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The role of gut microbiome in
colorectal cancer development:
a comprehensive analysis
based on metabolomics and
immunomodulatory mechanisms
Yichi Xu, Bo Wen and Shu Liu*

Geriatric Department of the First Affiliated Hospital of China Medical University, Shenyang,
Liaoning, China
With shifts in lifestyle and dietary habits, the incidence of colorectal cancer has

been rising annually, with an increasing prevalence among younger populations,

thereby imposing a significant burden on global health. Although the rate of early

diagnosis for colorectal cancer has improved due to the widespread use of

gastrointestinal endoscopy, many patients still do not experience substantial

improvements in survival rates or quality of life. Consequently, there is a pressing

need for further in-depth research into the pathogenesis of colorectal cancer, as

well as the exploration of potential methods for early diagnosis and precise

treatment. As research into the gut microbiome system advances, its remarkable

efficacy in the early diagnosis, treatment, and prognosis assessment of various

diseases has garnered considerable attention. Variations in the gut microbiome

among individuals may result in differential immune responses to specific

pathogens or treatment modalities. This article reviews the interaction

mechanisms between gut microbiota and immune cells in colorectal cancer,

integrating the latest research findings in the field, with the aim of providing

potential directions and theoretical foundations for the development of

personalized immunotherapy.
KEYWORDS
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1 Introduction

The gut microbiome represents a complex and diverse ecosystem that exerts significant

influence on human health and the development of diseases (1). Recent advancements in

microbiome research have employed multi-omics approaches, including genomic

sequencing, transcriptomics, proteomics, metabolomics, and stable isotope probing

(SIP), to comprehensively analyze the taxonomic composition, physiological functions,
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and ecological roles of the gut microbiota (2). Emerging evidence

underscores the critical and indispensable role of the gut microbiota

in the pathogenesis and progression of various digestive system

diseases and disorders. This study focuses on immune regulation to

explore the contributions of intestinal microbiota to the initiation

and progression of colorectal cancer (CRC), with potential

implications for biomarker discovery and the development of

targeted therapies.
2 Architectural framework and
metabolic significance of the gut
microbiota

2.1 Diversity and stability of the normal gut
microbiota

The human gastrointestinal tract serves as the habitat for a

diverse array of microorganisms, collectively referred to as the ‘gut

microbiota.’ In a typical adult, the gut microbiota encompasses a

multitude of bacterial, archaeal, fungal, and viral species that

coexist. Through mechanisms such as interspecies competition,

metabolic interactions, and host immune regulation, the

microbiota sustains normal gut function and enhances resistance

to external perturbations. The gut microbiota exhibits considerable

inter-individual variation among hosts and demonstrates distinct

anatomical distribution patterns. This diversity underscores the

stability of the gut microecology and its capacity to resist

colonization by external pathogenic bacteria. Simultaneously, the

mucosal barrier serves as a physical constraint against bacterial

over-colonization. Alterations in dietary composition may induce

dysbiosis, which, in turn, can influence environmental homeostasis

in humans via metabolite signaling pathways, such as the activation

of peroxisome proliferator-activated receptors by butyric acid. Host

immune components, including Immunoglobulin A (IgA) and

regulatory T cells(Tregs), interact with microbial sensing

mechanisms and circadian rhythms to maintain a dynamic

equilibrium (3).

Although low microbial diversity in the gut does not inherently

signify the presence of disease, it does render the gut more

vulnerable to influences from diet, environmental factors, or

disease. Such susceptibility may manifest in symptoms like water

retention or diarrhea, particularly when associated with a

suboptimal diet. Disruptions in the diversity and stability of gut

microbiota can compromise the integrity of the gut barrier,

resulting in heightened intestinal permeability. This increased

permeability may, in turn, initiate inflammatory and immune

responses, potentially culminating in the onset of disease.
2.2 Functions of the gut microbiota

These gut microorganisms possess substantial metabolic

potential and are integral to nutrient absorption, vitamin
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synthesis, and the regulation of inflammation and immune

responses, thereby significantly influencing the host ’s

physiological functions (4–7). For example, predominant bacterial

taxa, including Bacteroides and Firmicutes, are involved in the

degradation of complex polysaccharides, leading to the production

of short-chain fatty acids (SCFAs). Among these, butyrate is

particularly crucial for the energy metabolism of colonocytes.

Moreover, evidence suggests that this process can trigger

intestinal gluconeogenesis (IGN) via a cAMP-dependent pathway.

The activation process in question has demonstrable positive effects

on the regulation of glucose levels and energy balance within the

body (8).

The phyla Mycobacterium, Clostridium, and Aspergillus are

capable of synthesizing various vitamins, particularly vitamins K

and B, which include biotin, cobalamin, folate, niacin, pantothenic

acid, pyridoxine, riboflavin, and thiamine (9) . These

microorganisms also facilitate lipid metabolism through the

hydroxylation of bile acids and can modulate drug metabolism

efficiency and toxic responses by producing secondary bile acids

and catalyzing the transformation of xenobiotics (10). Furthermore,

microbial-host interactions play a crucial role in regulating the

expression of tight junction proteins via pattern recognition

receptors (TLRs/NLRs), thereby maintaining the integrity of the

gut barrier (11–13). Additionally, the metabolite butyrate

contributes to the enhancement of gut barrier function by

inhibiting the histone deacetylase mechanism (14, 15).

Research has demonstrated that butyrate exerts distinct

regulatory effects on inflammatory responses depending on its

concentration. At lower concentrations, butyrate displays anti-

inflammatory properties, potentially through the activation of the

peroxisome proliferator-activated receptor-g (PPAR-g) signaling

pathway, inhibition of the nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-kB) signaling axis, and

subsequent suppression of pro-inflammatory cytokines such as

tumor necrosis factor-a (TNF-a) (7, 16). Additionally, butyrate is
thought to mitigate inflammatory responses by upregulating the

anti-inflammatory cytokine interleukin-10 (IL-10) (17).

Conversely, at higher concentrations, butyrate not only fails to

inhibit the production of pro-inflammatory factors but may also

enhance apoptosis and the release of pro-inflammatory cytokines

such as interleukin-1b (IL-1b). This pro-inflammatory effect may

involve the activation of G protein-coupled receptors, the lipid

transport protein CD36, and the kinase SRC. The findings suggest

that butyrate exerts complex and multifaceted regulatory effects on

inflammatory responses across varying concentrations. This

biphasic effect underscores the importance of considering the

dose-dependent impact of metabolites when implementing

targeted microbiota interventions.

Meanwhile, gut microbes (e.g. Faecalibacterium prausnitzii)

can maintain immune homeostasis by regulating Treg cell

differentiation and Th17/Treg homeostasis. Butyrate contributes

to the stabilization of Tregs by preserving a low methylation status

in the Treg-specific demethylated region (TSDR) of the Foxp3 locus

(18). This reduced methylation status is indicative of Treg cell
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stability and functionality, facilitating the consistent expression

of Foxp3 (19). Furthermore, butyrate enhances the suppressive

capabilities of Tregs by modulating gene expression at the

epigenetic level through the inhibition of histone deacetylases

(HDACs) (20). Nonetheless, certain components of the cell wall

from butyrate-producing bacteria may counteract this beneficial

effect by activating the NOD2 pathway, which recognizes bacterial

cell wall components and initiates an immune response.

Consequently, in the development of butyrate-based therapeutic

strategies, it is imperative to screen for “pure”metabolites devoid of

interfering components to prevent unwarranted immune activation

and to ensure the efficacy and safety of these interventions in

modulating immune responses (20).

Research indicates that dysbiosis of the gut microbiota is

intricately associated with the susceptibility to and progression of

CRC. Notably, specific gut microorganisms can influence CRC

susceptibility and progression by modulating inflammatory

responses and DNA damage mechanisms. Furthermore,

metabolites produced by the gut microbiota, such as SCFAs with

a particular emphasis on butyrate, have been demonstrated to

regulate gene expression through the inhibition of HDACs,

thereby inhibiting tumor cell proliferation and promoting

apoptosis (21). This article will explore this topic in greater detail

in subsequent sections.
2.3 Characteristics of the gut microbiota in
CRC patients

The composition of the gut microbiome exhibits significant

differences between individuals with CRC and healthy controls. In

CRC patients, the gut microbiota promotes the proliferation of

carcinogenic bacteria while reducing populations of probiotic

bacteria. Additionally, certain bacterial species may assume

distinct roles depending on the stage or anatomical location

(proximal or distal) of CRC (22, 23). In a study by Dai et al.,

seven bacteria enriched in CRC were identified across populations

of various nationalities: Bacteroides fragilis, Fusobacterium

nucleatum, Porphyromonas acidophilus, Parvimonas micra,

Prevotella intermediates, Alistipes finegoldii, and Thermobifida

acidaminovorans. Changes in the proportional representation of

these microbial species may serve as quantifiable biomarkers for

CRC (24). Concurrently, research has demonstrated that

Clostridium, Shewanella, and Fusobacterium nucleatum are

significantly enriched in the gut microbiota of CRC patients with

KRAS mutations. These bacterial communities may contribute to

tumor development by promoting inflammation or directly causing

DNA damage, such as through colibactin production by pathogenic

Escherichia coli. In contrast, in patients with wild-type KRAS,

elevated levels of Bifidobacterium and Akkermansia may be

associated with anti-inflammatory effects and the inhibition of

tumor progression (25). Furthermore, the research conducted by

Ma Yanlei’s team at Fudan University on young-onset colorectal

cancer (yCRC) demonstrated an increase in gut microbiota

diversity among yCRC patients, characterized by distinct
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metabolic features predominantly associated with DNA binding

and RNA-dependent DNA biosynthesis processes (26).

Contemporary studies suggest that various factors, such as

physiological status, pathological conditions, and environmental

exposures, can influence the structural and metabolic composition

of gut microbiota in individuals with CRC.

In addition to the alterations in enriched bacterial species

observed in CRC patients, certain bacteria demonstrate notable

spatial distribution characteristics. Spatial transcriptomics data

indicate that Fusobacterium nucleatum is significantly more

prevalent at the tumor-infiltrating front compared to the core

area, which may be associated with its capacity to facilitate tumor

progression and immune evasion (27). The Fap2 protein of

Fusobacterium nucleatum is capable of directly binding to the

TIGIT receptor on the surface of tumor cells, thereby suppressing

the activity of natural killer (NK) cells. This binding mechanism

enables tumor cells to evade immune system attacks, thereby

promoting tumor growth and metastasis (28). Additionally,

Fusobacterium nucleatum can enhance tumor enrichment and

progression through the binding of its Fap2 protein to Gal-

GalNAc on the surface of tumor cells (29).The diverse

mechanisms by which Fusobacterium nucleatum operates within

the tumor microenvironment offer new insights into its potential as

a therapeutic target.
3 Impact of the gut microbiota on the
local immune system

3.1 Modulatory effects of the gut
microbiota on immune cells

The regulatory effects of gut microbes on immune cells are

multifaceted and complex, and are characterized by significant

individual variability. Firstly, the enteric microbiome drives

immunocyte ontogeny and functional maturation, thereby

augmenting comprehensive immune responses through engagement

of intestinal immune networks.

Secondly, the enteric microbiome also governs immune cell

abundance and functional status (30). For instance, gut microbiota

drives the development of Tregs and Th17 cells that work in concert

to prevent immune overactivation, suppress excessive inflammation,

and maintain immune equilibrium. The interaction between gut

microbiota and intestinal epithelial cells plays a pivotal role in

immune regulation. Intestinal epithelial cells are capable of

acquiring antigens from symbiotic bacteria via endocytosis, which

facilitates the maintenance of mucosal T cell homeostasis (31).

Furthermore, gut microbiota can activate innate immune signaling

pathways in epithelial cells through direct contact, thereby

modulating the immune response within the gut (32). The gut

microbiota plays a crucial role in modulating immune responses by

influencing the function of intestinal innate lymphoid cells (ILCs).

Research has demonstrated that a specific regulatory subset of ILCs in

the gut can inhibit the activation of other ILCs through the secretion

of IL-10, thereby safeguarding the gut from inflammatory damage
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(33).Additionally, the gut microbiota impacts immune responses by

modulating the function of antigen-presenting cells (APCs).Evidence

suggests that the gut microbiota can restrict the expansion of Th1

cells and facilitate the generation of Treg cells through interactions

with CX3CR1+ antigen-presenting cells, thereby maintaining

immune homeostasis within the gut (34). Furthermore, gut

microbiota modulates the activity of innate immune cells including

macrophages and NK cells, consequently augmenting the immune

system’s regulatory potential. Nonetheless, the interactions between

these regulatory pathways and their spatiotemporal dynamics

warrant further comprehensive investigation.

In addition to the aforementioned direct regulatory effects, gut

microbial metabolites exhibit significant immunomodulatory

properties (3, 9, 21). These metabolites, which encompass SCFAs,

bile acids, and vitamins, possess the ability to translocate from the

intestinal lumen into the mucosal lamina propria of the intestine.

Following gut colonization, these metabolites reprogram host

immunological gene networks, thereby influencing downstream

effects on immune cell physiology. Disruptions in microbial

ecosystems are associated with dysfunctional immune effector

cells, which are unable to mount effective antimicrobial defenses,

thus increasing susceptibility to infections. Moreover, immune-

related disorders, including autoimmune and allergic diseases,

may be triggered as a consequence (35).
3.2 Effects of gut microbiota on the
immune microenvironment and its
relationship with CRC

The regulatory effects of the gut microbiota on the immune

microenvironment are intricate and exhibit individual variability.

Interactions between gut microbes and immune cells, whether

direct or indirect, involve complex signaling networks. It has been

established that the gut microbiota influences immune cell signaling

pathways through pattern recognition receptors, recognition of

microbial components, and the release of specific signaling

molecules. These substances have been shown to activate or inhibit

particular receptors on immune cells, thereby modulating their

proliferation, differentiation, and physiological activities, ultimately

impacting the immune microenvironment (14, 15, 36, 37). This

regulatory influence extends beyond the local immune milieu of the

gut, potentially affecting systemic immune status via the gut-liver axis

and the gut-brain axis. Furthermore, individual variations in gut

microbiota composition may result in differential immune responses

to specific pathogens or therapeutic interventions.

Research has established a demonstrable correlation between CRC

and the gut microbiota. Specific gut microorganisms, such as

Clostridium perfringens and Escherichia coli, have been shown to

enhance the growth and invasiveness of colorectal cancer cells (38–40).

Conversely, other microorganisms, including Lactobacillus and

Bifidobacterium, have been found to inhibit tumor growth (41, 42).

Additionally, the gut microbiota may play an indirect role in the

immune evasion mechanisms of CRC by affecting the infiltration and

activation status of immune cells (43).
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4 Mechanisms of gut microbiota in
the development and progression of
CRC

4.1 Inflammatory responses triggered by
the gut microbiota and the tumor
microenvironment

Extensive experimental evidence has substantiated the

bidirectional crosstalk between intestinal microbial communities

and the neoplastic niche, encompassing both homeostatic immune

conditions and therapeutic contexts, such as cytotoxic treatment

and immune checkpoint modulation. Dysregulation of the gut

microbiota has been shown to contribute directly or indirectly to

the progression of CRC by activating pro-inflammatory signaling

pathways, inducing chronic inflammation, and causing immune cell

dysfunction. For example, the microbial adhesin FadA from

Clostridium perfringens interacts with host epithelial receptors,

thereby triggering the Wnt/b-catenin and NF-kB signaling

pathways. This interaction stimulates the release of inflammatory

mediators, including interleukin-6 (IL-6), interleukin-17 (IL-17),

and TNF-a, which foster a pro-tumorigenic microenvironment that

enhances cancer cell proliferation and metastatic potential (44, 45).

Additionally, Bacteroides fragilis toxin (BFT) secreted by B. fragilis

has been demonstrated to disrupt the epithelial barrier, resulting in

aberrant activation of b-catenin signaling.

Moreover, these toxins have been documented to initiate an

inflammatory response via the TLR4/NF-kB signaling pathway,

thereby facilitating DNA damage and carcinogenesis (44, 46).

Colibactin, a virulence factor produced by Escherichia coli (pks+

E. coli), has been shown to induce DNA double-strand breaks and

mutations, which subsequently activate inflammation-related repair

mechanisms and expedite tumor development (45). Within a

chronic inflammatory milieu, excessive production of reactive

oxygen species (ROS) and reactive nitrogen species(RNS) has

been observed to cause oxidative DNA damage and the

accumulation of mutations. This process has been demonstrated

to involve the inactivation of the p53 gene, thereby promoting the

malignant transformation of cells. Additionally, the polarization of

macrophages towards a pro-tumorigenic M2 phenotype has been

reported to result in the secretion of chemokines, such as CCL2,

which recruit Th17 cells and establish a pro-tumorigenic, immune-

suppressive network (44, 46, 47). Furthermore, the consumption of

high-fat diets (HFDs) has been shown to induce gut microbiota

dysbiosis, leading to elevated levels of saturated fatty acids (SFAs).
4.2 The impact of gut microbiota
metabolites on local immune tolerance
and their role in regulating tumor immune
evasion

The significance of SCFAs as metabolites is noteworthy, with their

composition primarily consisting of butyrate, acetate, and propionate.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1629495
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2025.1629495
In a healthy physiological state, research has demonstrated that

butyrate plays a crucial role in facilitating the differentiation of

regulatory T (Treg) cells and maintaining immune homeostasis by

inhibiting histone deacetylase (HDAC). In contrast, reduced levels of

butyrate in CRC have been shown to impair immune surveillance and

promote tumor evasion (45, 46). Acetate and propionate, on the other

hand, have been observed to indirectly influence T cell activation,

modulating excessive inflammatory responses by regulating the antigen

presentation function of dendritic cells (DCs). Furthermore, certain

metabolites, such as the secondary bile acid deoxycholic acid (DCA),

are produced through the metabolism of Clostridium species. For

instance, Clostridium scindens has been found to decrease intracellular

calcium ion concentrations in CD8+ T cells by binding to the plasma

membrane calcium ATPase (PMCA), thereby inhibiting the nuclear

factor of activated T-cells (NFAT) signaling pathway and diminishing

the cytotoxic function of these cells. Moreover, research has shown that

the activation of the farnesol X receptor (FXR) facilitates the

proliferation of Treg cells while inhibiting the differentiation of Th17

cells. This mechanism contributes to tumor immune evasion and the

development of an immunosuppressive microenvironment (48).

Lipopolysaccharides (LPS) released by Gram-negative bacteria

activate myeloid-derived suppressor cells (MDSCs) via the Toll-like

receptor 4 (TLR4) pathway, thereby suppressing CD8+ T cell

functionality and inducing programmed death-ligand 1 (PD-L1)

expression, which in turn promotes immune escape (43, 45).

Additionally, succinic acid, a metabolite of Clostridium nucleatum,

has been found to inhibit the cyclic GMP-AMP synthase-interferon

beta (cGAS-IFN-b) pathway and decrease Th1 chemokine secretion

through the activation of the succinate receptor 1-hypoxia-inducible

factor 1-alpha-enhancer of zeste homolog 2 (SUNCR1-HIF-1a-EZH2)
axis in tumor cells. This process further diminishes CD8+ T-cell

infiltration and function, leading to resistance to immunotherapy

(49). Furthermore, it has been demonstrated that probiotic

metabolites, such as indole propionic acid (IPA), can enhance the

efficacy of anti-programmed cell death protein 1 (anti-PD-1) therapy

through the activation of the aryl hydrocarbon receptor (AhR). This

finding suggests that the specific metabolites derived from targeted

flora possess the capability to alter the immunosuppressive

microenvironment (50). In conclusion, it has been demonstrated that

the gut microbiota can modulate the immune microenvironment via

metabolite production. Nonetheless, the nature of the metabolites and

the existing microenvironmental conditions are critical in determining

whether this modulation is pro-carcinogenic or anti-carcinogenic.
5 Influence of the gut microbiota on
colorectal cancer-associated signaling
pathways

5.1 Wnt/b-catenin signaling pathways

Aberrant activation of the Wnt/b-catenin signaling pathway

constitutes a pivotal mechanism in the pathogenesis of CRC. This

pathway’s regulation is influenced not only by genetic mutations,
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such as the inactivation of the APC gene, but also by the dynamic

equilibrium of the intestinal microbiota. Clostridium perfringens

adhesin FadA has been shown to activate the Wnt/b-catenin
signaling pathway upon binding to host epithelial cells, leading to

increased expression of oncogenic and inflammatory responses (44,

48, 51). Research conducted by the Institute of Microbiology,

Chinese Academy of Sciences, indicates that ARNT transcription

factors modulate Wnt/b-catenin signaling by regulating neutrophil

recruitment and activity, as well as influencing the composition of

the gut microbiota. A deficiency in ARNT exacerbates the

formation of neutrophil extracellular traps (NETs) and the release

of inflammatory cytokines, thereby deteriorating the tumor

microenvironment (52). The research team, led by Yuhao Wang

at Zhejiang University, has identified that the over-activation of

Wnt signaling is modulated by intestinal microbiota, which

suppresses the expression of the long-chain non-coding RNA

Snhg9. This suppression subsequently accelerates tumor

progression by promoting the dissociation of SIRT1 from p53,

thereby inhibiting the activity of the latter. Notably, the up-

regulation of Snhg9 expression following antibiotic administration

further exacerbates the progression of CRC (47). Conversely, in

animal models, the administration of Portulaca oleracea extract

(POE) to CRC-afflicted mice led to the identification of 20 distinct

microbiota potentially involved in CRC development via the Wnt/

b-catenin signaling pathway. Additionally, c-Myc and cytosolic

protein D1 were identified as critical downstream targets within

the Wnt/b-catenin signaling pathway. In vitro experiments further

demonstrated that POE could inhibit the proliferation of CRC cells

by downregulating the expression of c-Myc and cell cycle protein

D1, thereby inactivating the Wnt/b-catenin signaling pathway (53).

Simultaneously, Roya et al. employed both in vivo (using a CRC

mouse model) and in vitro methodologies to illustrate that a

consortium of probiotic Lactobacillus species (specifically, the

potentially probiotic L.C.) effectively suppressed tumor growth by

inhibiting the Wnt/b-catenin signaling pathway (54). This finding

underscores the dual role of gut microbiota in modulating the Wnt/

b-catenin signaling pathway through epigenetic mechanisms.
5.2 PI3K/Akt signaling pathway

The PI3K/Akt signaling pathway plays a crucial role in CRC

metastasis and drug resistance. Research conducted by Jingyuan

Fang and colleagues revealed that the microbial virulence factor

RadD from Fusobacterium nucleatum facilitates oncogenic

progression by exploiting the CD147 receptor to activate the pro-

tumorigenic PI3K-Akt-NF-kB signaling cascade in malignant cells.

Additionally, SCFAs, such as butyric acid, have been shown to

inhibit tumor progression by suppressing Akt phosphorylation. In

contrast, a reduction in SCFA levels, due to microbial dysbiosis, has

been associated with the activation of Akt signaling. Experimental

animal studies have demonstrated that the administration of butyric

acid-producing bacteria, such as Bifidobacterium bifidum, can

counteract this effect by restoring SCFA levels (55).
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5.3 NF-kB signaling pathway

The NF-kB signaling pathway has been recognized as a crucial

intermediary linking intestinal inflammation to CRC. As discussed

in Section 4.1, BFT toxins produced by *C. fragilis* have been

demonstrated to initiate inflammatory responses and facilitate

DNA damage and carcinogenesis via the TLR4/NF-kB pathway

(44, 46). *Clostridium nucleatum* has been documented to secrete

pro-inflammatory factors, such as IL-6 and IL-8, through the TLR4/

NF-kB axis, thereby intensifying damage to the intestinal epithelium

(53). Additionally, neutrophils deficient in ARNT have been shown

to augment NET formation and inflammatory responses through

CXCR2 signaling, which subsequently activates the NF-kB pathway

and promotes tumor growth (51). A study by Yijia Wang et al.

proposed that *Fusobacterium*, identified as a driving bacterium of

CRC, not only induces colitis but also enhances the expression of

NF-kB p65 in the nucleus of intestinal epithelial cells. These

molecular alterations contribute to carcinogenic processes and

tumor progression (38). According to the findings of Yuhao Wang

and colleagues, within a low-level inflammation model, the bacterial

population has been shown to inhibit NF-kB activity by sustaining

IL-22 secretion. In contrast, the lack of IL-22 has been associated

with increased expression of Snhg9, which subsequently facilitates

carcinogenesis via the SIRT1-p53 axis (47).
5.4 TGF-b signaling pathway

Research has demonstrated that the TGF-b signaling pathway

plays a dual role in CRC, exhibiting both tumor-promoting and tumor-

suppressing effects. In a healthy state, retinoic acid (RA) has been

shown to maintain the stability of the intestinal immune system by

promoting the development of Treg cells and the production of IgA by

B cells through the TGF-b signaling pathway (56). The team led by

Fang Jingyuan discovered that dysbiosis, such as a reduction in

Bifidobacteria, activates the urea cycle in the host. The resulting high

urea load disrupts intestinal immune homeostasis by inhibiting the

binding of p-STAT1 to SAT1 in macrophages, leading to their

differentiation into immunosuppressive subtypes (55). Moreover, the

current study reveals a positive correlation between the high expression

of the CCDC113 gene and the activation of the TGF-b signaling

pathway. This finding suggests that the intestinal microbiota may

influence the dynamic balance of this pathway by regulating host gene

expression (55).
6 Role of the gut microbiota in
colorectal cancer targeted therapy
and immunotherapy

In this section, we have summarized the recent research on gut

microbiota in immunotherapy for colorectal cancer for

reference (Table 1).
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6.1 Anti-EGFR therapy

The effectiveness of epidermal growth factor receptor (EGFR)-

targeted therapies, such as cetuximab, is intricately linked to the

composition of the gut microbiota. Research has shown that

Fusobacterium nucleatum can induce resistance to EGFR-targeted

treatments by activating the NF-kB and Wnt/b-catenin signaling

pathways. This mechanism may involve the establishment of a pro-

inflammatory microenvironment and the promotion of tumor cell

survival pathways (57). Nonetheless, probiotic interventions have

been shown to partially mitigate this resistance. Specifically,

Agathobacter and Blautia species have been reported to suppress

the inflammatory response and enhance drug sensitivity by

modulating the composition of the intestinal microbiota and

increasing the secretion of SCFAs (58). Moreover, research has

demonstrated that the gut microbiota metabolite indolepropionic

acid, co-produced by Lactobacillus murinus and Tannerellaceae

species, significantly enhances the efficacy of anti-PD-1 monoclonal

antibodies. This enhancement is mediated through a mechanism

involving increased CD8+ T-cell infiltration and downregulation of

PD-1 expression, indicating the synergistic potential of this

microbial metabolite with EGFR-targeted therapies (59).

Additionally, preclinical models indicate that antibiotic-induced

dysbiosis exacerbates the toxicity of EGFR inhibitors, whereas

probiotic interventions mitigate intestinal mucosal damage and

extend the therapeutic window (60).
6.2 Anti-VEGF therapy

The effectiveness of anti-angiogenic agents, such as

bevacizumab, is closely linked to metabolites produced by gut

microbiota. Recent clinical trials have indicated that propionate, a

metabolite derived from Ricardia spp., significantly enhances the

anti-angiogenic effects through a synergistic mechanism. This

involves promoting apoptosis in tumor cells and facilitating the

maturation of dendritic cells in combination with aPD-L1. These
findings suggest a promising strategy for treating low-grade rectal

cancer using a radioactive hydrogel, 177Lu-RH@SP. Additionally,

the integration of fecal microbiota transplantation (FMT) with

bevacizumab has shown substantial therapeutic advantages in

cases of refractory CRC. Mechanistic investigations have revealed

that microbial colonies inhibit tumor angiogenesis by regulating

gene expression within the vascular endothelial growth factor

(VEGF) pathway, including genes such as MMP2 and HIF-1a
(61). Bacteriotherapy, a therapeutic approach developed by

Recolony in Switzerland, has further substantiated the clinical

potential of interventions involving bacterial flora. This treatment

involves the supplementation of butyric acid-producing

bacteria, which activate immune cells and enhance anti-tumor

angiogenesis. The company has announced its intention to

initiate the inaugural human phase Ib clinical study in the latter

half of the present year.
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TABLE 1 Researches on gut microbiota in immunotherapy for colorectal cancer.

Flora
Immunotherapy

type
Sample Type RESULTS

Fusobacterium nucleatum anti-PD-1 Patient specimens:CRC patients treated with PD-1
blockade therapy and measured F.nucleatum
abundance in tumor tissues and feces.
Cell: Human CRC cell lines DLD1 and Caco-2,
mouse colon cancer cell line CT26.
Mice: CT26.WT were implanted into the lateral
wings of BALB/c mice, followed by intratumoral
injection of F. nucleatum, Escherichia coli DH-5a or
PBS,then injected anti-PD-L1 monoclonal antibody
(mAb) or an isotype control mAb into the
abdominal cavity.

F.Nucleum induces PD-L1 expression by activating
STING signaling and increases the accretion of
interferon-g (IFN-g)+CD8+TIL during PD-L1
blockade therapy, thereby enhancing the anti-
tumor response to PD-1/PD-L1 checkpoint
blockade (57).

Agathobacter and Blautia anti-PD-1 combined
Anti-EGFR

Patient specimens:patients with ctDNA RAS/BRAF
WT and MSS disease.

Agathobacter and Blautia species are capable of
producing SCFAs, which may represent the
mechanism through which these bacteria augment
the anti-tumor activity of cetuximab and
avirumab (58).

MS-20 anti-PD-1 Mice: BALB/c mice were inoculated subcutaneously
with live CT-26 cells and intraperitoneally injected
with anti-PD1 antibodies. They were then randomly
assigned to receive either sterile water or different
concentrations of MS-20 orally.

The combination of MS-20 and an anti-PD1
antibody demonstrated a marked efficacy in the
inhibition of tumor growth, accompanied by an
augmentation in the total CD8+ T cell population
and the activation of CD8+ T cells within the
tumor microenvironment. This combination also
resulted in the inhibition of PD1 expression, the
enhancement of the efficacy of anti-PD1
monotherapy, and the promotion of intra-tumour
CD8+ T cell infiltration (59).

B. pseudolongum anti-PD-1 and anti-CTLA-4 Mice: MC38 CRC cells were implanted into the
lateral wings of GF or SPF mice followed by ICB
therapy once tumors were palpable.

The B.pseudolongum strain greatly enhances the
efficacy of ICB therapy in intestinal and epithelial
tumor mouse models by enhancing the CDC-
dependent TH1 cell circuit. A2AR signaling may
be an important anti-tumor pathway (63).

CTLA-4 inhibitors that lack
an Fc domain

anti-CTLA-4 Mice: The WildR mice were colonized with the
objective of establishing an ICB-induced
colitis model.

CTLA-4 inhibitors lacking the Fc structural
domain do not induce colitis in colitis-prone mice
when receiving conventional anti-CTLA-4
antibodies. Notably, anti-CTLA-4 VHHs can resist
tumor responses without inducing gut irAEs in
mice (64).

Bifidobacterium anti-CTLA-4 Mice: Female mice aged between 6 and 14 weeks
were subjected to an Il-10 KO procedure and then
treated with vancomycin. Following a 14-day period,
DSS was added to the mice’s drinking water.
Thereafter, the mice were injected with either an
anti-CTLA-4 monoclonal antibody or a control.

Bifidobacterium exerts a systematic influence on
the composition of the gut microbiota, acting in a
manner contingent on Treg cells.B. breve and L.
rhamnosum are two functional strains extracted
during CTLA-4 blockade to improve intestinal
immunity. The IL-10/IL10Ra signaling loop and
mitochondrial activity in Tregs have been
hypothesized to play a pivotal role in attenuating
intestinal inflammation (65).

Lachnospiraceae
and Ruminococccaceae

SCXN Cell: CT26 murine colon carcinoma cells and CT26-
luc
Mice: The selection of 4-6 week old female Balb/c
and C57BL/6 mice is imperative for the
establishment of CT26 or CT26/MC38
tumor models.

The efficient regulation of gut microbiota and
enhanced SCFAs generation by SCXN built a
tumor-suppressing and beneficial microorganism-
supporting intestinal microenvironment (66).

Probio-M9 anti-PD-1 Mice: Mice were randomized into four groups
(Model, prophylactic Probio-M9, anti-PD-1
combined treatment group, therapeutic Probio-M9
and anti-PD-1 combined treatment group, medical
control group which treated with anti-PD-1 only),
and separately given Probio-M9 or normal saline.

Probio-M9 has been demonstrated to enhance
tumor suppression in a manner dependent on anti-
PD-1, through the generation of advantageous
metabolites, the encouragement of CTL infiltration
and stimulation, and the curtailment of Treg cell
function within the TME (67).

(Continued)
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6.3 Immune checkpoint inhibitor therapy

The influence of intestinal microbiota on immune checkpoint

inhibitor (ICI) therapy has emerged as a significant focus of

research. Although microsatellite-stable (MSS) CRC typically

shows a low response rate to PD-1/PD-L1 inhibitors,

interventions targeting the bacterial microbiota have been shown

to improve treatment efficacy (62). Notably, the presence of

Clostridium nucleatum has been found to enhance the efficacy of

PD-L1 blockade under certain conditions. Research conducted by

Qin Huanlong’s team revealed that Clostridium perfringens

promotes the secretion of interferon-g (IFN-g) by activating the

STING pathway, thereby augmenting the antitumor activity of CD8

+ T cells (57). Additionally, animal studies have provided

experimental evidence that Bifidobacterium pseudolongum

enhances the recruitment of tumor-infiltrating lymphocytes

(TILs) by ICI through the activation of the adenosine A2A

receptor by the metabolite inosine (63). Machine learning

modeling analyses have demonstrated a positive correlation

between the presence of SCFAs-producing microbiota, such as

Fusobacterium and Lactobacillus, and the response rates to ICIs.

In contrast, a higher abundance of Mycobacterium pseudolongum

has been linked to drug resistance (60, 63). A considerable portion

of contemporary research is concentrated on CD8+ T cells, as the

response to PD-1 is mediated by Tpex cells, which rely on the

activation of CD8+ T cell stem cells for differentiation. Nevertheless,

CD8+ T cells are not confined to the gut. Modulating the

composition of intestinal microbiota can alter the production of

their metabolites, potentially disrupting the programming of CD8+

T cells to activate Tpex cells. This disruption may influence the

quantity of memory T cells in the peripheral blood, thereby posing

new risks to the organism. This represents a notable gap in the

current body of research.

The efficacy of immunotherapy is accompanied by certain

limitations, notably the occurrence of Immune Checkpoint

Inhibitor-Associated Colitis, which has been identified as a

significant cause of treatment interruption. In the previous year,

researchers from the University of Michigan published a study in

*Science* addressing this issue. They transplanted the gut microbiota

from field-captured mice into conventional laboratory mice, thereby

creating a novel model that replicates human immunotherapy-

associated colitis (64). The study demonstrated that the over-
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activation of IFNg-producing CD4+ T cells contributes to intestinal

inflammation, and that the Fcg receptor signaling pathway plays a

role in the depletion of Treg cells. Based on these findings, the

research team developed anti-CTLA-4 nanobodies lacking the Fc

structural domain. The successful generation of this novel antibody in

a murine model was accomplished with the objective of enhancing

anti-tumor immune responses while avoiding the induction of colitis-

related side effects. This discovery lays the groundwork for the

development of next-generation CTLA-4 inhibitors. In clinical

applications, Bifidobacterium bifidum has been shown to provide a

protective effect against immunotherapy-associated colitis, offering a

potential therapeutic intervention for this condition. It has been

demonstrated that this bacterium enhances the immunosuppressive

function of Tregs by upregulating the expression of IL-10 receptor

alpha (IL-10Ra) and IL-10 in intestinal Treg cells (65). Therefore,

prophylactic supplementation with specific probiotics prior to the

commencement of immunotherapymay represent a viable strategy to

reduce the risk of colitis.
6.4 Other treatments

The delivery of therapeutic proteins can be effectively facilitated

through the construction of recombinant plasmids, which have

been shown to be successful in synthesizing cytotoxic proteins,

prodrug-converting enzymes, and proteins involved in angiogenic

regulation. The domain of RNA interference (RNAi) is currently a

focal point of research, with investigations aimed at developing

RNAi molecules. An illustrative example is the capecitabine-

containing prebiotic nanoparticle (SCXN), developed by the

Shanghai Institute of Pharmaceutical Sciences, Chinese Academy

of Sciences. This system employs xylan-stearic acid coupling (Sxy)

as the carrier for encapsulating capecitabine within the

nanoparticle’s core. Upon oral administration, the nanoparticle

undergoes targeted degradation in the intestine, enabling the

sustained release of the encapsulated drug. This design confers a

dual advantage: it not only prolongs drug clearance and enhances

intratumoral accumulation but also utilizes xylan as a prebiotic to

elevate the ratio of prebiotics and short-chain fatty acid production.

In murine models with a high tumor burden, SCXN has been shown

to significantly increase intratumoral drug concentration. In mice

with a high tumor burden, SCXN markedly enhanced intratumoral
TABLE 1 Continued

Flora
Immunotherapy

type
Sample Type RESULTS

Faecalibacterium prausnitzii anti-PD-1 and anti-CTLA-4 Patient specimens:A comparative analysis of fecal
samples from patients receiving ICI treatment, with
and without concomitant gastrointestinal toxicity, is
to be performed using omics.
Mice: Mice were administered 3% DSS and
subsequently induced to form an immune
checkpoint inhibitor-associated colitis model using
dual anti-PD-1 and anti-CTLA-4 antibodies. Then, a
quantity of mice is injected with
Faecalibacterium prausnitzii.

F.prausnitzii administration ameliorates ICI-
induced colitis, reshapes the gut microbial
composition, and enhances the antitumor activity
of immunotherapy (68).
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CD8+ T-cell infiltration and increased tumor suppression from

5.29% to 71.78% with the administration of the free drug. This

integrated strategy of colony modulation combined with

chemotherapy represents a significant advancement in CRC

treatment (66). An alternative approach involves reprogramming

bacteria by designing metabolic pathways for the synthesis of

therapeutic molecules. This metabolic engineering strategy, based

on modifications to the bacterial genome, enables the synthesis of

therapeutic molecules beyond proteins and eliminates restrictions

on the type of therapeutic substances delivered. Further

investigation is necessary to determine the extent to which

reconstruction impacts the composition and function of the

organism’s microenvironment.
7 Future perspectives

The gut microbiota influence molecular signaling networks,

such as Wnt/b-catenin, PI3K/Akt, and NF-kB, in CRC through

complex regulatory mechanisms, thereby playing a crucial role in

enhancing the efficacy of targeted therapies and immunotherapies.

Future research should aim to further elucidate the specific strains

involved and their mechanisms of action, with the goal of

developing individualized therapeutic strategies based on

microbial colony typing. These strategies might include

combinations of FMT, probiotics with targeted pharmaceuticals,

or the engineering of microbial strains through synthetic biology to

improve therapeutic outcomes. Additionally, strengthening

interdisciplinary collaboration holds significant promise for

advancing gut microbiota research. The interplay between gut

microbiota and the immune microenvironment is inherently

interdisciplinary, encompassing fields such as biology, medicine,

and microbiology. It is posited that through interdisciplinary

cooperation, researchers can collectively address the challenges

faced in this domain, facilitate the translation and application of

research findings, and thereby contribute more substantially to

scientific and medical advancements.
8 Conclusion

The investigation of gut microbiota is profoundly reshaping our

comprehension and clinical application of immunotherapy for

colon cancer. Beginning with the initial observation of the

correlation between microbiota composition and treatment

response, the field has progressed to an in-depth analysis of

molecular mechanisms and the development of innovative

intervention strategies, marking a period of rapid translational
Frontiers in Oncology 09
advancement. Future approaches will likely involve the use of

fecal macro-genomic sequencing to determine patients’ intestinal

microbiota composition, thereby enabling the creation of tailored

microbiota intervention programs. Metabolite levels will be

monitored throughout treatment, with the program dynamically

adjusted in four stages to ensure a patient-centered therapeutic

strategy. Each of these stages will inevitably impose higher

demands: precise analysis and administration of personalized

microbiota intervention protocols, identification of more accurate

and universal metabolites, and the ongoing development of

immune checkpoint inhibitors with optimized therapeutic dosages

and minimized side effects.
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