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Decoding the microbial-local
immune dialogue in liver
cancer: from ecological drivers
to precision therapeutics
Yichi Xu, Bo Wen, Nan Gao and Shu Liu*

Geriatric Department of the First Affiliated Hospital of China Medical University, Shenyang,
Liaoning, China
The global incidence and mortality rates of liver cancer remain persistently high,

attributable to its multifaceted etiology. Recent research has increasingly focused

on the interaction between gut microbiota and the liver’s immune system. The gut-

liver axis, which connects the gut and liver via the portal vein system and biliary tract,

is crucial in maintaining homeostasis; however, dysbiosis can compromise the gut’s

barrier function. The gut microbiota exerts influence over hepatic immune cells

through various mechanisms, including alterations in microbial composition,

production of metabolic products, and the presence of pathogen-associated

molecular patterns. These interactions contribute to immune evasion,

inflammation, and remodeling of the tumor microenvironment in liver cancer,

thereby affecting the efficacy of immunotherapy. Despite these insights, the precise

mechanisms underlying these interactions and their potential clinical applications

remain inadequately understood. This article aims to review the mechanisms of

interaction between the gut microbiota and the local immune response in liver

cancer, integrating the latest research advancements. Additionally, it will explore the

impact of these interactions on the tumor immune microenvironment, with the

objective of providing a theoretical foundation and potential strategies for

prevention and therapeutic intervention.
KEYWORDS
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1 Introduction

The global incidence and mortality rates of hepatocellular carcinoma (HCC) are on the rise,

presenting a significant public health challenge. The pathogenesis of HCC is multifaceted,

involving a range of factors such as viral infections, metabolic disorders, and chronic

inflammation. Typically, HCC develops through a series of pathological processes, including
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chronic hepatitis, liver fibrosis, and cirrhosis. Recent studies have

identified metabolic diseases, particularly non-alcoholic fatty liver

disease (NAFLD), as major contributors to cirrhosis and HCC among

younger populations (1). Additionally, emerging research indicates that

the gut microbiome can influence liver metabolism and immune

responses via the gut-liver axis, thereby playing a role in the onset

and progression of this malignancy (2, 3). This finding offers a novel

perspective on HCC treatment, as the involvement of gut microbiota

and their metabolites in modulating tumor immunity is increasingly

recognized, making it an emerging area of interest in HCC therapeutics.

An increasing body of evidence indicates that the development

of HCC is intricately linked to significant gut microbiota

imbalances. Research demonstrates that the gut microbiota of

individuals diagnosed with this cancer type frequently exhibits

substantial alterations, characterized by a pronounced reduction

in microbial diversity (4). In patients with HCC, gut microbiota

disruption is marked by a significant drop in the Bacteroidetes to

Firmicutes ratio, from 0.92 ± 0.15 to 0.48 ± 0.08 (p<0.01), and a

120-fold increase in Fusobacterium nucleatum. This is closely

linked to the progression of liver cirrhosis and cancer (5). Such

microbial imbalances are hypothesized to activate hepatic immune

cells, thereby enhancing liver inflammation and fostering the

formation of a tumor microenvironment through various

mechanisms, including the production of carcinogenic substances,

disruption of immune system equilibrium, modification of

metabolic processes, and increased intestinal permeability. These

factors collectively position dysbiosis as a potential catalyst in the

pathogenesis of HCC (3, 6). For instance, metabolites generated by

gut microbial imbalances, such as short-chain fatty acids (SCFAs),

may influence liver immune surveillance by modulating T cell

function, potentially either promoting or inhibiting the

progression of this disease. This interaction may represent a

critical mechanism underlying the advancement of HCC (7).

Furthermore, the composition and functionality of gut microbiota

are not only associated with the development of HCC, but also with

the diversity and compositional alterations of the microbiota, which

may serve as predictors of patient responses to immunotherapy and

are closely linked to the prognosis of liver cancer (8). In certain

instances, modulating the composition of gut microbiota has the

potential to enhance the efficacy of immunotherapeutic

interventions (9). For example, modifications to the gut

microbiota structure can improve the effectiveness of immune

checkpoint inhibitors (10), thereby increasing patient survival

rates and providing novel treatment strategies and insights.

In conclusion, liver cancer is not solely associated with traditional

risk factors. It is also intricately connected to the complex interactions

with gut microbiota. This article seeks to examine recent research on

the microbiota-immune dialogue in liver cancer, with a

comprehensive analysis of its molecular mechanisms and potential

clinical applications. Such an exploration not only elucidates the

pathological mechanisms underlying liver cancer but also identifies

novel targets and directions for future Precision Therapeutics.
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2 The liver: a unique nexus of
immunity and microbial crosstalk

2.1 Distinct characteristics of the liver
microenvironment

2.1.1 Mechanism of immune tolerance
The liver’s immune tolerance is primarily attributed to its unique

cellular composition. Kupffer cells, the liver’s resident macrophages, play

a dual role in maintaining immune tolerance by both inducing Treg

differentiation through PD-L1 expression (MFI = 285 ± 35) and IL-10

secretion (1200 ± 150 pg/mL), and clearing gut-derived antigens (11,

12). Notably, intestinal microbiota critically modulates this Treg-

inducing capacity of Kupffer cells. Clinical studies show that gut

microbiota perturbations (e.g., reduced diversity with Shannon index

dropping from 3.8 to 2.9 in HCC patients) correlate with impaired Treg

function and disrupted hepatic tolerance (13). Liver sinusoidal

endothelial cells (LSECs) possess a unique fenestrated structure that

enables them to efficiently capture antigens from the bloodstream,

exhibiting an antigen-presenting capability that is 8–10 times greater

than that of conventional endothelial cells (14). Through the cross-

presentation of antigens, LSECs induce tolerance in CD8+ T cells (15).

Furthermore, the gut microbiota plays a pivotal role in the maintenance

of liver immune tolerance. It achieves this by regulating the gut-liver

axis, modulating Treg function, preserving the tolerant state of Kupffer

cells, and preventing the excessive activation of natural killer T (NKT)

cells (16). Disruption of the intestinal barrier may permit the

translocation of gut microbiota and their metabolites into the liver,

thereby directly initiating liver immune tolerance.

Clinical evidence reveals three key microbiota-derived metabolites

regulating liver tolerance. 1.Secondary bile acids: Elevated DCA (2.8-

fold increase in HCC) activates TGR5 on Kupffer cells, increasing IL-

10 production by 40% but simultaneously inducing PD-L1 expression

(17). 2.Tryptophan metabolites: Kynurenine/AhR signaling

upregulates hepatic PD-L1 while suppressing CD8+ T cell IFN-g
production by 65 ± 8% (18). 3.SCFAs: Butyrate (optimal 2-4mM)

maintains Treg function via GPR43, but concentrations <1mM (as in

HCC) reduce Foxp3+ cells by 35 ± 5% (19).
2.1.2 Bidirectional communication in the gut-liver
axis

The gut-liver axis functions as a bidirectional regulatory system

that connects the intestine and liver, playing a crucial role in

maintaining the body’s immune homeostasis through various

mechanisms. The primary anatomical foundation of this axis is

formed by the portal vein and bile acid circulation, while metabolite

diffusion serves as a key communication pathway. Bacterial

translocation and immune surveillance contribute to establishing a

defense barrier. The integrity of the intestinal barrier is essential for

preserving this balance. Clinical studies demonstrate intestinal barrier

dysfunction as a pivotal event in HCC progression. The diminution of
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intestinal tight junction integrity results in the formation of leaky gut,

facilitating the translocation of various microbial metabolites from the

intestine into the bloodstream, which subsequently elicits an immune

response. For instance, a 60% reduction in occludin, a tight junction

protein, results in the detection of 10^3 copies/mL of bacterial 16S

rRNA in portal vein blood (20). Elevated portal SCFA levels (butyrate

+220%) paradoxically indicate barrier breach (21), while reduction in

occludin correlates with increase in hepatic IL-6.

Kupffer cells efficiently eliminate these foreign substances in a

CD14-dependent manner; however, persistent activation of the

Toll-like receptor 4 (TLR4)/MyD88 pathway may lead to

pathological fibrosis (22). In patients with chronic liver diseases,

such as liver cancer, alterations in the gut microbiota are closely

associated with the severity of liver disease, with reduced microbial

diversity being linked to increased liver inflammation (23).
2.2 The evolution of microbiome-immune
dynamics in liver cancer development

In the initial phases of liver cancer, dysbiosis of the gut microbiome

plays a pivotal role in inducing liver inflammation and fibrosis via the

lipopolysaccharide (LPS)-TLR4 axis. Empirical studies have

demonstrated that the concentration of LPS in the portal vein blood

of patients with liver cirrhosis is markedly elevated compared to that in

healthy individuals. These LPS molecules activate TLR4 receptors on

Kupffer cells, thereby initiating the NF-kB signaling pathway. This

activation leads to the secretion of inflammatory mediators, such as

interleukin-6 (IL-6) and senescence-associated secretory phenotype

(SASP) factors, which collectively contribute to liver fibrosis and the

progression to HCC (24). As liver cancer advances, the tumor

microenvironment increasingly suppresses immune responses. This

suppression facilitates the proliferation of immunosuppressive cells,

including myeloid-derived suppressor cells (MDSCs) (25), and results

in the upregulation of T cell exhaustion markers such as programmed

cell death protein 1 (PD-1), along with increased co-expression of TIM-3

and LAG-3. These changes collectively establish an immunosuppressive

microenvironment that enables tumors to evade immune surveillance.

During the metastatic phase of liver cancer, Fusobacterium nucleatum

activates the b-catenin signaling pathway in hepatic cells through the

FadA adhesin, thereby facilitating tumor cell invasion (26).

Concurrently, microbial metabolites, including trimethylamine N-

oxide, can stimulate the MAPK pathway, leading to increased VEGF

secretion and promoting tumor proliferation and migration (27).
3 Mechanisms of gut microbiota-
driven immune dysregulation

3.1 Primary mechanisms of gut microbiota-
driven immune regulation

3.1.1 Microbial metabolites as immune
modulators

The primary metabolic products of the gut microbiota

encompass SCFAs, secondary bile acids (including deoxycholic
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acid [DCA] and lithocholic acid [LCA]), trimethylamine N-oxide,

tryptophan metabolites, and LPS, among others. These metabolites

not only contribute to energy metabolism but also serve as pivotal

regulators of the immune response within the gut-liver axis. They

modulate immune responses through various pathways, exhibiting

both pro-carcinogenic and anti-carcinogenic properties (28, 29).

Collectively, these metabolites interact in multifaceted ways to

maintain immune homeostasis, thereby influencing the onset and

progression of diseases such as liver cancer. The mechanisms

through which gut microbiota metabolites exert their effects on

the gut-liver axis are intricate and varied, suggesting potential novel

targets for future liver disease treatments. Further investigation is

warranted to elucidate the specific mechanisms by which these

metabolites impact liver health and disease, with the objective of

developing innovative therapeutic strategies centered on gut

microbiota metabolites.

3.1.2 Pathogen-mimicry: pathogen-associated
molecular patterns and immune activation

Pathogen mimicry refers to the phenomenon whereby

pathogens emulate host biomolecules through their molecular

structures, thereby evading the host’s immune response. This

mechanism is pivotal in the pathogenesis of various infectious

diseases and is particularly significant in the progression of

malignancies such as liver cancer, with substantial clinical

implications (30). PAMPs are integral to immune activation, as

they are recognized by pattern recognition receptors (PRRs), which

subsequently initiate intracellular signaling pathways. These

pathways lead to the production of pro-inflammatory molecules,

thereby instigating the host’s initial response to infection and

facilitating the subsequent activation of adaptive immunity (31).

Nevertheless, pathogens can modulate the host’s immune response

by mimicking host molecules, enabling their survival and

replication within the host. A comprehensive understanding of

the interplay between PAMPs, pathogen mimicry, and immune

activation not only enhances our insight into the mechanisms

underlying infectious diseases and tumorigenesis but also

identifies potential targets for the development of novel vaccines

and therapeutic interventions.

3.1.3 Direct microbial-immune cell crosstalk
Recent studies on liver cancer have increasingly elucidated a

direct communication process between microbes and immune cells,

which is essential for the maintenance of immune homeostasis. Gut

microbes can modulate immune cell function through direct

interactions or by releasing metabolic products (32). Furthermore,

these microbes influence immune responses by regulating the

differentiation and functionality of immune cells. The interactions

between microbes and immune cells also encompass the regulation

of various cytokines and signaling pathways (33). Cytokines, as

critical mediators of intercellular communication, play a pivotal role

in the interaction between microbes and immune cells; they are

instrumental in regulating the proliferation, differentiation, and

function of immune cells, thereby shaping the intensity and

nature of immune responses.
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3.2 Multifaceted interactions between gut
microbiota and HCC pathogenesis

3.2.1 Disruption of the gut barrier and immune
activation in liver cancer

The integrity of the gut barrier is essential for maintaining

intestinal homeostasis and immune equilibrium. Its disruption is

intricately linked to immune activation in liver cancer (34). A

compromised gut barrier allows for the translocation of gut

microbes and their metabolites into the bloodstream, facilitating

the movement of PAMPs to the liver. This process modulates

hepatic immune responses through mechanisms such as immune

cell activation and systemic inflammation. The gut-liver immune

axis maintains tolerance through balanced microbiota composition

and intact intestinal barrier. Increased intestinal permeability

(evidenced by 60% occludin reduction) allows microbial

translocation (10^3 copies/mL bacterial 16S rRNA in portal

blood), which dysregulates hepatic immune tolerance via two

mechanisms: 1.Direct modulation of Kupffer cell function: LPS

from translocated bacteria activates TLR4/NF-kB pathway in

Kupffer cells, shifting their phenotype from IL-10-producing

tolerogenic to pro-inflammatory. 2.Treg modulation: Microbial

metabolites like butyrate (at physiological 2-4mM) maintain Treg

suppressive function via HDAC inhibition, while dysbiosis-induced

reduction (to <1mM in HCC) impairs Foxp3+ Treg stability. A

reduction in the expression of the tight junction protein occludin in

the gut permits bacterial products, such as LPS, to access the liver

via the portal vein. The LPS-TLR4 axis is crucial in the pathogenesis

of leaky gut syndrome. The translocation of LPS, resulting from

increased intestinal permeability, activates TLR4 on hepatic Kupffer

cells, thereby initiating the NF-kB signaling pathway and

promoting the release of inflammatory mediators (35). LPS, in

conjunction with signaling molecules such as adenosine

triphosphate (ATP), can activate the NLRP3 inflammasome,

thereby facilitating the maturation of interleukin-1b (IL-1b) and

exacerbating hepatic inflammation (36). Antigens originating from

the gut are transported to the liver by dendritic cells, which

subsequently activate CD4+ T cells, including T helper 17 (Th17)

cells, and CD8+ T cells, thereby enhancing specific immune

responses (37). Pro-inflammatory factors derived from the gut,

such as transforming growth factor-beta (TGF-b), can activate

hepatic stellate cells, resulting in collagen deposition and fibrosis.

A randomized double-blind controlled trial (RCT) focusing

on irritable bowel syndrome (IBS) demonstrated that a composite

probiotic formulation containing Lactobacillus and Bifidobacterium

significantly decreased intestinal permeability in IBS patients (38).

Additional studies have suggested that supplementation with

probiotics can reduce serum LPS levels in patients with NAFLD,

thereby mitigating intestinal leakage (39). Nonetheless, the impact

of these probiotics on gut barrier function in patients with liver

cancer remains unclear, necessitating further investigation.

The initial activation of Kupffer cells in the liver is mediated

through TLRs recognizing LPS. Kupffer cells, the primary resident
Frontiers in Oncology 04
macrophages in the liver, are adept at recognizing and responding

to gut-derived bacterial components via various PRRs, with a

particular emphasis on TLRs. Empirical studies have

demonstrated a significant correlation between the activation of

Kupffer cells and the pathogenesis of liver cancer, particularly under

conditions of chronic inflammation. Upon recognition of LPS via

TLRs, Kupffer cells trigger a cascade of signaling pathways, notably

the NF-kB and MAPK pathways, which culminate in the secretion

of pro-inflammatory cytokines such as tumor necrosis factor-alpha

(TNF-a) and IL-6, thereby intensifying hepatic inflammation.

Furthermore, LPS stimulation results in an elevated expression of

hypoxia-inducible factor 1-alpha (HIF-1a) in Kupffer cells,

indicating its potential role in facilitating adaptation to hypoxic

conditions and modulating metabolic processes (40). In the

pathophysiological development of liver cancer, Kupffer cells play

a dual role by not only participating in the inflammatory response

but also modulating hepatocyte proliferation and fibrosis through

the secretion of various cytokines and chemokines, thereby

contributing to the progression of liver cancer to a certain degree

(41). The initial immune activation mechanism of Kupffer cells,

which involves the recognition of LPS through TLRs, constitutes a

fundamental aspect of the liver’s immune response. This

mechanism also provides a critical framework for understanding

liver inflammation and regeneration. Future research should focus

on elucidating strategies to enhance the prognosis of liver-related

diseases by regulating the functionality of Kupffer cells, thereby

offering novel insights for precision treatment approaches.

3.2.2 Dual immunoregulatory role of microbial
metabolites

The involvement of SCFAs in the pathogenesis and progression

of HCC constitutes a complex and multifaceted area of research.

This field encompasses various mechanisms, including immune

regulation, metabolic intervention, and the protection of the

intestinal barrier. In the context of hepatic innate immune cells,

SCFAs, particularly butyrate, exert regulatory effects on the

polarization and functionality of liver macrophages through

multiple mechanisms. Hu et al. demonstrated that gut-derived

SCFAs can attenuate hepatic inflammatory responses by

promoting the polarization of macrophages towards the M2

phenotype, thereby mitigating liver damage. Within the milieu of

liver cancer, an optimal concentration of SCFAs is crucial for

maintaining macrophage activity against tumors; however, a

reduction in SCFA levels is associated with an increase in pro-

tumorigenic M2 macrophages (42). Furthermore, SCFAs modulate

inflammatory gene expression at the epigenetic level by inhibiting

histone deacetylase (HDAC) activity, which influences their

function within the liver cancer microenvironment (43). Recent

investigations have revealed that butyrate modulates the activation

of the NLRP3 inflammasome in liver macrophages via G protein-

coupled receptors GPR43 and GPR109A. This modulation plays a

dual role in the progression of liver cancer: initially suppressing

excessive inflammatory responses and subsequently potentially
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facilitating immune suppression (44). Furthermore, research

conducted by Ma et al. indicates that dysbiosis results in

diminished SCFA levels, which are associated with a decrease in

liver NKT cell populations and compromised immune surveillance.

SCFAs have the capacity to modulate NKT cells through the

CXCL16-CXCR6 signaling pathway, thereby facilitating the

progression of liver cancer (4). Additionally, Hu et al. identified

that gut-derived SCFAs augment the anti-liver cancer efficacy of

type 3 innate lymphoid cells (ILC3s) by enhancing IFN-g
production. SCFAs not only exert a direct influence on the

functionality of ILC3s but also regulate their interaction with

NKT cells, collectively contributing to immune surveillance in

HCC. Moreover, SCFAs impact the maturation and functionality

of liver DCs. Zheng et al. demonstrated that butyrate induces the

transformation of liver DCs into a tolerogenic phenotype via the

GPR109A signaling pathway, thereby reducing their secretion of

pro-inflammatory cytokines and altering their antigen presentation

capabilities (45). Within the liver cancer microenvironment,

fluctuations in SCFA levels can modulate the capacity of DCs to

activate T cells, consequently affecting the efficacy of anti-tumor

immune responses.

Regarding hepatic adaptive immune cells, SCFAs particularly

butyrate, can enhance the anti-tumor activity of CD8+ T cells

through various mechanisms, including metabolic reprogramming,

epigenetic regulation, and immune checkpoint modulation.

Specifically, butyrate facilitates the transition of CD8+ T cells from

glycolysis to oxidative phosphorylation, thereby improving

mitochondrial function and promoting T cell persistence and

memory formation (46). Additionally, SCFAs can upregulate the

expression of effector and memory-associated genes, such as IFN-g,
Granzyme B, and T-bet, by inhibiting HDACs, which in turn enhances

the cytotoxic function of CD8+ T cells (47). Furthermore, butyrate has

been shown to inhibit HDAC3 activity by 78 ± 5% at a concentration of

10 mM, while propionate reduces IL-1b secretion from Kupffer cells

from 1250 ± 150 to 380 ± 50 pg/mL via the GPR43 receptor (48).

SCFAs have been shown to downregulate the expression of PD-1 in

CD8+ T cells within the liver cancer microenvironment, thereby

mitigating T cell exhaustion and enhancing the efficacy of anti-PD-1/

PD-L1 immunotherapy. Furthermore, SCFAs play a significant role in

the differentiation and functional modulation of CD4+ T cell subsets.

Notably, SCFAs, particularly butyrate, have been found to enhance the

expression of Foxp3 and facilitate the differentiation and stability of

Tregs by promoting histone acetylation in the promoter region of the

Foxp3 gene (49). In the context of the liver cancer microenvironment,

an optimal level of Tregs is crucial for regulating excessive

inflammatory responses; however, an overabundance of Tregs may

lead to immune suppression and contribute to tumor progression. The

effects of SCFAs on Th17 cells are more complex; while SCFAs can

inhibit Th17 cell differentiation and thereby reduce inflammatory

responses, under certain conditions, they may also enhance Th17 cell

functionality, thereby participating in anti-tumor immunity (50).

In the context of immune-suppressive cells, SCFAs have been

shown to attenuate the recruitment of MDSCs by downregulating
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the expression of chemokines such as CCL2 within the liver cancer

microenvironment (51). Additionally, SCFAs diminish the capacity

of MDSCs to produce immunosuppressive molecules, including

arginase 1 (Arg1) and inducible nitric oxide synthase (iNOS), via

the GPR43 signaling pathway, thereby mitigating their suppression

of T cells and NK cells. SCFAs also facilitate the differentiation of

MDSCs into M1 macrophages, thereby converting them into

tumor-fighting cells. Research conducted by Bi et al. has

demonstrated that SCFAs modulate the function of neutrophils in

the liver cancer microenvironment by influencing their recruitment

and polarization (52). Specifically, SCFAs decrease the proportion

of N2 (pro-tumor) neutrophils while increasing N1 (anti-tumor)

neutrophils, which is advantageous for the immune-mediated

control of liver cancer. Given the dual regulatory role of SCFAs,

future investigations should aim to optimize their dosage and

administration strategies to enhance their anticancer efficacy

while minimizing potential adverse effects.

Secondary bile acids can promote the establishment of an

immunosuppressive microenvironment in the liver through the

activation of the TGR5 and FXR receptor pathways, consequently

influencing tumor immune surveillance and evasion. Secondary bile

acids, particularly elevated levels of DCA, have been shown to induce

the polarization of Kupffer cells towards the M2 phenotype, which is

immunosuppressive, via the TGR5 and FXR receptor signaling

pathways. This polarization results in the secretion of inhibitory

cytokines, including IL-10 and TGF-b, thereby suppressing anti-

tumor immune responses (53). Furthermore, DCA modulates the

inflammatory response of Kupffer cells through the NF-kB and

STAT3 signaling pathways, promoting inflammation in the early

stages of liver cancer and potentially facilitating immune suppression

in later stages. The regulation of NK and NKT cells by secondary bile

acids is crucial within the liver cancer immune microenvironment.

Research conducted by Ma et al. demonstrated that dysregulated bile

acid metabolism results in increased DCA levels, which inhibit the

expression of CXCL16 in the liver, thereby reducing the recruitment of

CXCR6+ NKT cells and diminishing the liver’s immune surveillance

against tumors (43). Additionally, DCA impairs the cytotoxic function

of NK cells against liver cancer cells by altering the expression of

activation receptors and the release of cytotoxic molecules, such as

perforin and granzyme B (54). Elevated concentrations of secondary

bile acids have been shown to inhibit the secretion of IFN-g by CD8+ T

cells, while simultaneously promoting the proliferation of MDSCs,

inducing apoptosis and functional exhaustion in CD8+ T cells, and

upregulating inhibitory receptors such as PD-1 and TIM-3. These

effects collectively diminish the anti-tumor efficacy of CD8+ T cells.

Furthermore, secondary bile acids facilitate the differentiation of Tregs

and suppress the function of Th17 cells via the FXR and TGR5

signaling pathways, thereby establishing an immunosuppressive

milieu within the liver cancer microenvironment. Elevated levels of

DCA have been implicated in the increased accumulation ofMDSCs in

the liver through the COX2-PGE2 pathway, thereby augmenting their

immunosuppressive capabilities (55). Some studies propose that the

strategic use of secondary bile acids in conjunction with liver cancer
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immunotherapy could represent a promising therapeutic avenue.

Specifically, modulating the metabolism of secondary bile acids may

restore the anti-tumor function of CD8+ T cells, thereby enhancing the

efficacy of immunotherapeutic interventions.

Various metabolites, including TMAO, have been implicated in

exacerbating liver inflammatory responses. TMAO achieves this by

activating the NLRP3 inflammasome, which in turn stimulates

Kupffer cells to secrete pro-inflammatory cytokines such as IL-1b
and IL-18. Additionally, TMAO facilitates macrophage polarization

towards the M1 phenotype through the NF-kB signaling pathway,

potentially exerting anti-tumor effects during the early stages of

liver cancer. However, prolonged inflammation may contribute to

the progression of liver cancer (56). TMAO also influences T cell

differentiation and function by promoting Th17 cell differentiation

while inhibiting Treg cell function, thereby intensifying liver

inflammatory responses. Furthermore, TMAO can promote the

expansion and activation of MDSCs, enhancing their

immunosuppressive capabilities and facilitating liver cancer

progression. In parallel, tryptophan metabolites significantly

impact T cell differentiation via the aryl hydrocarbon receptor

(AhR) signaling pathway (57). Specifically, kynurenine has been

shown to promote tumor cell expression of PD-L1 through the

AhR-NF-kB pathway.
3.2.3 Microbiota-mediated metabolic-immune
crosstalk

In the pathogenesis of liver cancer, the gut microbiota is pivotal

in facilitating the interaction between metabolic processes and

immune responses. While there is presently insufficient research

to establish a direct causal link between metabolic disorders induced

by abnormal microbiota and the development of HCC, it is well-

established that an imbalance in gut microbiota can result in

metabolic abnormalities. These abnormalities are associated with

the onset and progression of NAFLD, which is a significant risk

factor for HCC. Furthermore, small intestinal bacterial overgrowth

and dysbiosis of gut microbiota are recognized as critical factors in

the progression of NAFLD to non-alcoholic steatohepatitis (NASH)

and decompensated liver disease (58). Dysbiosis can influence

tryptophan metabolism, which may promote liver cancer through

the upregulation of sterol regulatory element-binding protein 2

(SREBP2) (59). Tryptophan metabolites are capable of modulating

the expression of PD-1 via the AhR pathway, consequently

impacting T cell functionality. As previously discussed,

metabolites derived from the gut microbiota, including short-

chain fatty acids, bile acids, and indole, exert significant effects on

hepatic immune and metabolic functions through the gut-liver axis.

For example, succinate can enhance the infiltration of cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) positive T cells by

interacting with its receptor SUCNR1, thus modifying the

immune milieu of the tumor microenvironment (60). The

potential implications of this research for immunotherapy in liver

cancer are significant. Alterations in the liver microbiota
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composition may reduce the liver’s metabolic capacity for drugs,

thereby influencing the effectiveness of liver cancer treatments.

Empirical evidence suggests that modulating the gut microbiota

can enhance the efficacy of immunotherapy for liver cancer.

Interventions such as probiotics, prebiotics, antibiotics, and fecal

microbiota transplantation may emerge as crucial adjuncts to liver

cancer immunotherapy. These strategies enhance immunotherapy

by modulating the host immune system, minimizing adverse effects,

and improving survival rates among liver cancer patients.

3.2.4 Microbiota-driven mechanisms of immune
evasion

Recent investigations have elucidated the role of gut microbiota in

modulating immune evasion mechanisms in liver cancer through

multiple pathways. Primarily, gut microbiota can facilitate immune

evasion by modulating the host immune system. Dysbiosis within the

gut microbiota can precipitate immune system disorders, thereby

impairing the efficacy of anti-tumor immune responses. For instance,

metabolites produced by specific gut bacteria have been shown to

inhibit immune cell activity, consequently diminishing their capacity

to identify and eliminate tumor cells. Furthermore, the gut microbiota

can influence immune evasion bymodulating immune cells within the

liver cancer microenvironment, such as by altering the activity of T

cells and natural killer cells, which in turn promotes tumor growth and

metastasis. Additionally, the gut microbiota may contribute to

immune evasion in liver cancer by regulating the expression of

immune checkpoint molecules. Empirical evidence suggests that gut

microbiota can modulate the expression of PD-L1 via its metabolites,

thereby suppressing anti-tumor immune responses and facilitating

tumor immune evasion (61). The mechanisms of immune evasion

facilitated by microbiota present significant challenges in the

treatment of liver cancer.
4 Therapeutic potential of microbiota
modulation in HCC

4.1 Dysbiosis in HCC patients

Dysbiosis is frequently observed in individuals with HCC. A

comparative study involving HCC patients, individuals with

cirrhosis, and healthy controls identified two bacterial species,

Odoribacter splanchnicus and Ruminococcus bicirculans, as being

significantly associated with HCC. Additionally, the study

highlighted five metabolites—ouabain, taurochenodeoxycholic

acid, glycochenodeoxycholate, theophylline, and xanthine—as key

biomarkers (62). Research into the gut microbiota of HCC patients

reveals a marked reduction in microbial diversity. Beneficial

bacteria, such as Lactobacilli and Bifidobacteria, are present at

diminished levels, whereas pathogenic bacteria, including Proteus

and Escherichia coli, are found in increased abundance. Clinical data

indicate a decrease in the Bacteroidetes to Firmicutes ratio from 0.92

in healthy individuals to 0.48 in HCC patients, alongside a notable
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increase in the abundance of Fusobacterium nucleatum from 0.01%

in healthy subjects to 1.2% in HCC patients (63). Further

investigations suggest that an elevated Firmicutes population

coupled with reduced Bacteroidetes may contribute to immune

suppression within the hepatic microenvironment. The

abundance of Fusobacterium nucleatum is strongly correlated

with the prevalence of Tregs, as evidenced by a correlation

coefficient of r=0.62 (p<0.001) (64). Fusobacterium nucleatum

facilitates the proliferation of Tregs and attenuates the activity of

effector T cells by modulating cytokine levels within the tumor

microenvironment and enhancing the expression of PD-L1 on the

surfaces of tumor cells (65). This interaction consequently confers a

survival advantage to hepatocellular carcinoma cells.
4.2 Microbiota typing-guided
immunotherapy stratification

Microbiota typing is emerging as a novel biomarker with

significant implications for immunotherapy, paving the way for

the advancement of personalized medicine. Akkermansia

muciniphila, a prevalent Gram-negative bacterium within the

gut microbiome, has been identified in recent studies as having

a positive correlation with patient responses to anti-PD-1 therapy

(66). Patients exhibiting higher levels of Akkermansia

muciniphila tend to experience improved survival rates and

extended periods without disease progression, indicating its

potential utility as a predictive biomarker for immunotherapy

efficacy. Notably, there was a significant association between

decreased level of gut microbial metabolite butyrate and

increased resistance to sorafenib (67). Recent research has

initiated an investigation into dietary interventions designed to

restore butyrate levels, to assess the potential efficacy of this

intervention in improving drug resistance (68). The lack of

butyra te-produc ing bacter ia (such as Butyr ic i coccus

pullicaecorum and Roseburia intestinalis) may serve as an

indicator of resistance in patients with HCC undergoing

sorafenib therapy. However, further conclusive research is

necessary to substantiate this hypothesis.

Resistance remains a significant challenge in the treatment of

liver cancer, prompting researchers to investigate various strategies

to overcome this obstacle and enhance therapeutic outcomes.

Recent studies have substantiated that a reduction in gut

microbiota diversity is significantly correlated with resistance to

anti-PD-1 therapy. The underlying mechanism may involve a

decrease in butyrate-producing bacteria, which impairs CD8+ T

cell function. Concurrently, an increase in pathogenic bacteria, such

as Escherichia coli, may contribute to T cell exhaustion via the LPS-

TLR4 signaling pathway (69, 70). Numerous tumor cells circumvent

immune system attacks by downregulating the expression of Major

Histocompatibility Complex Class I (MHC-I). Studies have

demonstrated that specific interventions, including Fhit gene

transfection, can restore or augment MHC-I expression, thereby
Frontiers in Oncology 07
enhancing the efficacy of immunotherapy (71). There is a paucity of

research to substantiate the use of microbiota as a supplementary

intervention to enhance the efficacy of immunotherapy. The

potential for probiotics to indirectly modulate MHC-I expression

in tumor cells through the regulation of interactions between gut

microbiota and the immune system warrants further investigation,

as this may offer a potential approach to improving resistance to

sorafenib. Further clinical studies are required to validate the impact

of gut microbiota interventions, such as butyrate supplementation,

on drug resistance in patients with HCC.
4.3 Synergistic treatment model targeting
microbiota

Recent advancements in liver cancer treatment research have

increasingly focused on the interplay between the microbiome and

local immune responses, marking a shift towards precision

medicine. Microbiota-targeted therapies have demonstrated

significant potential, as the gut microbiota composition in liver

cancer patients is closely associated with their clinical

characteristics. Personalized interventions may therefore enhance

therapeutic efficacy. Current research methodologies include the

use of probiotics, prebiotics, synbiotics, and fecal microbiota

transplantation (FMT). It is recommended to integrate

microbiota modulation strategies to enhance treatment efficacy

and minimize adverse effects. Despite the promising prospects,

challenges such as individual variability, long-term stability, and

tolerance persist, highlighting the need for standardized and

personalized approaches in clinical trials.

Inulin, a prebiotic, demonstrates significant potential in tumor

immunotherapy, particularly in conjunction with the oncolytic

virus T-VEC (72). T-VEC, derived from the herpes simplex virus,

has received FDA approval for the treatment of unresectable

melanoma. Research indicates that inulin may promote the

proliferation of beneficial microbiota, enhance anti-tumor

immune responses, and potentially improve gut barrier function,

thereby reducing chronic inflammation and creating a more

conducive microenvironment for T-VEC. Alterations in the gut

microbiota of liver cancer patients have been associated with liver

tumor development, and optimizing this microbiota is anticipated

to augment the therapeutic efficacy of T-VEC. However, excessive

consumption of inulin may elevate the risk of NAFLD and

potentially hepatic carcinoma (73). As a prebiotic, inulin plays a

role in modulating the gut microbiota and enhancing the

production of SCFAs. Nonetheless, an overabundance of SCFAs

may disrupt hepatic lipid metabolism, potentially leading to the

development of fatty liver. The risks associated with excessive inulin

intake warrant further investigation and validation. It is imperative

for clinicians and nutritionists to carefully consider individual

variability and consumption levels when recommending inulin as

a dietary supplement to mitigate potential health risks. Future

research should aim to elucidate the dose-response relationship
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between inulin intake and liver health, thereby providing more

robust scientific guidance.

FMT can enhance the effectiveness of immune checkpoint

inhibitors and oncolytic virus therapy in treating tumors. Studies

indicate that FMT boosts beneficial microbiota, improving patient

responses to these treatments and leading to better outcomes. When

combined with anti-CTLA-4 antibodies, FMT can synergistically

modulate the microbiota and immune system, achieving an

objective response rate of 54% (74). FMT can be timed with

immunotherapy to optimize gut microbiota, boost the immune

system, and improve treatment outcomes. It also enhances

oncolytic virus replication in tumors, increasing anti-tumor

effects. Studies in mice show that FMT leads to greater tumor

shrinkage and longer survival after oncolytic virus treatment,

supporting its use in liver cancer. Additionally, FMT combined

with oncolytic virus therapy alters gut microbiota, increases

beneficial bacteria, and enhances immune status, potentially

affecting tumor growth via the gut-brain or gut-immune axis.

Engineered bacteria are gaining attention in liver cancer

treatment by using genetic engineering to release immune

molecules at tumor sites, enhancing immune responses. For

instance, Escherichia coli Nissle 1917 (EcN) can secrete CXCL16

(75), activating the p38 MAPK pathway to recruit and enhance

NK cell activity, showing promise in therapy. Similarly,

attenuated Salmonella typhimurium can deliver IL-12 to

activate CD103+ dendritic cells, boosting immune responses

(76). IL-12 enhances T cell and NK cell activation, boosting

tumor cell destruction. As liver cancer treatment moves towards

immunotherapy, CAR-T cell therapy offers new hope.

Researchers are using engineered bacteria to deliver IL-15 and

FLT3L at tumor sites, improving CAR-T cell infiltration and local

immune response.

However, challenges like microbiota differences, FMT

standardization, and safety concerns remain. For example, IL-15

engineered bacteria therapy has a 28% incidence of cytokine release

syndrome (77), and severe infections after FMT occur in about 3.5%

of cases. Future research must address these issues to optimize FMT

and immunotherapy.
5 Insights from microbiota-immune
crosstalk in HCC associated hepatic
disorders

5.1 Gut microbiota’s role in liver cancer in
NAFLD

NAFLD, a prevalent liver disease globally, is strongly associated

with HCC, with gut microbiota imbalance being a major factor.

Research indicates notable shifts in NAFLD patients’ gut

microbiota, including reduced diversity (Shannon index from 3.8

to 2.9) and increased levels of Proteobacteria, Escherichia Shigella
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and Erysipelotrichaceae. The abundance of Prevotella in the NAFLD

group, as well as the abundance of Bacteroidetes, is lower compared

to the healthy control group (78). Moreover, elevated fecal counts of

Escherichia coli, have been correlated with the occurrence of HCC

in patients with cirrhosis (79). In NAFLD patients with liver cancer,

fluctuations in gut bacteria are linked to systemic inflammation,

indicating a joint role in liver cancer development. Alterations in

gut microbiota metabolites like TMAO and the gut virome are also

tied to NAFLD severity and may affect its progression to HCC.

Modifying gut microbiota could potentially improve NAFLD and

lower HCC risk, though the exact mechanisms remain unclear.

Further research is essential to uncover liver cancer pathogenesis

and enhance early diagnosis and intervention.
5.2 Microbial regulation in chronic viral
hepatitis

Individuals with chronic viral hepatitis, such as hepatitis B and C,

exhibit reduced gut microbial diversity compared to healthy individuals.

Specific gut bacterial taxa are associated with liver inflammation,

potentially leading to increased fibrosis and a heightened risk of liver

cancer. A notable reduction in the Bifidobacteria/Enterobacteriaceae (B/

E) ratio was observed across various stages of liver disease progression,

with the most pronounced decrease occurring in patients with

decompensated HBV cirrhosis (80). These findings are supported by

another study, which demonstrated that HBV infection is associated

with an increase in potentially pathogenic bacteria, such as

Enterobacteriaceae, potentially contributing to the progression of liver

disease (81). Additionally, abnormal serum bile acid profiles,

characterized by a 2.8-fold increase in glycochenodeoxycholic acid

(GCDCA), correlate with reduced hepatic expression of CXCL16 (r =

-0.71) (81). In the context of chronic hepatitis B infection, dysbiosis of

the gut microbiota may influence viral replication and immune

responses. Studies suggest that patients who have achieved a

functional cure exhibit a greater abundance of SCFA-producing

bacteria in their gut. Notably, butyrate, a specific SCFA, has been

shown to inhibit HBV production, indicating that gut microbiota may

modulate HBV replication through SCFA-mediated mechanisms. In

patients with chronic hepatitis C, microbial translocation and T cell

activation are linked to the progression of the disease. Antiviral therapy

has been shown to decrease the levels ofmicrobial translocationmarkers

and ameliorate liver damage. Additionally, the association between

chronic viral hepatitis and metabolic syndrome underscores the

potential involvement of gut microbiota in this process. Research

indicates that individuals with chronic hepatitis C frequently exhibit

fatty liver, and alterations in the gut microbiota composition may be

associated with hepatic fat accumulation (82). This accumulation of fat

exacerbates inflammation and fibrosis within the liver, thereby

perpetuating a detrimental cycle.

Gut microbiota interventions have potential in enhancing liver

function and reducing inflammation in chronic viral hepatitis

patients. These therapies can rebalance gut bacteria and boost
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antiviral treatment effectiveness by strengthening the immune

response. Understanding gut bacteria’s role is crucial for

preventing and treating liver cancer.
5.3 Gut microbiota and liver cancer in AIH
patients

AIH patients often experience gut microbiota dysbiosis,

potentially linked to liver cancer. In AIH mouse models, impaired

gut barriers allow bacteria to reach the liver, worsening

inflammation and possibly leading to cancer (83). Both AIH

patients and models show gut microbiota changes affecting T

follicular helper and regulatory cells (84), disrupting immune

detection of liver cancer. Metabolic issues like fatty liver and

fibrosis, linked to dysbiosis, are also cancer risk factors. Thus,

targeting gut microbiota with probiotics or dietary changes might

reduce liver cancer risk in AIH patients.
5.4 The oral-gut-liver axis and its immune
regulatory role

The oral-gut-liver axis plays a crucial role in metabolism and

immune regulation. Alterations in oral microbiota can increase gut

permeability, leading to systemic inflammation, metabolic

disorders, and liver damage. Harmful oral bacteria can reach the
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liver via the gut, potentially causing conditions like NAFLD, liver

fibrosis (85), and increasing liver cancer risk. Balancing oral

microbiota with probiotics and mouthwash, along with dietary

changes and supplements, may enhance liver function by

regulating this axis.

This review examines the interactions between gut microbiota

and the immune environment in liver cancer, highlighting clinical

translation prospects. Research shows that gut microbiota

influences liver immune balance through metabolic products and

molecular patterns via the portal vein, with TLR4/NF-kB and bile

acid-FXR/TGR5 pathways being crucial (Figure 1). Dysbiosis, like

increased Fusobacterium nucleatum and decreased butyrate-

producing bacteria, can promote immune evasion in liver cancer

by affecting Kupffer cell polarization, T cell balance, and CD8+ T

cell exhaustion. Additionally, specific microbiota traits, such as

Akkermansia muciniphila abundance, may indicate immune

therapy response (Table 1). Microbiota interventions, including

fecal transplants, engineered bacteria, and metabolite supplements,

could improve current therapies but are challenged by individual

variability and safety concerns. Microbial metabolites like butyrate

have concentration-dependent effects, boosting antitumor

immunity at low levels and causing tolerance at high levels. More

evidence is needed to establish causation, requiring further animal

model studies for precise control.

Future research should aim to identify crucial strains, metabolic

products, and signaling pathways, understand the origins and

dynamics of tumor-associated microorganisms, validate microbial
FIGURE 1

The principal mechanisms and pathways through which gut microbiota interact with local immune cells in the liver.
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biomarkers, and create personalized interventions like engineered

bacteria or metabolic antagonists to boost synergy with current

therapies. Technological advances, such as humanized organoid

models and AI-driven multi-omics integration, will address

microbial diversity and translational challenges, facilitating the

transition from mechanistic studies to precise clinical applications

and offering new strategies to overcome immune therapy resistance

in liver cancer.
6 Conclusion

In conclusion, the gut microbiota and its metabolites are vital

in liver cancer development, affecting the local immune

environment through complex mechanisms. Understanding

their interaction with liver cancer enhances our knowledge of its

pathogenesis and offers new precision treatment options.

Probiotics and microbial management strategies show promise

in improving immune responses and influencing disease

progression by regulating gut microbiota. Future multi-omics
Frontiers in Oncology 10
approaches will further advance personalized immunotherapy

for liver cancer. Ongoing research and clinical implementation

are crucial for the early diagnosis and accurate treatment of HCC,

thereby enhancing patient outcomes.
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TABLE 1 Microbial community involved in liver cancer immune regulation.

Microbial community Potential immune regulatory mechanisms Effect Ref.

Akkermansia muciniphila
Facilitate the activation of CD8+ T cells and modulate their
recruitment via its outer membrane protein

Enhance the efficacy of anti-PD-1 therapy and improve
the response rate to immunotherapeutic intervention

(66)

Fusobacterium nucleatum
Upregulate PD-L1 through the FadA/b-catenin pathway;
increase the proportion of Treg; induce epithelial-
mesenchymal transition

Facilitate immune evasion, enhance the invasion and
metastasis ability of cancer cells and exhibit a positive
correlation with the progression of liver metastatic
cancer

(86, 87)

Butyricicoccus
Enhance CD8+ T cell mitochondrial function via the SCFAs-
GPR43 signaling pathway and inhibit HDAC3

Overcoming resistance to immunotherapy and
enhancing survival duration

(88, 89)

Lactobacillus
Maintain intestinal barrier integrity and reduce LPS
translocation

Mitigate TLR4/NF-kB-mediated inflammation and
decelerate the progression of liver cirrhosis

(90, 91)

Bifidobacterium Regulate Treg/Th17 balance; increase IL-10 secretion
Inhibit excessive inflammatory response, but may
weaken anti-tumor immunity

(92–94)

Enterobacteriaceae
Produce TMAO and activate the NLRP3 inflammasome;
inhibit CXCL-dependent NKT cell recruitment

Promote the transformation of chronic hepatitis to
HCC

(95, 96)

Prevotella
Promote IL-6 secretion through TLR4, activate hepatic
stellate cells

Facilitate hepatic steatosis, its abundance is associated
with the progression of unresectable HCC

(97, 98)

Escherichia coli
Produce enterotoxins to disrupt tight junctions; activate
Kupffer cells TLR4 pathway.

Increase the risk of HCC in patients with liver cirrhosis (99, 100)

Bacteroides
Regulate bile acid metabolism; inhibit CXCR6+ NKT cell
function

May be associated with immune tolerance in HBV
related HCC

(101–103)

Enterococcus faecium
Inducing ferroptosis by expanding the IFN-g+CD8+ T cell
population

Augment the immunological response against
neoplastic cells

(104)
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