is only 7%, highlighting the 
poor prognosis associated with this disease (3). The World Health 
Organization (WHO) classifies gliomas into four grades, with high-
grade gliomas (WHO grade 3 to 4) often exhibiting poor prognoses 
(4). For patients with GBM (WHO grade 4), median survival ranges 
from 14.6 to 17 months (5). 

The complexity of GBM treatment is complicated by tumor 
heterogeneity, arising from the diverse types of GBM cells and a 
complex tumor microenvironment (6–8). This heterogeneity exists 
not only between individuals but also within individual tumors 
(9, 10). Single-cell sequencing (SCS) has been reported to explore 
the mechanisms of disease development (11, 12). SCS allows 
researchers to examine interactions between various types of 
GBM cells and neoplastic cells at a more detailed level (13). 
Unlike single-cell sequencing, next-generation sequencing (NGS), 
which is commonly used, analyzes the entire cell population and is 
unable to capture cellular heterogeneity (14). SCS amplifies and 
sequences the genome or transcriptome at the single-cell level, 
providing information on single nucleotide variations (SNVs), gene 
copy number variations (CNVs), single-cell genome structure 
variations, gene expression, gene fusions, alternative splicing in 
the single-cell transcriptome, and DNA methylation in the single-
cell epigenome (15). SCS enables the study of genetic characteristics 
in diseases and biological processes at the single-cell level, including 
early embryonic development, tumorigenesis mechanism, tumor 
heterogeneity and evolution, as well as circulating tumor cells 
(CTCs) and clonal evolution (16). Meanwhile machine learning 
brings new opportunities for identifying biomarkers (17). By 
efficiently filtering out irrelevant features, machine learning is 
highly suitable as a tool for pre-screening features (18, 19). 

Protein post-translational modifications (PTMs) are covalent 
and enzymatic alterations that occur during or after biosynthesis, 
modulating protein properties and functions. Among them, non­
histone PTMs, including acetylation, lactylation, methylation, 
ubiquitination, phosphorylation, and SUMOylation, have been 
reported to be closely associated with cancer progression (20). 
Abnormalities in PTMs have been observed to influence cancer 
cell proliferation, migration, and invasion. Ubiquitination, a crucial 
PTM, governs protein stability and a wide range of cellular 
processes by attachment of ubiquitin molecules (21). Emerging 
evidence suggests that ubiquitination plays a pivotal role in 
mediating resistance to cancer immunotherapy (22). For instance, 
the ubiquitin-conjugating enzyme E2S has been reported to reduce 
the sensitivity of GBM cells to temozolomide by upregulating 
PGAM1 through interaction with OTUB2 (23). In addition, 
centromere protein U facilitates temozolomide resistance by 
mediating the ubiquitination and degradation of RPS3 in GBM 
(24). RNF8-mediated ubiquitination of KRT80 has been shown to 
drive glucose metabolic reprogramming and GBM progression (25). 
Moreover, the tryptophan-metabolizing enzyme IL4I1 inhibits 
Frontiers in Oncology 02 
ferroptosis in GBM by decreasing the ubiquitination of Nrf2 via 
I3P (26). Therefore, ubiquitination is critically involved in GBM 
development and progression. 

This study aims to analyze glioma single-cell RNA sequencing 
(scRNA-seq) data to explore heterogeneity of GBMs and identify 
differentiation-related genes (DRGs) for prognostic prediction 
using bulk RNA-seq data. Additionally, support vector machines 
recursive feature elimination (SVM-RFE) and least absolute 
shrinkage and selection operator (LASSO) machine learning 
algorithms were employed to select key biomarkers associated 
with GBMs and enhance predictive accuracy for GBM prognosis. 
Importantly, this study also investigated transcription factors, 
protein-protein interaction networks, enriched pathways and 
biological functions, differential expression patterns, and survival 
associations of ubiquitin-related prognostic genes. 
2 Methods 

2.1 Data collection 

Single-cell sequencing data were obtained from the GEO database 
(Gene Expression Omnbius) under accession GSE159416 (27) (https:// 
www.ncbi.nlm.nih.gov/geo/), which includes single-cell RNA-seq 
data from 18 glioma patients. Additionally, clinical data and gene 
expression data were sourced from the TCGA (The Cancer Genome 
Atlas, https://www.cancer.gov/about-nci/organization/ccg/ 
research/structural-genomics/tcga). Array-based expression 
profiles were collected from GEO datasets GSE159605 and 
GSE186057. A total of 1041 samples were included in this study. 
2.2 Quality control for SCS data processing 

ScRNA-seq data were preprocessed using “Seurat” and “Monocle” 
R packages. The PercentageFeatureSet function was used to calculate 
the number of mitochondrial genes, and cells with less than 500 or 
more than 5000 were removed based on quality control results. The 
LogNormalize method was used to normalize scRNA-seq data, and the 
‘vst’ selection method was used to identify the top 1000 highly variable 
genes. Principal component analysis (PCA) was used to reduce 
dimensions for glioma cells. Using the t-distributed stochastic 
neighbor embedding (tSNE) approach, the top 10 principal 
components (PCs) with significant values were chosen for clustering. 
The ‘limma’ package was used to find marker genes in each cluster, 
selecting those with an adjusted p value of less than 0.05 and a |Log2 
fold change (FC)| > 2 value. ScRNA-seq data were automatically 
annotated using the “SingleR” tool. Data from the “celldex” package’s 
major human cell atlas were utilized as reference data. 
2.3 Pathway and pseudotime analysis 

For astrocyte and tissue stem cells, pseudotime and trajectory 
analyses were carried out using the “Monocle” package, with the 
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distribution of cells along each branch representing a single 
differentiation condition. |log2 (FC)|> 2 and adjusted p- values < 
0.05 were used to identify DEGs in cells that were in separate 
development states. GO (Gene ontology) analysis, which 
categorizes gene functions, was applied to differentially expressed 
transcripts to provide a structural functional description. In the 
transcriptome project, GO functional analysis gives a categorical 
annotation of GO function for differentially expressed transcripts. 
ClusterProfiler, org.Hs.eg.db, enrichplot, and ggplot2 packages were 
used to analyze the KEGG (Kyoto Encyclopedia of Genes and 
Genomes, https://www.kegg.jp/kegg/kegg1.html) pathways and GO 
for DRGs. 
2.4 Consensus clustering and prognosis 
analysis 

Consensus clustering, an unsupervised clustering method, was 
used to distinguish samples into several subtypes according 
to different omics datasets. Data were classified using the 
“ConsensusClusterPlus” R package. Kaplan-Meier analysis was 
conducted to compare overall survival across different clusters, and 
a prognostic modle was developed using Cox regression analysis. 
2.5 Ubiquitination−related prognosis genes 

A list of Ubiquitination-related genes (URGs) was obtained by 
querying the human gene database GeneCards (https:// 
www.genecards.org/) using  the keyword  “Ubiquitination” (28). 
The “venn” R package was then utilized to identify the 
intersection between URGs list and glioma-associated prognostic 
genes (GAPGs). Transcription factor analysis was conducted using 
the transcriptional regulatory relationships unraveled by sentence-
based text mining (TRRUST, version 2, https://www.grnpedia.org/ 
trrust/Network_search_form.php), which employs sentence-based 
text mining to uncover transcriptional regulatory relationships (29). 
Protein-protein interaction (PPI) networks were constructed using 
the STRING database (Version 12.0, https://cn.string-db.org/) (30). 
Functional annotation and enrichment analyses of gene lists were 
performed  using  Metascape  (https://metascape.org/gp/  
index.html#/main/step1) (31). Additionally, differential gene 
expression and survival analyses were carried out using the 
GEPIA database (http://gepia.cancer-pku.cn/), which integrates 
tumor and normal tissue data from TCGA and GTEx (32). 
 

2.5 Machine learning 

Distinctive genes were screened using SVM-RFE (33) and

LASSO (34). Key genes were individually filtered by LASSO and 
SVM-RFE, and the intersecting genes were then chosen as the final 
key genes. LASSO reduced model complexity by selectively 
incorporating variables, optimizing performance while controlling 
complexity to avoid overfitting. SVM-RFE provides high-accuracy 
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feature screening and uses incremental regularization to prevent 
overfitting. Both algorithms were employed to screen for prognostic 
genes, and the intersecting genes from both methods were chosen as 
the final prognostic markers. 
2.6 WGCNA 

Weighted correlation network analysis (WGCNA) is a systems 
biology approach that identifies highly correlated gene sets and 
potential biomarkers by analyzing the association between gene 
modules and phenotype genes or therapeutic targets. WGCNA 
classifies  co-expressed  genes  into  modules,  facilitating  
investigation of module-phenotype relationships. In this study, 
WGCNA was used to identify genes linked to the LLPS 
phenotype. The pickSoftThreshold function from the “WGCNA” 
R package was used to determine the optimal soft field value. 
2.7 Immune inflation and immune 
checkpoint analysis 

The “cibersort” package (35) was used to quantify related 
infiltration and activity levels for 22 immune cell types based on 
published gene signature lists across all tumors and normal samples. 
Immune cells types in this study included activated dendritic cells 
(DCs), neutrophils, mast cells, eosinophils, macrophages, and 
components of adaptive immunity such as B cells, T cells, central 
memory T cells. A heatmap was created to represent the findings of 
the investigation on the immunological checkpoint differences 
between high- and low- risk groups. 
2.7 Cell culture and transfection 

The human glioma cell lines LN229 and U251 were obtained 
from the Shanghai Cell Bank (Shanghai, China). Cells were cultured 
in Dulbecco’s Modified Eagle Medium (DMEM) supplemented 
with 10% fetal bovine serum (FBS) and 1% penicillin-
streptomycin. Cells were maintained in a humidified incubator at 
37°C with 5% CO2. 

Short hairpin RNA (shRNA) targeting ETV4 gene and shRNA 
control (shNC) were purchased from GenePharma (Shanghai, 
China) company and transfected into LN229 and U251 cells 
using Lipofectamine 3000 (Invitrogen) according to the 
manufacturer’s protocol. shETV4-1: GCT GGA TGA CCC AAC 
AAA T; shETV4-2: CCC TGT GTA CAT ATA AAT GAA. 
Knockdown efficiency was validated by Western blotting. 
2.8 Western blotting analysis 

Cells were lysed in RIPA buffer (Beyotime, China) and protein 
concentrations were determined using the BCA Protein Assay Kit. 
Protein were separated by SDS-PAGE and transferred onto PVDF 
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membranes. Membranes were blocked with 5% non-fat milk for 1 
hour at room temperature, then incubated with anti-ETV4 antibody 
(CST #65763) overnight at 4°C. Protein bands were visualized using 
an ECL detection kit as described previously. 
2.9 CCK-8 assays and colony formation 

Cell viability was assessed using the Cell Counting Kit-8 (CCK­
8) according to the manufacturer’s instructions. Briefly, transfected 
cells were seeded into 96-well plates. After the specified durations, 
10 µL of CCK-8 reagent was added to each well. After cells were 
incubated at 37°C for 2 hours. Absorbance was measured at 450 nm 
by a microplate reader. Transfected cells were seeded into 6-well 
plates and cultured in complete medium for 14 days, allowing 
colonies to form. Then, cells were fixed with 4% paraformaldehyde 
for 15 minutes and stained with 0.1% crystal violet for 30 minutes at 
room temperature. After washing with PBS, colonies were imaged 
and counted. 
2.10 Cell apoptosis assays 

Cell apoptosis was evaluated using an Annexin V-FITC/PI 
Apoptosis Detection Kit according to the manufacturer’s 
instructions. Briefly, cells were harvested, washed, and 
resuspended in binding buffer. Then, 100 mL of the cell 
suspension was incubated with 5 mL Annexin V-FITC and 5 mL 
propidium iodide (PI) for 15 minutes at room temperature in the 
dark. After incubation, samples were analyzed using a flow 
cytometer. Cells were classified as viable, early apoptotic, late 
apoptotic, and necrotic. 
2.11 Cell invasion assays 

Cell invasion was assessed using Transwell chambers (Corning, 
USA) coated with Matrigel. Briefly, Cells were suspended in 200 mL 
serum-free medium and seeded into the upper chamber. The lower 
chamber was filled with medium containing 10% FBS. After 
incubation at 37°C for 24 hours, non-invading cells on the upper 
surface were removed with a cotton swab, and the invading cells on 
the lower surface were fixed with 4% paraformaldehyde and stained 
with Calcein AM. Invaded cells were imaged and counted under 
a microscope. 
2.12 Statistical analysis 

All statistical analyses were calculated using R software version 
4.1.3 and the corresponding packages. Data were analyzed using 
student t-tests and one-way ANOVA for in vitro experiments. p < 
0.05 was considered statistically significant. 
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3 Results 

3.1 Single-cell sequencing analysis 

The ranges of single-cell RNA counts, as well as RNA counts per 
cell, demonstrated a high level of sample quality control 
(Figure 1A). The 2000 most variable genes and the top 10 genes 
identified across all samples are displayed (Figure 1B). The number 
of identified genes and sequencing death showed a strong positive 
association (R = 0.92, Figure 1C). Next, we performed PCA on the 
normalized cell data (Figure 1D). Scatterplots were generated to 
depict the relationship between PC scores and selected genes, where 
larger absolute score values indicate stronger correlations. For each 
PC, the top 20 genes were chosen based on their coefficients. In 
PC_1, genes SOX2 and GPM6B exhibited significant correlations 
with score values (Figure 1E). 

A gene expression heatmap was generated to visualize the 
expression levels of the top 20 selected genes for each PC, where 
darker colors indicate higher expression levels (Figure 1F). To 
investigate the relationship and clustering patterns among all 
cells, the t-distributed stochastic neighbor embedding (t-SNE) 
algorithm was employed. This algorithm effectively reduces high-
dimensional data to a two-dimensional space. This analysis 
identified 14 distinct clusters, with cells closer together in the t-
SNE plot indicating greater similarity (Figure 1G). To validate the 
optimal clustering results and identify potential feature genes for 
each subgroup, the top 20 genes for each cellular subgroup were 
generated, including ANLN, RRM2, PDIA2, CPS1, LGALS2, 
TMED3, and AQP5. 

TMED3 exhibited high expression across all subclusters, indicating 
a ubiquitous expression pattern within the analyzed dataset 
(Figure 1H). Pseudo-temporal analysis was used to analyze cellular 
motion trajectories across the 14 subclusters, inferring the temporal 
progression and cell movement dynamics within each subcluster 
(Figure 1I). Cell type annotation was performed on cells distributed 
into 14 clusters based on marker gene expression. Additionally, 
pseudo-temporal analysis on the annotated cells inferred their 
temporal order or developmental trajectory (Figure 1J). A total of 
17,846 astrocytes and stem cells underwent pseudotime and 
differentiation trajectory analysis (Figures 2A, B), revealing 3 
branches of cells with diverse differentiation patterns. Cells in state 1 
were inferred as the initial cell type, subsequently differentiating into 
various states (Figures 2C, D). 
3.2 Consensus clustering 

Consensus clustering was performed on cell populations to 
classify cells. The results suggested that the optimal clustering 
occurred at K = 2. The delta area plot indicated the best K value 
by identifying the point with the least increase in stability. Figure 2 
showed the sample clusters at each K value with a heatmap, which 
qualitatively assesses unstable clusters and samples (Figure 2E). 
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FIGURE 1 

Single-cell sequencing analysis: quality control, dimensionality reduction, clustering, gene expression, and trajectory analysis. (A, B) Violin plot 
displaying the results of quality control and filtration for the scRNA-seq dada. (C) Scatter plot showing the correlation between sequencing depth 
and the number of detected genes. (D) PCA plot represents single-cell distribution in a reduced-dimensional space through principal component 
analysis (PCA). (E) Top 20 genes plotted for each principal component (PC). (F) Heatmap of the top 20 genes for PC, where each row represents a 
gene, and each column represents a sample or condition. Darker colors indicate higher expression levels. (G) Scatter plot of cell clusters by t-SNE: 
visualizing cellular heterogeneity and clustering patterns. (H) Expression levels of PDIA2, PS1, GALS2, MED3, QP5 in 14 clusters. (I) Trajectory analysis 
of 14 clusters. (J) Trajectory analysis of epithelial cells and macrophages. 
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3.3 KEGG and GO analysis 

KEGG pathway analysis indicated that GBM development is 
associated with pathways including Coronavirus disease (COVID-19), 
ribosome, human papillomavirus infection, focal adhesion, 
Frontiers in Oncology 06
proteoglycans in cancer, shear stress and atherosclerosism, ECM-

receptor interaction, relaxin signaling pathway, amoebiasis and 
proteasome. GO analysis suggested that the molecular functions of 
the genes may relate to cytoplasmic translation, axonogenesis, axon 
development, glial cell differentiation and gliogenesis (Figure 3). 
FIGURE 2 

Developmental trajectories and consensus clustering in glioblastoma multiforme (GBM). (A, B) Trajectory analysis of 14 clusters unveiling 
developmental paths and cellular dynamics. (C, D) Expression of upregulated and downregulated DRGs in C1, C2 and C3 clusters. (E) Consensus 
clustering analysis for GBM. 
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3.4 Immune infiltration and immune 
checkpoint analysis 

Prognostic analysis revealed no significant differences among 
clusters 1, 2, and 3 (p = 0.833) (Figure 4A). However, immune 
checkpoints PDC1LG2, CD274, JAK2, HAVCR2, CD86, ICOSLG, 
YTHDF1, CD40, PVR, and TNFSF9 showed significant differential 
expression across clusters (Figure 4B). Glioma prognosis was 
correlated to immune checkpoints LGALS9, PVR, TNFSF9 and 
ICOSLG (Figure 4C). Cluster C2 samples had the highest immune, 
stromal, and ESTIMATE scores, but the lowest tumor purity (p < 
Frontiers in Oncology 07 
0.001), showing the highest quantity of immune and stromal cells. In 
contrast, C1 had the highest tumor purity and the least amount of 
immune and stromal cells (Figure 4D). Moreover, WGCNA clustering 
showed co-expression patterns and functional modules (Figure 4E). 
3.5 Weighted gene co-expression network 
analysis 

WGCNA was employed to identify co-expressed gene 
modules and explore association between the gene network, 
FIGURE 3 

KEGG and GO analysis uncovering functional enrichment and pathway insights. 
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phenotype, and core genes (36). Analysis was feasible with the soft 
domain value set to 6 (Figure 5A). WGCNA organized genes into 
modules, ultimately categorizing glioma gene expression into five 
distinct modules (Figure 5B). Mean connectivity remained 
constant when the soft threshold increased. All genes were 
grouped into 15 modules (Figure 5C), and the ME yellow 
Frontiers in Oncology 08
module showed the strongest correlation with the survival time 
(futime) (Figure 5D, P < 0.05). Differential expression analysis on  
the key genes from the key modules identified two downregulated 
genes, while the remaining genes showed no differential 
expression (Figure 5E). The heatmap of differential expression is 
displayed in Figure 5E. 
FIGURE 4 

Insights and analysis for prognosis, immune checkpoints, and clustering. (A) Prognosis analysis of 3 clusters evaluating survival outcomes and predictive 
significance. (B) Immune checkpoint analysis in C1, C2 and C3 clusters. ‘ns’ means no significance, *P < 0.05, **P < 0.01, and ***P < 0.001. (C) Prognosis 
related to four checkpoints, assessing the impact of checkpoint expression on patient survival. (D) Comparisons of immune score, stromal score, 
ESTIMATE score, and tumor purity, examining tumor microenvironment and predictive metrics. (E) WGCNA clustering uncovering co-expression 
patterns and functional modules. 
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3.6 Prognosis model of GBM	 

A prognostic model for glioma was constructed using multiple 
Cox regression analysis of 532 genes screened from WGCNA. The 
LASSO algorithm was used to prevent overfitting. Univariate Cox 
Frontiers in Oncology 09
regression analysis narrowed down 39 genes, followed by multiple 
distant linear regression (Figure 5F), resulting in 16 glioma-

associated prognostic genes for the model (Table 1). Data were 
randomly split into training and test datasets and further divided 
into high-risk and low-risk groups based on the median risk score. 
FIGURE 5 

Integrative analysis and insights unveiling prognostic factors, differential expression, and regression results. (A) Analysis of scale-free fit index and 
mean connectivity assessing the fit of network modules at different soft-thresholding powers. (B) Dendrogram of differentially expressed genes, 
clustering based on dissimilarity measure (1-TOM). (C) Heatmap of module eigengene-clinical status correlation: showing relationships between 
module eigengenes and clinical status (Normal and Tumor). (D) Volcano plot of differentially expressed genes, visualizing statistical significance and 
fold change. (E) Heatmap of differentially expressed genes, illustrating gene expression patterns and clustering. (F) UniCox regression analysis results, 
evaluating gene expression associations with survival. (G) Prognosis and AUC analysis, assessing prognostic performance in training and test groups. 
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In the training dataset, low-risk group patients had a significantly 
better prognosis than those in the high-risk group. However, in the 
test group, no significant difference in survival prognosis was 
observed between the two groups. The AUC values for the 
training dataset were 0.853 at one year, 0.930 at three years, and 
0.968 at five years, which implies an improvement in predictive 
ability over time. For the test dataset, AUC values were 0.566 at one 
year, 0.591 at three years, and 0.586 at five years (Figure 5G). The 12 
genes in the model were put into the single-cell data to assess their 
enrichment. Results demonstrated differential expression of the 12 
genes across enriched clusters. Notably, NBP20 was primarily 
expressed in clusters 5, 12 and 13. RPL13 and CDK5 were 
significantly expressed in clusters 7 and 6, respectively. 
Additionally, the gene expression of LDHA, ALDOA, VKORC1, 
TUBB6, and PLAUR was enhanced across clusters (Figure 6). 
3.7 Ubiquitination−related prognostic 
genes in GBM 

A total of 16 glioma-associated prognostic genes and 16,384 
ubiquitination-related genes (URGs) were obtained from the 
GeneCards database. The intersection of these two gene sets 
identified 13 ubiquitination-related glioma-associated prognostic 
genes (UR-GAPGs):  LDHA, TUBB6, ALDOA, RHEB,  MT2A,  CST3,  
CDK5RAP2, VKORC1, NNAT, CAMK2N1, PLAUR, CPE, and STC1 
(Figure 7A). Transcription factor analysis revealed that three of these 
genes—ALDOA, LDHA, and PLAUR—are co-regulated by 
transcription factors JUN, HIF1A, SP1, and ATF1 (Figure 7B). For 
the PPI network, a minimum interaction confidence score of 0.15 (low 
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confidence) was set, and disconnected nodes were excluded, resulting 
in a network of 10 genes (Figure 7C). 
3.8 Functional characteristics of 
ubiquitination-related prognostic genes 

Using the Metascape web portal, enrichment analysis of the 13 UR-
GAPGs revealed that these genes are involved in pathways such as clear 
cell renal carcinoma, cellular homeostasis, and brain development 
(Figure 7D). Gene Ontology (GO) biological process analysis 
highlighted major roles in homeostatic and developmental processes 
(Figure 7E). Furthermore, a COVID-related enrichment analysis based 
on Blanco-Melo A549-ACE2-ruxolitinib RNA-seq data was conducted 
(Figure 8A). The DisGeNET database confirmed associations between 
these 13 genes and inflammatory processes, emphasizing the relevance 
of inflammation in their functional roles (Figure 8B). Analysis using the 
Cell Type Signatures database identified ZHONG PFC C1 OPC as the 
cell type most enriched for these genes (Figure 8C). Among 
transcription factor targets, CEBPB 01 emerged as the most 
significantly enriched (Figure 8D). 
3.9 Differential expression and survival 
analysis of ubiquitination-related 
prognostic genes 

Differential expression analysis using the GEPIA database, 
which integrates data from TCGA and GTEx, included 163 GBM 
tumor samples and 207 normal tissue samples. Box plots showed 
TABLE 1 16 glioma-associated prognostic genes. 

Gene HR Z P value Lower Upper 

NBPF20 0.295241339188521 1.34345054682984 0.948486233498846 1.90288409892836 0.0964716449193646 

CDK5RAP2 -0.398591676511448 0.671264738561516 0.514408353931362 0.875950683522888 0.00333199439858064 

RHEB 0.264384784067291 1.30262933089252 1.08445898377724 1.56469096488212 0.00469979295937277 

RPL13AP5 -0.131214541821952 0.877029594678408 0.74572031523489 1.03146031324022 0.112820108845984 

CAMK2N1 0.196446090232239 1.21706970716434 1.06321647782965 1.3931863387979 0.00438646096147386 

CPE 0.16664125524179 1.18133039319568 0.998408106815502 1.39776659300079 0.0522093735949419 

NNAT 0.16628013446608 1.18090386726605 1.06192535913427 1.31321277124486 0.00214871222075014 

LDHA -0.331448737693059 0.717882955609934 0.597480014991583 0.862549248551042 0.000402327844752551 

ALDOA 0.288032331830181 1.33380042763517 1.11458506722804 1.59613082309112 0.00166568621885795 

VKORC1 0.358234035314785 1.43080043912984 1.15793313183257 1.76796901335245 0.000905945183210735 

TUBB6 0.165766785316175 1.18029780684328 1.00330350190752 1.38851594775701 0.0455272061046904 

PLAUR 0.214402745243588 1.23912160464437 1.01796544943357 1.50832462138159 0.0325589704722943 

RGS16 0.177090760257149 1.19373943230846 1.04858203072293 1.35899127631024 0.00742620195389444 

STC1 0.096837195341802 1.10168100022131 0.981281348695747 1.23685325096803 0.101014379923527 

MT2A -0.0824804353428026 0.920829453393163 0.834120439835026 1.01655209696582 0.102129572069046 

CST3 0.199474018574925 1.22076049192171 1.05553281189418 1.41185206356837 0.0071806675559779 
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that LDHA, TUBB6, RHEB, MT2A, VKORC1, NNAT, CAMK2N1, 
PLAUR,  and STC1 were significantly differentially expressed 
between tumor and normal tissues (P < 0.05) (Figures 9A–I). For 
survival analysis, patients were divided into high- and low-risk 
groups based on the average expression levels of the 13 UR-GAPGs. 
Kaplan–Meier analysis demonstrated that NNAT, PLAUR, and 
STC1 were significantly associated with overall survival (P < 
0.05), with lower expression levels corresponding to improved 
survival outcomes (Figures 9J–L). 
3.10 Machine learning 

The study included two GEO datasets, GSE159605 and 
GSE186057, which were combined for differential analysis. The 
six most significantly different genes were visualized in a volcano 
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plot and heatmap (Figures 10A, B). SVM-RFE, effective when there 
are more predictors than observations (33, 37), and LASSO were 
used to screen genes. The results of LASSO and SVM-RFE were 
displayed in Figures 7C, D. LASSO identified four key genes: ETV4, 
CACNA2D3, HIST1H3B, and HSPA1A (Figure 10C), while SVM­

RFE identified seven genes: ETV4, HSPA1A, CACNA2D3, 
HIST1H3B, PTPRR, BDNF, and HIST1H3G (Figure 10D). The 
intersecting genes include ETV4, CACNA2D3, HIST1H3B and 
HSPA1A (Figure 10E).The combined data were divided into a 
training set and a test set to evaluate the sensitivity and specificity 
of selected biomarkers. In the training set, the AUCs of HSPA1A, 
HIST1H3B, ET4V and CACNA2D3 were 0.852, 0.861, 0.904 and 
0.841, respectively (Figure 10F). Testing the biomarkers on the test 
set yielded AUCs of 1, 1, 1 and 0.900, indicating high accuracy 
(Figure 11A). The immune infiltration patterns for 22 cell types in 
the control group and treatment group are shown in Figure 11B. 
FIGURE 6 

Gene expression analysis using single-cell data uncovers expression patterns of genes identified through multi-Cox regression. 
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3.11 Inhibition of ETV4 attenuates cell 
proliferation and invasion	 

Evidence revealed that HSPA1A promotes tumor cell 
proliferation and invasion, contributing to the progression and 
recurrence  of  GBM  (38).  CACNA2D3  suppressed  cell  
Frontiers in Oncology 12	
proliferation, migration and invasion in glioma (39). The 
prognostic impact of HIST1H3B/C mutations in diffuse midline 
gliomas varies depending on patient age (40). However, the role of 
ETV4 in glioma development and progression remains largely 
uncharacterized. To explore whether ETV4 regulates cell viability 
in glioma cells, shETV4 transfection was conducted in LN229 and 
FIGURE 7 

Identification and characterization of ubiquitination-related Prognostic genes in GBM. (A) Venn diagram showing the overlap between 
ubiquitination-related genes (URGs) and glioma-associated prognostic genes (GAPGs), yielding 13 intersecting UR-GAPGs. (B) Transcription factor 
(TF) analysis of the 13 UR-GAPGs, highlighting shared TFs such as JUN, HIF1A, SP1, and ATF1. (C) Protein–protein interaction (PPI) network of the 13 
UR-GAPGs constructed using the STRING database (interaction score ≥ 0.15; disconnected nodes hidden). (D) Bar graph showing enriched 
biological terms across the input gene list, colored by p-value. (E) Gene Ontology (GO) analysis highlighting the top-level biological processes 
associated with the 13 UR-GAPGs. 
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U251 cells. Western blotting results demonstrated downregulation 
of ETV4 in shETV4-transfected cells (Figure 12A). CCK-8 assays 
were performed to evaluate cell viability in glioma cells after 
shETV4 transfection. Cell viability was decreased in shETV4­
transfected cells compared with control group (Figure 12B). 
Moreover, colony formation results revealed that shETV4 
transfection decreased colony formation ability in glioma cells 
(Figures 12C, D). Additionally, cell apoptosis was increased in 
shETV4-transfected glioma cells (Figures 13A, B). Strikingly, 
Frontiers in Oncology 13 
Transwell invasion assays showed that shETV4 transfection 
reduced cell invasive ability in glioma cells (Figures 13C, D). 
Hence, ETV4 downregulation inhibits cell viability, proliferation 
and invasion in glioma cells. 

4 Discussion 

The advent of single-cell sequencing has enabled high-
throughput analyses of the genome, transcriptome, and 
FIGURE 8 

Enrichment analysis of the 13 UR-GAPGs across various databases. (A) COVID-19-related enrichment analysis. (B) Disease association analysis using 
the DisGeNET database. (C) Cell type-specific enrichment based on Cell Type Signatures. (D) Transcription factor target enrichment analysis 
identifying CEBPB_01 as the most significantly associated regulator. 
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epigenome at the single-cell level, exposing gene structure and 
expression profiles within individual cells and reflecting cellular 
heterogeneity (41–43). This approach has allowed researchers to 
explore putative monocyte oncogenes in gliomas, assess monocyte 
Frontiers in Oncology 14 
functional states across various phases, and examine intercellular 
communication channels using published single-cell sequencing 
data. Chen et al. employed a machine learning-based approach 
and identified UPP1 as a critical oncogene involved in 
FIGURE 9 

Differential expression and prognostic value of UR-GAPGs in GBM. (A–I) Box plots comparing gene expression between GBM tissues (TCGA) and 
normal tissues (GTEx). Nine UR-GAPGs showed significant differential expression (*P < 0.05): (A) LDHA, (B) TUBB6, (C) RHEB, (D) MT2A, (E) VKORC1, 
(F) NNAT, (G) CAMK2N1, (H) PLAUR, (I) STC1. (J–L) Kaplan–Meier survival curves for three UR-GAPGs significantly associated with overall survival in 
GBM patients (*P < 0.05): (J) NNAT, (K) PLAUR, (L) STC1. 
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tumorigenesis and immune evasion in gliomas (44). Similarly, Hu 
et al. integrated scRNA-seq with machine learning techniques to 
uncover the role of ALPK1 in shaping tumor immune heterogeneity 
and regulating the TGF-b signaling pathway in glioma (45). 
Frontiers in Oncology 15 
Integrating scRNA-seq with machine learning, Yang et al. 
revealed the heterogeneity of GBM-associated neutrophils and 
developed a prognostic model based on VEGFA-expressing 
neutrophils (46). In this study, single-cell sequencing data of 
FIGURE 10 

Integrative analysis and insights unraveling differential gene expression, feature selection, and intersection genes in GEO dataset. (A) Heatmap of 
differential expression genes in the GEO dataset. (B) Volcano plot of differential expression genes in the GEO dataset. (C) SVM-RFE results, 
presenting the important features or genes identified. (D) LASSO results, displaying selected features or genes with predictive power. (E) Venn 
diagram showing intersection genes identified by SVM-RFE and LASSO. (F) AUC of the training set. 
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GBM (GSE159416) was used to analyze three distinct cell 
differentiation states in glioma tissues, with most of the 14 
enriched clusters being associated with fibroblasts. Marker genes 
for each of these cell states were combined to form DRGs. To 
predict the prognosis of glioma patients, a prognostic model based 
on 16 DRGs was developed. 

The AUC values of our model were higher than those of other 
glioma prognostic models, suggesting greater accuracy in predicting 
the prognosis of glioma patients. By means of LASSO and SVM­

RFE machine learning, four disease-associated genes, including 
ETV4, CACNA2D3, HSPA1A and HIST1H3B, were identified. 
These genes demonstrated high sensitivity and specificity in both 
Frontiers in Oncology 16 
training and test groups, with AUC values exceeding 0.9. ETV4 is a 
member of the polyoma enhancer activator 3 (PEA3) family, which 
plays an important role in cell growth, invasion and metastasis (47). 
During embryogenesis, ETV4 is widely expressed in various tissues, 
promoting the morphogenesis of epithelial-derived organs such as 
the kidneys (48), lungs (49), and breasts (50). However, in adults, 
ETV4 is rarely expressed in normal tissues, mainly appearing in 
tumor tissues such as those in breast, gastric, prostate, colon and 
ovarian cancers. Numerous studies have shown that high 
expression of ETV4 in prostate cancer (51), breast cancer (52), 
co lorec ta l  cancer  (53) ,  pancreat ic  cancer  (54) ,  and  
cholangiocarcinoma (55) often correlates with poor prognosis. 
FIGURE 11 

AUC performance and correlations between immune cells and four genes were explored. (A) Evaluation of AUC in the test set: examining AUC 
performance in the independent test set. (B) Correlation analysis between immune cells and four genes. (C) Infiltration patterns of 22 immune cell 
types, showing infiltration levels and patterns across immune cell subsets. 
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Notably, one study showed that ETV4 expression increases with 
glioma  grade  progression  (56).  ERK  kinase  promoted  
phosphorylation of ETV4, leading to blockade of ETV4 
ubiquitination and degradation in colorectal cancer (57). PTK6 
induced phosphorylation of ETV4 and increased nuclear 
translocation of ETV4, leading to enhanced metastasis in bladder 
cancer (58). We found that inhibition of ETV4 attenuates cell 
proliferation and invasion in glioma cells. 

CACNA2D3 is an auxiliary member of the a-2/d subunit triple 
family with voltage-dependent calcium channel complexes and plays 
a key role in tumor suppression. CACNA2D3 is downregulated in 
gliomas and functions as a tumor suppressor (39). This 
downregulation in glioma cells and high-grade glioma tissues is 
associated with increased methylation (39). Additionally, a case 
report indicates that HIST1H3B K27 mutation is associated with 
glioma development of (59–61). Genomic analysis of HIST1H3B 
mutations may aid in timely glioma diagnosis, supporting surgical 
and clinical management of these patients (61). In gliomas, heat 
shock protein 70 (Hsp70, HSPA1A) is overexpressed in the 
cytoplasm (62). Overexpression of HSPA1A significantly enhances 
cell proliferation, with cellular immunofluorescence revealing its 
primary localization in the cytoplasm, where it promotes tumor cell 
proliferation (62). 
Frontiers in Oncology 17 
For ubiquitin-related biomarkers, LDHA-mediated metabolic 
reprogramming has been shown to promote cardiomyocyte 
proliferation by reducing reactive oxygen species (ROS) and 
inducing M2 macrophage polarization (63). In clinical tissue 
samples, PTMs were quantitatively assessed, highlighting the 
pivotal role of ALDOA K330 ubiquitination/acetylation in tumor 
progression (64). RHEB ubiquitination plays a regulatory role in 
growth factor-induced activation of mTORC1 (65), and the 
Cullin3-Rbx1-KLHL9 E3 ubiquitin ligase complex has been 
shown to mediate RHEB ubiquitination, thereby facilitating 
amino acid-induced mTORC1 activation (66). Additionally, 
Malvidin has been found to reduce trauma-induced heterotopic 
ossification of tendons in rats by promoting RHEB degradation via 
the ubiquitin–proteasome pathway (67). In GSH-depleted RAW 
264.7 cells, hydrogen peroxide triggers Beclin 1-independent 
autophagic cell death through suppression of the mTOR pathway 
via ubiquitination and degradation of RHEB (68). Moreover, STC1, 
a ubiquitin-related gene, is significantly upregulated in lung 
adenocarcinoma and is associated with poor prognosis, suggesting 
its potential as a biomarker for prognosis evaluation, tumor 
characterization, and therapeutic decision-making (69). However, 
despite these findings, it remains unclear whether these ubiquitin­
related biomarkers play a role in glioblastoma (GBM). Their 
FIGURE 12 

ETV4 knockdown inhibits cell proliferation in glioma cells. (A) Western blot analysis showed that shETV4 inhibited ETV4 expression. (B) CCK-8 assays 
showed shETV4 inhibited cell viability in glioma cells. (C) Colony formation showed that shETV4 inhibits cell colony formation. (D) Quantification of 
colony formation in glioma cells after shETV4 transfection. *P < 0.05; **P < 0.01. 
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potential as novel therapeutic targets or biomarkers for precision 
medicine in GBM warrants further investigation. 
5 Conclusions 

In conclusion, our prognostic model based on differentiation-
related gene signatures shows promise for predicting glioma 
prognosis and immunotherapy response. Furthermore, the 
characterization of ubiquitination-related features and machine 
learning–identified biomarkers provides novel insights into GBM 
progression, diagnosis, and treatment. Our study has several 
drawbacks. First, this research is based on bioinformatics 
analysis, and experimental validation is needed to further 
explore the underlying molecular mechanism. Our data is 
sourced from the TCGA and GEO databases. Therefore, 
validating the findings using independent clinical cohorts or 
third-party datasets is crucial to enhance the robustness and 
reliability of the results. There is a lack of experimental 
validation to support the transcriptomic predictions of immune 
Frontiers in Oncology 18 
infiltration, such as flow cytometry or immunohistochemical 
(IHC) staining of immune cell markers. All immune profiling in 
the study is based solely on transcriptomic data, with no spatial 
information to determine whether immune cells are excluded, 
infiltrating, or peripherally localized within the tumor 
microenvironment. Moreover, the clinical utility of immune 
signatures could be strengthened by correlating gene expression 
profiles with treatment responses in cohorts receiving immune 
checkpoint blockade therapy. In addition, the glioma cell lines 
LN229 and U251 both harbor p53 mutations, which may limit 
their ability to represent the broader biological heterogeneity of 
glioma. Orthotopic or subcutaneous GBM xenograft models 
should be employed to validate the in vitro findings and assess 
their relevance in vivo. Lastly, the functions of CACNA2D3, 
HIST1H3B, and HSPA1A in GBM should be validated through 
both in vitro and in vivo experiments. Collectively, we have 
constructed a novel GBM-related model to assess patient 
prognosis and identified four new signatures for diagnostic 
prediction, which may prove beneficial for future treatment 
strategies in GBM patients. 
FIGURE 13 

ETV4 knockdown increases apoptosis and reduces invasion. (A) Annexin V-FITC/PI staining showed that shETV4 increases cell apoptosis in glioma 
cells. (B) Quantification of apoptosis for panel (A). (C) Transwell invasion assays showed that shETV4 reduced cell invasion in glioma cells. 
(D) Quantification of invasion for panel (C) *P < 0.05; **P < 0.01. 
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