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Blood memory CD8 T cell
phenotypes in lung cancer
patients predict immune
checkpoint treatment responses
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Andreas Wilm1, Michael Fehlings1, Daniel MacLeod1,
Alessandra Nardin1, Daniel Tan2 and Katja Fink1

1ImmunoScape Pte. Ltd., Singapore, Singapore, 2National Cancer Centre Singapore,
Singapore, Singapore
Background: Immune checkpoint inhibition (ICI) has become a standard

treatment to re-invigorate tumor-attacking T cell responses in multiple cancer

indications, yet a patient’s response is unpredictable even with a confirmed

expression of the relevant targets such as PD-1 or PD-L1. Previously identified

biomarkers of response have relatively low accuracy, making it difficult to reliably

employ them as predictors of clinical response.

Methods: We comprehensively phenotyped peripheral blood CD8+ T cells from

patients with non-small cell lung cancer by analyzing surface marker expression,

transcriptome, and TCR repertoire with single-cell sequencing technology. The

cohorts were comprised of patients who (a) responded to anti-PD(L)1 treatment

for a prolonged period of time (b) were new-on-treatment responders, and (c)

were new-on-treatment nonresponders. Using various bioinformatics analyses,

we defined the signatures of ICI response and evaluated their performance on

external scRNA-seq datasets.

Results: We identified response-specific signals in cell type and cell state

proportions as well as in TCR repertoire diversity and TCR inter-donor

similarity. The enrichment analysis revealed several pathways and regulatory

modules enriched in different response groups. Using machine learning, we

identified cell-type-specific signatures that predicted the ICI response with an

accuracy between 66% and 93% at the single cell level and up to 94% at the

patient level. Effector memory CD8+ T cells in long-term responders were most

predictive of response, and the inferred effector memory signature could be

successfully applied to two related scRNA-seq datasets. CD44, GIMAP4, CD69,

and CCL4L2 were among the most relevant contributing markers defining the

predictive ML signatures on lung cancer samples.

Conclusion:Our findings suggest that CD8+ T cell subset-specific models reach

an accuracy that possesses the potential to inform treatment decisions in a

clinical setting.
KEYWORDS

immunotherapy, machine learning, cancer immune checkpoint therapy, immuno-
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Background

T cells are key players in the immune response against tumors

but are often attenuated in the tumor environment via intrinsic

inhibitory pathways (immune checkpoints). The programmed

death 1 (PD-1)/programmed death-ligand 1 (PD-L1) is one of

these pathways that mediate the inhibition of T cell activation

and proliferation. Targeting the T cell response with immune

checkpoint inhibitor (ICI) therapy in the form of monoclonal

antibodies against inhibitory T cell receptors has revolutionized

the treatment options for cancer patients. ICIs, including anti-PD-1

and anti-PD-L1 antibodies, have become the standard of care for

several advance-stage tumor types including non-small cell lung

cancer (NSCLC) (1). Some patients may not be eligible for ICI

treatment due to either a low expression of inhibitory receptors in

tumor biopsies or a low tumor mutational burden (TMB), both of

which have been associated with lower response rates (2, 3), yet the

expression of inhibitory receptors and/or mutational burden in the

tumor do not always correlate with treatment response. Even with a

high expression of inhibitory receptors, only a subset of patients

responds to ICI treatment (4). At the same time, some PD-L1-

negative patients can benefit from ICI therapy (5). Therefore, it is

crucial to improve the methods for patient stratification.

Single-cell analysis of immune responses after ICI treatment has

increasingly been utilized as a powerful tool to identify molecular

differences in responders versus non-responders. Compared to bulk

cell analysis methods, the study of single cells enables the discovery of

responses that are associated with specific cell subsets and types. This

is important because signals in rare cell subsets could be clinically

meaningful but might not be visible in bulk cell analysis (6).

A considerable number of studies have analyzed immune cell

phenotypes in both tumor tissue and blood after ICI treatment with the

aim to identify markers associated with response—for example, in clear

cell renal cell carcinoma patients, the response to anti-PD-1 treatment

(nivolumab) was associated with a higher expression of CD3E, CD8A,

Granzyme B (GZMB), and TCF7 in T cells from responders’ versus

non-responders’ tumor samples (7). Based on an analysis using the

Cancer Treatment Response gene signature Database (CTR-DB), Hu

et al. identified CD69 and SBK1 as potential biomarkers for anti-PD-1/

PD-L1 treatment response. A correlation analysis of TCGA data from

various cancers showed that CD69 expression correlated positively

with immune checkpoint expression and immune infiltration, whereas

SBK1 correlated positively or negatively with the same parameters,
Abbreviations: ADT, antibody-derived tags; NSCLC, non-small cell lung cancer;

LTR, long-term responders; R, responders; NonR, non-responders; ICI, immune

checkpoint inhibitor; ML, machine learning; TN, naïve T cells; CM, central

memory T cells; TEM, effector memory T cells; TEMRA, effector memory T cells

re-expressing CD45RA; TSCM, stem cell-like memory T cells; QC, quality

control; MAIT, Mucosal-associated invariant T cells; NKT, Natural killer T;

IFN, interferon; DEG, differentially expressed gene; TF, transcription factor; Acc,

accuracy; NCCS, National Cancer Centre Singapore; scRNA-seq, single cell

RNA sequencing.
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depending on the cancer type (8). Additionally, the combination of

single T cell phenotyping with T cell receptor (TCR) sequence analysis

can be informative in the context of post-ICI responses: The expansion

of large peripheral T cell clones was associated with durable clinical

benefit after ICI treatment inmelanoma. A phenotypic analysis showed

that these large clones over-expressed cytotoxicity-associated

phenotypes (9). Similar observations were reported for NSCLC with

the expansion of novel T cell clones early after ICI initiation, whereby

the expansion was more extensive in patients with durable clinical

benefit. The expanded T cells showed a proliferative or GZMK+

PDCD1+ effector memory CD8+ T cell phenotype (10). In addition,

higher TCR diversity was associated with a better outcome in different

tumor types (11).

We found previously that NSCLC patients responding to anti-

PD-L1 treatment showed high levels of CD57, CD244, and KLRG1

expression on circulating neoantigen-specific T cells (12). CD57

expression in patients before the initiation of treatment was further

validated as a possible prognostic marker of a positive response in

metastatic urothelial cancer (13). Several additional studies showed

that the expression of inhibitory receptors including TIGIT and

PD-1 and activation/proliferation markers including HLA-DR,

CD38, and Ki67 in blood T cells were associated with the

response to ICI treatment early after treatment (14–18). A study

on gd T cells using flow cytometry also found associations between

CD3 + gdT + CD28− and CD3 + PD − 1+ cell abundance and

response to treatment (19). Separately, an “exhausted” and/or

effector T cell phenotype defined by markers including GZMB,

perforin, CX3CR1, and interferon gamma (IFN-g ) expression was

repeatedly found to be associated with response (16, 20–23).

In this study, we investigated molecular signatures associated

with ICI response using deep phenotypic multi-omics profiles of

blood-derived CD8+ T cell samples from NSCLC samples.
Methods

Study samples and initial processing

Whole blood was collected in EDTA vacutainer tubes after

written informed consent was given by the study participants

under Individualized Molecular Profiling for Allocation to Clinical

Trials (IMPACT) project (CIRB Ref: 2019/2170). PBMCs were

isolated using Ficoll gradient or CPT tubes (Becton Dickinson) and

were frozen until further analysis. Slightly less than half of the

patients had a high PD-L1 tumor proportion score (TPS) ≥ 50%

(n = 7/16, 43.75% two unknown). The patients received either ICI

monotherapy or combination treatment with an anti-PD-(L)1

inhibitor and chemotherapy (n = 7/16, 43.75% (Table 1). The ICIs

received in this study included anti-PD-1 inhibitors nivolumab and

pembrolizumab and anti-PD-L1 inhibitor atezolizumab.
Single-cell sequencing library preparation

CD8+ T cells were isolated from PBMCs and processed for

single-cell RNA sequencing as described in Schmidt et al. (2023). In
frontiersin.org
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brief, monocytes and B cells were depleted from PBMCs using

CD19+ and CD14+ selection kits (STEMCELL) prior to staining

with oligo-tagged, fluorophore-labeled peptide MHC (pMHC)

dextramers (10:1 monomer per dextran) (Immudex) for 10 min

at room temperature. The cells were then washed prior to staining

with anti-CD3 (BioLegend, 300434), anti-CD8 (BioLegend,

344732), anti-CCR7 (BioLegend, 353251), and TotalSeq-C

Human Universal Cocktail, V1.0 (BioLegend, 399905). Finally,

the stained cells were resuspended in 0:25  mg=mL 7-AAD

solution (Biolegend) and sorted via fluorescence-activated cell

sorting (FACS) for 7AAD-, dextramer+, CD8+, and CD3+ cells.

These cells were topped off with 7AAD-, dextramer-, and CD8

+CD3+ cells to achieve a targeted cell recovery of 10,000 cells per

donor for single-cell RNA sequencing using Chromium Next GEM

Single Cell 5′ Reagent Kits v2 (10X Genomics). Gene expression, V

(D)J, and antibody-derived tags (ADT) libraries were prepared

according to the kit instructions (10X Genomics, CG000330 Rev

E) and sequenced on NovaSeq 6000 (Illumina).
Computational processing

Preprocessing
10X data was processed with CellRanger (version 6.0.1). We

used cellranger vdj for VDJ libraries and cellranger count for feature

barcode and gene expression libraries. Multiplets were removed

using Scrublet (version 0.2.3) (24).
Frontiers in Oncology 03
Quality control and data normalization
Stringent QC was performed on single-cell level using Seurat

(version 4.3.0.1), considering five metrics: (1) the number of

detected genes (NODG), (2) the number of unique molecular

identifiers (NUMI), (3) the percentage of reads mapped to

mitochondrial genes (pMito) or (4) to ribosomal genes (pRibo),

as well as (5) the number of detected proteins (NODP) (log10 of the

sum of surface marker counts per cell). Thresholds are determined

automatically using density calculations contrasting two of the

abovementioned metrics in a pairwise manner. This allows a

visual interpretation of the density clouds and thresholds. If the

pairwise analysis suggests different values for the same metric, the

more stringent value is chosen. The chosen thresholds are as

follows: NODG: 340–2, 500 NUMI: 500–7, 000 pMitO: 0%–6%

pRibo: 18%–55% NODP: > 2:75. Gene expression data was

normalized using Seurats Normalize Data function with default

parameters. Surface marker data was normalized using DSB (25)

with the parameters denoise.counts = TRUE, use.isotype.control =

TRUE, and Mouse-IgG1-kappa, Mouse-IgG2a-kappa, Mouse-

IgG2b-kappa, Rat-IgG2b-kappa, Rat-IgG1-kappa, Rat-IgG2a-

kappa, and ArmHam-IgG as isotype controls.

Data integration and annotation
Dimensionality reduction was performed with principal

component analysis (PCA). The number of PCs used for further

downstream analysis (UMAPs, WNN integration) was determined

automatically using the FindElbow function of the DUBStepR (26)
TABLE 1 Patient information for the Singapore NCCS cohort.

Patient
ID

Tumor
type

Prior ICI
exposure
(LTR/NoT)

Overall
response
(Yes/No)

Tumor
proportion
score (TPS)

TEM model
response
prediction

Treatment at
response
(Single/Combi)

Age Gender

Long-term responder cohort

IP1725 Lung LTR Yes 0 Yes Single 70 Male

IP2403 Lung LTR Yes 60 Yes Single 52 Male

IP2634 Lung LTR Yes 1 Yes Combi 51 Male

IP1063 Lung LTR Yes 5 Yes Single 62 Male

IP1202 Lung LTR Yes (v1, v2) 100 Yes (v1, v2) Single 76 Male

IP2577 Lung LTR Yes 0.9 Yes Combi 53 Female

IP1421 Lung LTR Yes 75 Yes Single 67 Male

IP3329 Lung LTR Yes 70 Yes Single 77 Male

IP2903 Lung LTR Yes 0 Yes Combi 51 Female

New-on-treatment (NoT) cohort

IP2662 Lung NoT Yes NA Yes Single 78 Male

IP2542 Lung NoT No (v1, v2, v3) 75
No (v1, v2);
Yes (v3)

Combi 58 Male

IP2669 Lung NoT No (v1, v2) 20 No (v1, v2) Combi 61 Male

IP2839 Lung NoT No (v1, v2) 0 No (v1, v2) Combi 73 Male
fro
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(version 1.2.0) package. Seurat’s weighted-nearest-neighbor

(WNN) integration technique is used at default parameters

(except for the number of PCs, determined by FindElbow) for the

multi-modal integration of scRNA-seq and ADT data. T cell subsets

and cell states were determined using an in-house panel that was

designed largely based on markers described in previous

publications (Supplementary Figure S1), followed by a manual

inspection of the assignment of labels and their markers using

RCA2 (27) (version 2.0).

Computation of markers associated with
response to treatment

To avoid patient-specific biases in detecting differentially

expressed genes on the single-cell level (6), we computed

treatment response markers in pseudo bulk space, averaging the

expression within donors either across all T cell subsets (ALL

setting) or within distinct T cell subsets (single cell type setting)

using Wilcoxon test. We applied a p-value threshold of 0.05 and an

absolute minimum log2 fold change of 0.5 for downstream analysis.

To avoid biases based on patient-specific TCR repertoires, VDJ gene

expression data was excluded at this stage. Pseudo bulk DEGs were

computed by comparing two groups (LTR vs. NonR).

Activity analysis of transcriptional regulators
Using the python implementation of SCENIC (28) utilizing the

database files allTFs-hg38.txt, hg38-10kbp-up-10kbp-down-full-tx-

v10-clust.genes-vs-motifs.rankings.feather, hg38-10kbp-up-10kbp-

down-full-tx-v10-clust.genes-vs-motifs.scores.feather, hg38-500bp-

up-100bp-down-full-tx-v10-clust.genes-vs-motifs.rankings.feather,

hg38-500bp-up-100bp-down-fu l l - tx-v10-c lus t . genes-v s -

motifs.scores.feather, and motifs-v10nr-clust-nr.hgnc-m0.001-

o0.0.tbl, we obtained individual AUCell scores for all genes and

within the LTR and NonR groups. We aggregated those on donor

level and computed the fold changes between the LTR and NonR

groups to identify differential regulons.

Ligand–receptor analysis using NicheNet
To infer cell–cell communication patterns underlying

differential gene expression, we performed a NicheNet analysis

using the standardized pipeline described in the online vignette

(29). NicheNet allows us to study intercellular communication by

integrating the expression data of interacting cells with knowledge

on ligand-to-target signaling paths to potentially predict ligand–

receptor interactions that might drive gene expression changes in

cells of interest. We considered the union of DEGs computed above

as potential targets. Ligand–receptor predictions were made using

NicheNet’s pre-compiled human ligand–target matrix (describing

the potential that a ligand may regulate a target gene), ligand–

receptor network (with information on potential ligand–receptor

bindings), and weighted signaling data (with weights representing

the potential that a ligand will bind to a receptor). Here we analyzed

cell-to-cell communication in a sub-cell type agnostic fashion by

grouping all T cells together and omitting sender-specific

distinctions. This provides insights into general signaling trends

across the T cell compartment.
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Enrichment analysis for KEGG, Reactome, and
GO terms

Gene Ontology (GO) and pathway enrichment analysis of genes

of interest was performed in R, primarily applying tools introduced

in the ClusterProfiler (version 4.10.0) and Enrichplot (version

1.22.0) packages, which provide a universal interface for gene

functional annotation from a variety of sources and several

visualization approaches for interpreting functional enrichment

results, respectively. For that purpose, we mapped the gene names

to their Entrez IDs using BioMart and the org.Hs.eg.db R databases

(version 3.18.0). GO defines concepts and classes that describe a

gene function and parent–child relationships between concepts

(AnnotationDbi version 1.64.1), whereas pathways represent

molecular interact ions and reaction networks . Over-

representation of GO terms and pathways mapped to Entrez IDs

is determined by their associated p-value calculated by the

hypergeometric distribution

P(X ≥ k) = 1 −o
k−1

i=0

M

i

 !
N −M

n − i

 !

N

n

 !

(which corresponds to a one-sided Fisher’s exact test), where N is

the total number of genes in the background distribution (all

human genes), M is the number of genes within that distribution

that are annotated to the term or pathway, n is the size of the list of

genes of interest, and k is the number of genes within that list which

are annotated to the term or pathway. The p-values were adjusted

for multiple comparisons using the Benjamini–Hochberg

procedure, which controls the false discovery rate. An adjusted p-

value below the 0.05 threshold identifies an over-represented (or

enriched) term or pathway.

Power analysis using scPower for single-cell data
We used the scPower webserver (30) to perform a power

analysis in approximating our dataset. We used the webserver in

DE gene mode with the following parameters: organism = Homo

sapiens, assay = 10x 5’ v2, tissue = blood, cell type = effector memory

CD8-positive, cell type frequency = 0.31 (mean of CD8+ effector

memory T cell frequency in our data (Supplementary Table S5)),

sample size ratio = 0.7, reference study = Blueprint (CLL) iCLL-

mcLL, total sample size (min) and (max) = 17, cells (min) = 3, 000,

cells (max) = 11, 000. Note that the mean number of cells across

samples is 5, 800 in our dataset (Supplementary Table S1).

Power analysis using PROPER for pseudo bulk
RNA-seq data

We used the PROPER R-package (31) to perform a power

analysis on bulk RNA-seq data to approximate our cell-type-

specific pseudo bulk data. We used PROPER with the settings

ngenes = 20,000, p.DE = 0.05, lOD = “cheung”, lBaselineExpr =

“cheung”, Nreps = c(7,10,13,16,19), Nreps2 = c(10,13,16,19,22),

sim.opts = sim.opts.Cheung, DEmethod = “edgeR”, nsims = 20 and

executed the summary function with the parameters alpha.type =
frontiersin.org
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“fdr”, alpha.nominal = 0.1, stratify.by = “expr”, and delta = 0.5. The

thresholds used for the simulation equal the thresholds used for

analyzing our pseudo bulk RNA-seq data.
Inference of T cell signatures that predict
ICI response using machine learning

Assessing the relevance of confounders
For all available (clinical) metadata (treatment paradigm at

response [single/combi], gender, age, tumor proportion score

(TPS)) (Table 1), we performed c2 test for categorical and t-test

for continuous variables to test for the presence of potential

confounding effects.

Multi-class logistic regression
We used a multi-class logistic regression approach with elastic

net penalty implemented in the glmnet (4.1-7) R-package to predict

response groups on the single-cell level as carried out previously (6).

The elastic net leads to sparse interpretable models by utilizing the

grouping effect, i.e., correlated features are kept in the model. This is

achieved by the combination of two regularization terms, the ridge

and the lasso penalty. The alpha parameter controlling the trade-off

between both penalty terms was optimized using a grid search (0.0

to 1.0, with a step size of 0.05) within a leave-one-sample-out (i.e.,

all data from one donor) cross-validation. A sixfold inner cross-

validation using the cv.glmnet procedure was used to find the best

lambda parameter on single-cell level. Due to the small sample size,

the leave-one-sample-out cross-validation is the only viable cross-

validation approach in this application.

Feature design
To construct the feature matrix for the classification problem,

we considered all genes and surface markers that showed

differential expression (log2(foldchange) ≥ 0:2 and p-value <0.1)

abundance in the pseudo bulk comparisons described above. We

use a lenient cutoff to avoid the exclusion of features that are

potentially relevant in combination with other features. The models

were trained on both balanced and unbalanced datasets to avoid

biases introduced by cell numbers.

Feature interpretation to derive biological
signatures

Model performance was assessed using a leave-one-sample-out

cross-validation and reported as model accuracy. The regression

coefficients were integrated across all cross-validation runs to

identify features that were robust to changes in the training data.

Non-zero regression coefficients of features can be interpreted as

potential T cell subset-specific biological signatures linked to

patient response.

Applications of learned signatures to an
independent cohort by Hu et al.

Single-cell RNA sequencing (scRNA-seq) data were obtained

from Hu et al. (32). The dataset (GSE207422) was loaded into R
Frontiers in Oncology 05
(version 4.4.0) as a sparse UMI count matrix, representing the

number of unique transcript molecules detected per gene per cell.

Patient metadata, including relevant clinical annotations, was

integrated into a Seurat object (version 5.2.0). Data normalization

was performed using Seurat’s NormalizeData function with

default parameters.

Highly variable features (genes with high variance across cells)

were identified before performing principal component analysis

(PCA). The first 15 principal components (PCs) were selected to

construct a shared nearest neighbor (SNN) graph using

FindNeighbors, grouping cells based on their similarity in the

reduced-dimensional space. Clustering was performed with

FindClusters using the Louvain algorithm at a resolution of 0.1,

enabling the identification of major cell populations.

Clusters were visualized in two dimensions using uniform

manifold approximation and projection (UMAP) (Supplementary

Figure S9). Major immune cell populations were assigned based on

the expression of canonical lineage markers (6). Specifically, B cells

were identified by the upregulation of MS4A1, CD19, IgHM, CD69,

and FCER; myeloid cells by CD14, CD16, and CGN1; T/NK cells by

CD4, CD8A, CD8B, and CD56; and stem/progenitor cells by CD34,

CLC, HLF, AREG, MPO, and MME.

A subset of clusters corresponding to T and NK cells, as well as a

distinct stem/progenitor cluster, was extracted for further analysis.

These cells were re-clustered, and a new UMAP projection was

generated. Cluster identities were refined based on gene expression

patterns to define CD8+ T cells, naïve and memory T cells, cytotoxic

NK cells, and regulatory and effector T cells.

Functional module scores were computed for the T/NK subset

using the AddModuleScore function, using the feature genes

identified by our models. This approach calculates an enrichment

score for our gene sets in each individual cell, facilitating the

distinction of the functionally relevant T cell subpopulations

defined above. Statistical comparisons of module scores were

performed using t-tests to identify significant differences between

patient groups, specifically major pathologic response (MPR) versus

non-major pathologic response (NMPR).

Applications of learned signatures to an
independent cohort by Kim et al.

Single-cell RNA sequencing (scRNA-seq) data were obtained

from Kim et al. (33). The dataset (GSE285888) was loaded into R

(version 4.4.0) as a sparse UMI count matrix, representing the

number of unique transcript molecules detected per gene per cell.

Patient metadata, including relevant clinical annotations, was

integrated into a Seurat object (version 5.2.0). Data normalization

was performed using Seurat’s NormalizeData function with

default parameters.

Highly variable features (genes with high variance across cells)

were identified before performing principal component analysis

(PCA). The first 20 principal components (PCs) were selected to

construct a shared nearest neighbor (SNN) graph using

FindNeighbors, grouping the cells based on their similarity in the

reduced dimensional space. Clustering was performed with

FindClusters using the Louvain algorithm at a resolution of 0.4,
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enabling the identification of major cell populations using canonical

markers (CD3D, CD4, CD8A, CD8B, NCAM1, GNLY, PRF1,

GZMB, MS4A1, CD19, CD1C, CLEC10A, JCHAIN, ZMB,

ELANE, AZU1, RETN, CD14, FCGR3A, TNFRSF17, XBP1,

GYPA, and ALAS2) (6). We identified clusters 0 and 13 to be

CD8+ T cells and performed sub-clustering for these clusters (15

pincipal components, 0.5 resolution). T cell subsets were labeled

using canonical markers (CD8A, CD8B, CD4, CCR7, SELL, CD62L,

LEF1, TCF7, GZMB, PRF1, IFNG, TBX21, IL7R, CD127, GZMK,

CX3CR1, KLRG1, PDCD1, LAG3, HAVCR2, TOX, CD69, ITGAE,

CD103, CXCR6, FOXP3, IL2RA, CTLA4, IL10, TRGV2, TRDV9,

KLRB1, MKI67, PCNA, TOP2A, CENPF, NUSAP1).

Functional module scores were computed as above for three

signatures across all T cell subsets as well as for 100 randomly

selected cells.
Clonotype abundance, diversity, and
dynamics analysis

Clonotype abundance was calculated across all LTR and NonR

clonotypes of the NCCS cohort with respect to response group and

T cell subset. Ratios were discretized using the interval borders: 0,

le–05, le–04, le–03, 0.01, and 1. Simpson diversity was computed

using the diverse R package (version 0.1.5). For clonotype dynamics

comparisons across time points, we consider the normalized size of

clonotype y in sample x as NormalisedClonotypeyx =
Clonotypeyxj j
Samplexj j ,

where Samplexj j is the total count of paired TCRs in sample x

and Clonotypeyx
�� �� is the TCR count of clonotype y in sample x.
Data and code availability

Processed data stored in Seurat objects saved in RDS files and

code for figure generation and data processing post-quality control

are avai lable on Zenodo (10.5281/zenodo.10867209) .

Supplementary tables are available in an Excel sheet.
Results

CD8+ T cell subsets, cell states, and TCR
repertoire diversity in ICI responders versus
non-responders

Tumor-resident or tumor-exposed T cells can circulate and are

detectable in the blood (34–36). We analyzed blood-derived CD8+T

cells from patients with solid tumor who continue to respond to ICI

treatment for a prolonged time, hypothesizing that CD8+ T cells

play a key role in these patients to control their tumors. We used

single-cell sequencing technology to deeply phenotype these cells

and compared data from long-term responders (LTR) to new-on-

treatment non-responder (NonR) and responder patients, both at

baseline and several weeks after the initiation of treatment. The
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study cohort from National Cancer Centre Singapore (NCCS)

comprises patients distinguished by the timing of ICI treatment

initiation: long-term responders (LTR) and new-on-treatment

(NoT) patients (Figure 1A).

We prospectively recruited LTRs who had previously

demonstrated clinical and durable responses to ICI treatment.

Among LTRs, the median duration of response was 15 months

(range: 4–32 months), with a median duration of follow-up of 21

months. In addition, patients new on ICI treatment were recruited,

with blood samples collected immediately before the initiation of

ICI and several weeks later. For the NoT patients, the responders

were identified from routine clinical and radiological assessment

and had achieved at least a partial response after initiation of ICI

either alone or in combination with chemotherapy. For some

patients, a third sample was collected several months after the ICI

start (Figure 1A). The time between the first, second, and third

sample collection ranged between several days and almost 1 year

(Figure 1B). Patient details including the tumor indication and

responder status for the new-on-treatment group are summarized

in Table 1.

In total, after quality control, we obtained 104, 400 cells

representing data from 10 LTR samples from nine donors, a

single sample from a responder patient, and seven NonR samples

from three NonR donors.

In a first analysis step, we defined CD8+ T cell subsets and cell

states in all patients using scRNA seq data. T cell subsets and cell

states were defined based on previously published markers

(Supplementary Figures S1A, B). T cell subsets, defined by the

state of differentiation or maturity, were well delineated and formed

mostly uniform clusters in a UMAP illustration (Figure 1C). While

there were no significant differences in cell type distribution

between the two patient groups at the standard 0.05 threshold

(Figure 1D, Supplementary Tables S1-S6 for cell numbers per

patient and metadata), we noticed a trend of naive T cell (TN)

depletion in LTRs compared to NonR (Wilcoxon, p = 0.088).

Next, we assessed cell states as individual T cell subsets can

acquire various cell states describing their function and activation

state, which can also be shared across T cell subsets (Supplementary

Figure S1C). Cells of distinct cell states clustered together in a high-

dimensional space except for cytotoxic cells (Figure 1E), which

formed several clusters, showing more diversity driven by both T

cell subset and patient identity. Although significant only at the 0.1

threshold, we found that LTR patients tended to have more

cytotoxic cells compared to non-responders (Wilcoxon, p =

0.088; Figure 1F).

Cells with an exhausted phenotype could be dominated by

virus-specific cells, which are known to upregulate exhaustion

markers especially during chronic infections (37, 38). To address

this, we first used our previously described models to identify CMV,

EBV, and influenza (flu)-specific CD8+ T cells based on their

phenotype in all patients (39). Inference of viral specificity

increased the number of cells for the analysis and included

patients with HLA types that were not covered by the dextramer-

based detection of viral T cells (Supplementary Figure S2A). The
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predicted specificity matched the dextramer-based reference

specificity for most cells (Supplementary Figure S2B). The

specificity inference resulted in thousands of predicted virus-

specific cells (Supplementary Figure S2C) that grouped as

expected in a phenotype UMAP (Supplementary Figure S2D),

and the T cell subset and cell state distribution of virus-specific

cells matched the previously described phenotypes, notably the

TEMRA and exhausted phenotype of CMV-specific cells

(Supplementary Figures S2E, F) (39). We note a pronounced, but

not significant, difference in cell state proportions for CMV-specific

cells between LTRs and non-responders, with the latter showing

higher numbers of exhausted T cells (Wilcoxon, p = 0.055).

Furthermore, we investigated the TCR repertoire of the NCCS

cohort in LTR (n = 10) and NonR (n = 7) samples across all time

points: We observed that the clone sizes of unique paired TCRs

increased with maturity of the T cell subtypes (Supplementary

Figure S3A). Furthermore, the Simpson Index revealed that LTR

samples had a more diverse set of clonotypes (i.e., more unique

TCRs) within the cytotoxic TEM and TEMRA populations

compared to NonR samples (Supplementary Figure S3B).
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In addition, we investigated the across-group TCR similarity by

comparing the mean TCRDist similarity across all possible

comparisons between samples (excluding same donor but

different time-point comparisons). We hypothesized that if the

ICI response is indeed driven by tumor-specific T cell, the TCR

space of LTRs should be more similar within the LTR group itself

than toward NonR as well as NonR compared among each other. As

shown in Supplementary Figure S3C, this is indeed the case.

Using two time point samples from a long-term responder

(patient IP1202), we performed TCR dynamics analyses for paired

TCRs (Supplementary Figure S4). The second sample (v2), obtained

8 days after the initial sample (v1), harbors many additional

clonotypes not present in (v1) (Supplementary Figure S4A).

Among the 302 shared clonotypes, 250 are expanded in the v2

sample compared to the v1 sample. Unlike the unique clonotypes,

for which the largest clone at v2 is of size 8 (Supplementary Figure

S4C), we observe highly expanded clones among the shared

clonotypes in the v2 sample (Supplementary Figure S4D)—for

example, the largest clone of size 536 is encompassing 12.73% of

the entire v2 sample’s TCR space.
FIGURE 1

Cohort description and cellular characterization. (A) Cohort description and schedule of ICI initiation and blood draws. (B) Time points and samples
collected for each patient and color-coded response to treatment per patient. LTR, long-term responders; NonR, non-responders. (C) UMAP of T
cell subsets for all cells analyzed. (D) Differences in proportion of CD8+ cells with respect to T cell subsets between response groups. (E) UMAP of
cell states for all cells analyzed. (F) Differences in proportion of CD8+ cells with respect to cell states between response groups.
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Identification of phenotypic differences
between long-term responder and non-
responder T cells

To study differences in molecular markers for the individual T

cell subsets assessed, we next compared differentially expressed

genes (DEG) between LTR and NonR. Despite the limited size of

our cohort, a power analysis using scPower (30) estimated a DE

power of 0.764 for the scRNA-seq fraction of our dataset, suggesting

sufficient power to identify DE genes in single-cell space

(Supplementary Figure S5). However, to avoid bias introduced by

unbalanced cell numbers, patient-specific T cell expansions which

can occur in scRNA-seq data from cancer samples (6), we

performed pseudo bulking per sample across all and within each

T cell subpopulation and performed differential expression/

abundance calculations in the pseudo bulk space (Supplementary

Table S7). Approximating power for the pseudo bulk comparisons

with the PROPER package (31) resulted in a power estimate close to

the suggested threshold of 0.8 (Supplementary Figure S6). Due to

the nature of the reference data used for the estimate

(lymphoblastoid cell lines from 41 unrelated CEU individuals

(HapMap) with high biological variation across samples), the

power estimation is likely a lower-bound. In our cell-type-specific

pseudo bulk data, we found significant positive fold changes for

various DEGs, including the CCR5-binding chemo-attractant CCL5

in naive T cells. CCR5-binding chemo-attractant CCL4L2, CD69,

DUSP1, NFKBIA, and TNFAIP3 were differentially expressed in

several subpopulations (Figure 2A).

Separately, we also assessed differences in surface marker

expression based on ADT data. We observed an upregulation of

the immune checkpoint inhibitors CD224 and CD274 (PD-L1) in

TN and TSCM populations, CD35 in TN, and tissue-residency

marker CD49a (40) in TN, TSCM, and TEMRA. CD197 (CCR7)

was significantly down-regulated in a pan-T cell analysis

(Figure 2B). CD20, which was upregulated in the TN population

(Figure 2B), is an established B cell marker that is not known to be

expressed in T cells (41). Future studies are needed to elucidate the

role of CD20 in the T cell context.

Due to the absence of single-cell epigenomics profiling in our

dataset, we next turned to SCENIC (28) to identify potentially

relevant regulators that may be associated to gene expression

differences between long-term responders and non-responders. As

shown in Figure 2C, we found 17 transcription factors (TFs) with a

significant (p-value <0.05) absolute AUCell log2 fold change of at

least 0.25 between LTRs and NonRs. We found literature evidence

for 15 of these 17 factors to be relevant to T cell regulation

(Supplementary Table S8). Furthermore, the pseudo bulk gene

expression of several of the TFs was in line with the predicted TF

activity in either LTRs or NonRs (Supplementary Figure S7).

Among the TFs associated with the non-responder group was

IRF2, which is known to have a feedback loop function

redirecting IFN signals, thereby suppressing T cell responses (42).

Our analysis also highlighted IRF8 to be associated with LTRs. IRF8

is known to combine TCR stimulation and gc-cytokine signaling

pathways. Of particular interest in the lung cancer context,
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Miyagawa et al. suggested that IRF8 is an essential player in the

chronic activation of CD8+ T cells (43). The TF with the strongest

enrichment in LTRs was AHR, which is reported to promote a

tissue-resident memory gene program. Furthermore, upon AHR

depletion, the anti-tumor immunity of polyfunctional CD8+ T cells

is diminished (44), which further strengthens the importance

of AHR.

A cell–cell communication analysis using the differentially

expressed genes and markers as input for NICHNET (29)

revealed several ligand–receptor interactions (Figure 2D) such as

CXCL2 targeting CD69, a tissue residency marker, and FASLG

targeting NFKBIA, which codes for a protein inhibiting NF-kappa-

B (NF-kB) signaling, thereby regulating immune response (45).

To assess in a more holistic way how LTRs differ fromNonR, we

performed Gene Set Enrichment Analysis (GSEA) on gene sets

from KEGG (46), Reactome (47), and GO (48) using Clusterprofiler

(49). In total, we found 11 enriched pathways in KEGG, 11

significant terms in Reactome, and 223 enriched GO terms when

applying a p.adjust threshold of 0.05 (Supplementary Tables S9-

S11). Based on the DEG, surface markers, and regulons that differ

between LTRs and NonRs, we found the KEGG terms Toll-like

receptor signaling pathway, cytokine–cytokine receptor interaction,

NF-kappa B signaling pathway (linking back to the NICHNET

analysis suggesting several potential ligands targeting NFKBIA),

and IL-17 signaling pathway to be of particular interest (Figure 2E).

The Reactome-based analysis also highlighted several pathways

linked to the adaptive immune response such as immunoregulatory

interactions between a lymphoid and a non-lymphoid cell, signaling

by interleukins, antigen processing–cross presentation, and G alpha

(i) signaling events (Figure 2F).

The Biological Process terms identified using the GO analysis

listed several processes involved in immune response and signaling

such as GO:0070371, ERK1, and ERK2 cascade and GO:0043410,

positive regulation of MAPK cascade complementing the KEGG and

Reactome terms (Supplementary Table S11).
Training and validation of machine learning
models for the prediction of responses to
ICI in LTR and non-responder patients

Based on the various differentially expressed genes and

differentially abundant surface markers between LTRs and non-

responders, we next sought to identify biomarker signatures that

could potentially be useful to predict clinical responses. We used

statistical tests to determine whether any potentially confounding

covariates from the recorded metadata (Table 1) should be included

in a machine learning model. We found neither gender ( c2 test, p =

0.21), tumor proportion score (TPS) (t-test, p =0.87), nor age (t-test,

p = 0.76) to be associated to response—for the association between

treatment regimen at response and response itself, c2 test did show

a significant association (p = 0.004). However, we decided not to

include the treatment regimen at response as a feature to allow for

both the incorporation and applicability of the model to new-on-

treatment baseline samples.
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Given the relative stability of T cell subset and state distribution in

longitudinal samples (Supplementary Figure S8), we included all patient

visits for the training of machine learning models. As illustrated in

Figure 3A, we used lenient cutoffs on pseudo bulk-derived differentially

expressed genes and surface markers ( jlog2(foldchange) j) ≥ 0.2 and p-

value <0.1) to construct a candidate feature matrix as input for our

machine learning models in a T cell subset and comparison-specific

manner. Next, we applied data balancing to construct training and test
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datasets in a leave-one-sample-out cross-validation procedure to assess

model performance both on single-cell (Figure 3B, Supplementary

Figure S9) and sample level (Figure 3C), whereby we classify a sample

to be correctly predicted if more than 50% of single cells have been

assigned the correct label. Multiple time points per patient are

considered as separate samples in a per-sample evaluation.

In 93% of natural killer T-like (NKT-like) and 91% of TSCM, CM

and TN single cells were correctly assigned to belong to a non-
FIGURE 2

Identification of differentially expressed genes, differentially abundant surface markers, KEGG pathways, and regulons. (A) Summary of DEGs in RNA-
seq data comparing LTR vs. NonR. (B) Summary of differentially abundant surface markers comparing LTR vs. NonR. [For (A, B), a p-value threshold
of 0.05 and a minimum absolute log2-foldchange of 0.5 are required for a gene/marker to be shown.] (C) Bubble plot depicting regulons with
differential activity between LTR and NonR samples. (D) Enriched ligand–receptor interactions as derived by NicheNet. (E) KEGG terms showing
enrichment in LTR over NonR samples using pseudo bulked scRNA-seq data as input for a GSEA analysis. (F) Reactome terms showing enrichment
in LTR over NonR samples using pseudo bulked scRNA-seq data as input for a GSEA analysis.
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responder. We interpret the NKT-like model with caution due to the

low frequency of this T cell subset and the consequently small number

of cells that was available to train the model. This is the most likely

reason for the non-optimal performance of the NKT-like model on

sample level. Across all T cell subsets, at sample level, more LTRs were
Frontiers in Oncology 10
overall correctly predicted compared to NonR. This is likely due to the

small sample numbers for the NonR group. A generic model that is

trained across all subtypes using the union of differentially expressed

genes and surface markers computed on the subtypes obtains the

second best accuracy (0.85) in single-cell space for predicting LTRs.
FIGURE 3

Machine learning model for ICI response prediction. (A) Description of the machine learning workflow. (B) Balanced accuracy averaged across all
leave-one-sample-out cross-validation runs on a single-cell level. (C) Model performance on sample level across all leave-one-sample-out cross-
validation runs. (D) RNA features with a non-zero median regression coefficient across the leave-one-sample-out cross-validation for the two
groups, lung-only model. Blue (values closer to 1), marker associated with prediction of NonR; black (values closer to -1), marker associated with the
prediction of LTR, whereby 1 and –1 indicate the most relevant features. (E) As (D) using ADT data. (F) Grouping of TEM cells in UMAP space using
non-zero features for dimensionality reduction. (G) Grouping of MAIT-like cells in UMAP space using non-zero features for dimensionality reduction.
Acc = Accuracy.
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The best results on sample level were observed for the TEM

model that predicted all 10 responder samples correctly and for the

MAIT model that predicted all seven NonR samples correctly

(Figure 3C). The mean regression coefficients for each considered

feature gene (Figure 3D) and each considered surface marker

(Figure 3E) highlight the T cell subset-specific association of each

feature with LTR or NonR status. In general, we observed an

agreement of selected features with treatment response between

cell-type-specific models and the general T cell model. The

separation of cells in a UMAP space based on RNA and ADT

features selected by the models is illustrated for TEM and MAIT

cells, respectively (Figures 3F, G).

In a leave-one-sample-out cross-validation, including a lung

responder (R) sample, the TEM model predicted 10 out of 10 LTR,

one out of one R, and six out of seven NonR samples correctly

(Supplementary Figure S10A). Importantly, the analyzed dataset

included one baseline sample from responder IP2662 (IP2662-v1),

which was predicted correctly as responder even though the model

was trained with mostly on-treatment samples.

It is worth noting that the upregulated expression of previously

described response surface marker CD57 contributed significantly

to the prediction of NonR for TN but not the memory cell models

(Supplementary Figures S10B, S11A). For the TEM model,

downregulated CD44 (prediction of NonR (Supplementary

Figures S10B, S11A) and upregulated CCL4L2 [prediction of

LTR/R (Supplementary Figures S10B, S11B)] were the top

markers contributing to the model. CCL4L2 is a chemo-attractant

for CCR5-expressing cells during inflammation and immune-

regulation. This gene has previously been described to be highly

upregulated in CD8+ T and NK cells in lung adenocarcinoma

tumors (50) and has been associated with favorable disease

outcomes (51).

In fact, a literature search of all features with a non-zero

regression coefficient in the TEM 2-group model revealed that for

22 of 23 features, prior studies suggest an involvement of the

respective genes or surface markers in the T cell immune

response or lung cancer biology, respectively (Supplementary

Table S12)—for instance, GIMAP4, a marker upregulated in non-

responders, is known to accelerate T cell death (52). NFKBIA

expression was linked to LTRs. It encodes IkappaB a , which is a

regulating factor of NFkappaB signaling downstream of the TCR

and receptors of the TNF superfamily. Transcription factor

NFkappaB is required for cell proliferation and the induction of

effector function (53).

Furthermore, DUSP1, linked to LTRs, is known to be relevant

for T cell function and activation (54). In addition, our TEM model

highlighted factors that have been suggested to be prognostic

markers in the context of renal cell carcinomas: LYAR (55) and

ATP6V1G1 (23).

In summary, the lung-cancer-trained T cell subset-specific

models predicted 17 out of 18 ICI treatment responses from 12

cancer patients correctly. On a per-sample level, the models trained

specifically with TEM and MAIT cells showed the best prediction

accuracy when applied to the same target T cell subsets.
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Comparison of machine-learning-derived
signatures with tumor proportion score
and validation with external datasets

Tumor proportion score
Clinical assessments of PD-L1, such as combined positive score

(CPS) or tumor proportion score (TPS), have been used to identify

patients eligible for ICI treatments or to predict their likelihood of

response to ICI treatments (56, 57). We have obtained these scores

for our cohort (Table 1) and compared them to the TEM-specific

model predictions. We found that our TEM-specific model was able

to accurately identify a non-responder that was otherwise TPS high

(n = 1) and LTRs that were TPS low (n = 5).

Response signatures from an anti-LAG-3 and
anti-PD-1 combination treatment in patients with
melanoma

Huuhtanen et al. performed a scRNA-seq study investigating

anti-LAG-3 and anti-PD-1 therapy patients with melanoma by

analyzing pretreatment blood samples and blood samples taken 1

and 3 months after therapy from 40 patients. They found a

significant expansion of both NK and T cell population in

responders. Within the CD8+ T cell population, they found

PRF1, NKG7, GNLY, GZMH, MIF, IL7R, and CCL5 to be

differentially expressed in responders compared to non-

responders (58). These genes have also been identified by our ML

model in predicting anti-PD-1 treatment response in lung cancer

(Figure 3D), suggesting that our phenotypic signature might even

be applicable to other indications. Furthermore, the study by

Huuhtanen et al. revealed that the CD8+ T cell population in

responders showed a more cytotoxic phenotype. This is also in

agreement with the trend that we observed in our study (Figure 1F).

Immune gene signatures for predicting the
durable clinical benefit of anti-PD-1
immunotherapy in patients with non-small cell
lung cancer

In a study similar to ours, Hwang et al. performed phenotyping

using a panel of 395 immune-related genes for tumor tissues extracted

from 21 patients with NSCLC tumors before treatment. By contrasting

patients with a durable clinical benefit to those without, they identified

the expression of PSMB9 to be highly predictive of the clinical

outcome (59). Interestingly, our model identified PSMB10 as highly

relevant in predicting LTRs (Figure 3D). Both genes code for members

of the proteasome B-type family (T1B family), which is essential for

the processing of class I MHC peptides (60). In addition to PSMB9,

Hwang et al. showed in a NSCLC dataset that immune-related gene

expression signatures M1 (CBLB, CCR7, CD27, CD48, FOXO1, FYB,

HLA-B, HLA-G, IFIH1, IKZF4, LAMP3, NFKBIA, and SAMHD1)

and a peripheral T cell signature (HLA-DOA, GPR18, STAT1) have

predictive power for predicting clinical benefit. We found that our

model also suggested several genes that are part of these previously

suggested signatures: CCR7, CD48, and NKKBIA in the M1 signature

as well as STAT1 in the peripheral signature.
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Tumor microenvironment remodeling after
neoadjuvant immunotherapy in non-small cell
lung cancer revealed by single-cell RNA
sequencing

We obtained scRNA-seq data for about 92, 000 single cells from

three pre-treatment and 12 post-treatment patients with non-small

cell lung cancer (NSCLC) who received anti-PD-1 treatment (32).

The patients were grouped based on major pathologic response

(MPR) versus non-MPR. Upon identification of major cell types

and immune sub-cell types (Supplementary Figures S12A–D), as

described previously (6), we investigated the discriminatory

potential of our suggested prognostic signatures within this

dataset by computing the module score for each immune cell

type. Considering the union of all features determined to have

predictive power as listed in Figure 3D, we saw significant

differences in module scores across immune cell types and

response groups (Supplementary Figure S13A). Importantly,

restricting the feature list to only features relevant in the effector

memory population, which we predicted to be especially relevant,

resulted in significantly different module scores between treatment

response groups for effector memory cells in this external NSCLC

dataset (Supplementary Figure S13B). Additionally, the more

comprehensive signature of the general T cell model also led to

significantly different module scores between MPR and NMPR

across all T cell subsets (Supplementary Figure S14).

Classification of baseline PBMCs in patients with
NSCLC

We retrieved single-cell PBMC sequencing data for 222, 144

cells from dataset GSE285888 (33). Kim et al. predicted both ICI

efficacy and immune-related adverse events (irAE) severity in

patients with NSCLC from baseline PBMC samples. This is

especially interesting as the PBMCs were collected prior to ICI

treatment. As the cell typing data was not shared by Kim et al., we

performed cell type annotation to identify a total of 35, 437 CD8+T

cells (Supplementary Figures S15A–E). Using our T cell signatures,

we then computed the module scores contrasting the patients’

responses to the ICI treatment: CR (complete response), DR

(durable response), PD (progressive disease), and irAE (immune-

related adverse events). We found that all three suggested feature

sets, including the TEM signature, were able to separate PD and

irAE from CR (used as a baseline in comparisons) across most CD8

+ T cell subsets, while the module scores computed from randomly

selected cells did not lead to meaningful differences between patient

groups (Supplementary Figure S15F). These findings, using an

independent dataset, provided an additional validation of our

suggested molecular response signatures. Importantly, as the

dataset by Kim et al. consisted exclusively of pre-treatment,

baseline samples, the validation here clearly demonstrated the

potential for predictive response diagnostics prior to ICI

treatment using our molecular signatures.

Overall, we found that our signature aligns with previously

reported findings and two external scRNAseq datasets despite

limited sample numbers and/or challenging data sampling schemes.
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Discussion

In this work, we compared patient groups of LTRs and non-

responders to ICI treatment using multi-omics data and various

computational methods with the aim to better characterize

molecular signatures that are associated to the observed ICI

responses. The main findings and hypotheses discussed here are

visualized in Figure 4.

With respect to cell types and cell states, defined using the

CITE-seq data, we observed that the naive T cell population is more

abundant in NonR than in LTRs, while cytotoxic T cells are more

abundant in LTRs than in NonR (Figure 4A). Despite these results

being significant only at the 0.1 confidence level, we believe that

these differences in cell type proportions and their association to

response are relevant as similar associations, across several immune

cell types, are reported in another study with a larger cohort size

predicting checkpoint inhibitor immunotherapy efficacy (61).

LTRs not only seem to have more cytotoxic T cells but also

exhibit a more diverse TCR repertoire (Figure 4B). This is in line

with a similar observation in a cohort of 12 patients in an attempt to

predict durvalumab treatment response in NSCLC (62).

Furthermore, our observation that TCRs of LTRs are more

similar to each other than to TCRs of NonR or NonR to each

other (Figure 4B) might suggest the presence of a particular TCR

trajectory that is shared among the LTRs but not the non-

responders. This could be an interesting area for further

investigation. Similarly, exploring TCR dynamics on a dataset

with more time point samples generated for long-term responders

might be a promising avenue to priorit ize TCRs for

immunotherapy. Here IP1202 is the only long-term responder for

whom we obtained multiple time point samples. We did not

perform analyses with the purpose of TCR discovery beyond the

ones presented in Supplementary Figure S4, but we do believe there

is potential for this approach in larger datasets.

While elucidating the gene regulation landscape using SCENIC

suggested several transcriptional regulators to be associated with

LTRs status, we find RELB, AHR, and IKZF2 to be of particular

interest in light of the identified KEGG and REACTOME pathways

(Figure 4C). RELB is part of the non-canonical NF- kB pathway

(63), which was recently described to be “generating and

maintaining CD8+ T cell memory” (53) and could therefore be

important for long-lasting tumor control. Similarly, the

transcription factor AHR is known to foster a tissue-resident

memory CD8 T cell signature that is characterized by CD69 and

CD103 positivity and high GZMB production (44). Furthermore,

the transcription factor Helios, encoded by IKZF2, is known to

orchestrate effector T cell maturation (64). Taken together, these

results indicate that LTR patients, when compared to non-

responders, maintain CD8+ T cells with a tissue-resident,

cytotoxic phenotype.

Among the TFs associated with LTRs, ATF3 has been reported

in the context of immune regulation, in particular for regulating

NF- kB expression, cytokine production (65), and anti-tumor

activities of T cells (66). For both HOXB2 and GATA6, we did
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not find any direct evidence associating these transcription factors

with T cell regulation. However, the tumor tissue expression of

GATA6 has been suggested to identify prognostic signatures in

treatment-naive patients with pancreatic cancer (67), making it a

prime candidate for further investigation in T cells.

IRF2, which was associated with NonR, has been identified to

drive T cell exhaustion and suppressive programs induced by

interferons (42). In addition to that, IRF2 deficiency in mice

improved anti-PD-1 therapy success, suggesting that upregulation

of IRF2 might limit the efficacy of anti-PD-1 therapy in our non-

responders (42) and rendering IRF2 a prime candidate for

future research.

While we ran the above analyses on the entire T cell population

per donor, we next identified DEGs and surface markers in a cell-

type-specific way, which enabled the construction of feature gene

sets to be used in machine learning to identify complex molecular

signatures that predict ICI response.

We identified signatures that may pave the way for further

assessment of potential biomarkers of ICI response in patients with

lung cancer. Our cell-type-specific models as well as the global

model accurately predicted the ICI response in a leave-one-sample-

out cross-validation procedure on our in-house dataset.

Importantly, we showed that our models were also applicable to

external scRNA-seq datasets, showcasing the generalizability of the
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suggested signatures and thereby encouraging a closer investigation

of the relevant features.

The key feature across several cell-type-specific models as well

as the global signature that contributed to the LTR model was

CCL4L2 (Figure 4D). It was positively associated with TEM, TSCM,

and TEMRA models in LTR. We speculate that CCL4L2 expression

by CD8+ T cells could contribute to the creation of an inflammatory

environment by attracting other immune cells, such as NK cells

(68). This, in turn, could promote innate mechanisms such as

phagocytosis and presentation of tumor antigens. In addition,

inflammatory cytokines could help to overcome an immune-

suppressive state and re-invigorate T cells. The copy number of

CCL4L2 varies between individuals (69), which could be a possible

contributing factor influencing the ICI responses and which could

partially explain patient-dependent differences in response to

ICI treatment.

Similar to the SCENIC and pathway analysis, the machine

learning models also pointed us to a tissue-memory-resident

signature being indicative of long-term responders. Specifically,

CD69, a marker associated with LTRs on TEMs by our machine

learning model, is part of the tissue-resident memory T cell

signature manifested by the transcription factor AHR. CD69 is a

necessary and established marker to control T cell migration,

retention, and function (70). We hypothesize that this residency
FIGURE 4

Graphical summary of key molecular differences discovered within lung cancer patients between long-term responders and non-responders.
(A) Cell type and cell state proportion differences between LTR and NonR (CT, cytotoxic T-cell; TN, naive T-cell). (B) TCR diversity and TCR similarity
(computed using TCRDist3) difference for effector memory T-cells between LTRs and NonR. (C) KEGG pathways and transcription factors
determined with SCENIC and their putative linkage to putative links to tumor progression. (D) Machine learning-derived genes and surface markers
relevant for several cell types and putative links to tumor progression.
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signature is supplemented by CD49A, which was reported in the

context of elevated IFN-g levels upon antigen challenge in

melanoma (71). This active state of T cells might be further

supported by DUSP1 (MKP-1), which was identified as a positive

regulator of T cell activation and cytokine production (54), T cell

function, and T cell exhaustion (72). The latter is achieved, for

instance, by regulating NFATc1, which is known to regulate T cell

cytotoxicity (73). The regulatory potential of DUSP1 (MKP-1) for

cytokine production links back to the enriched KEGG term of

cytokine–cytokine receptor interactions, and the importance of

CCL4L2 for our model suggests that proper understanding and

future investigation of cytokines in LTRs are of particular interest.

The machine-learning-derived signature also highlights several

distinct features on TEMs from NonR. To interpret those, it is

important to note that successful anti-PD-1 therapy seems to

require a pre-existing anti-tumor T cell response (74).

Interestingly, the TEM population described by the ML model

does not suggest a strong cytotoxic phenotype. Among the

predictive surface markers are CD2 and CD44. CD2 is an

adhesion molecule involved in T cell activation and immune

synapse formation and has been suggested to be also involved in

impacting T cell exhaustion (75). CD44 has been attributed to a

plethora of roles in the context of T cells, including T cell migration

(in contrast to the tissue-resident phenotype in LTRs), regulation of

T cell responses, signal transduction in T cells, and regulation of

activation-induced cell death (76). The latter is characterized by the

interaction of SPP1-secreting tumor cells and CD44+ CD8+

exhausted T cells activating MAPK signaling (77).

Induced cell death is particularly interesting as we see GIMAP4

and GIMAP7 being selected as prognostic features for the non-

responder group as well. GIMAPs are known to be expressed in

lymphocytes and regulate survival/death signaling and cell

development within the immune system (78). The combination of

these markers suggests that their co-expression and/or interaction

may exacerbate T cell exhaustion and impair T cell function in the

tumor microenvironment, thereby reducing the response to anti-

PD-1 treatment.

While more work is needed to elucidate their exact mechanistic

roles in T cell response to ICI treatment, several of the predictive

features uncovered here have also been reported as potential

prognostic biomarkers for response to ICI treatments in varying

contexts. GIMAPs, in general, were identified as biomarkers for ICI

treatment in lung adenocarcinoma (LUAD), with higher GIMAP

expression in tumors associated with therapeutic response (79).

GIMAP4 expression in NSCLC tumors was also found to be

positively associated with immune checkpoint factors such as PD-

L1 and PD-1, while being negatively associated with overall survival

(80). GIMAP7 was reported as a pan-cancer biomarker, showing a

positive correlation to T cell infiltration of tumors, PD-L1

expression, microsatellite instability, TMB score, and TIDE score

(81). CCL4 was identified as part of a four-chemokine expression

signature for tumor samples, c-score, that can identify potential
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response to ICI treatments across several solid cancer types (82).

Differing by only one amino acid, CCL4L2 and CCL4 are non-allelic

gene copies with shared functions (83). Moutafi et al. identified

CD44 as a predictor of ICI response from spatial proteomic

profiling of tumors from advanced NSCLC undergoing ICI (84).

CD69 expression in lung and breast cancer tumors were positively

correlated with immune checkpoint expression, T cell infiltration,

and ImmunoPhenoScore (IPS) (85), leading the authors to propose

CD69 as predictive biomarkers for ICI treatment response (8).

Finally, even as ICI treatments were largely ineffective in the

treatment of advanced pancreatic ductal adenocarcinoma, PD-1

blockade resulted in the reactivation of circulating and tumor-

infiltrating T cells as characterized by NF-kB signaling (86). These

studies represent a collective recognition of the need for better

patient stratification that will allow more patients to benefit from

ICI treatments. Supporting this notion toward a biomarker-

informed management of ICI treatments, a phase 2 HUDSON

study attempted a biomarker-driven combinatorial approach for

advanced NSCLC patients with primary and acquired resistance to

anti-PD(L)1 treatments. In spite of a limited cohort and

confounders in disease baselines and demographics, the authors

reported an efficacy signal for patients found with a taxia–

telangiectasia mutated (ATM) alterations using a combinatorial

treatment of durvalumab (anti-PDL1) and ceralasertib, an ATM/

ATR (ATM- and Rad3-related) inhibitor (87).

Here we were able to identify these previously reported ICI

response-correlated factors as part of our broad molecular

signatures. The integrative nature of our machine learning

approach is well suited in providing a more nuanced and

comprehensive look at the complexities of ICI therapeutic

response that otherwise traditional approaches, such as TMB and

single biomarker detection, are unable to fully capture. Importantly,

while most of the above-cited studies involved working with tumor

biopsies, we have accomplished the response-associated markers

using data from circulating T cells, a minimally non-invasive source

of biomarker sampling. With further refinement, our approach can

potentially provide a minimally invasive and more accurate

screening method to identify patients who are more likely to

respond to ICI treatments.

Just like for cell type proportion differences, the ML models

could potentially be improved with a larger sample size with a more

consistent timing of sampling. This would allow the identification

of potential response signatures both before and during treatment.

Computationally, strategies moving forward aiming to enhance the

predictive capabilities of our models would be (1) to attempt to train

ensemble models, combining the T cell subset-specific predictions

into a unifying model and (2) using non-linear models, which,

however, due to small sample size, might not be advisable at

this stage.

In summary, the strong alignment with previous literature and

agreement with external single cell sequencing data provide

evidence of the validity and wider applicability of the molecular
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signatures identified in this study. This study is limited by a small

cohort size and its heterogeneity with regard to the time point of

blood collection, cancer stage, and type of ICI treatment (Figure 1).

Future research on a more comprehensive and carefully curated

dataset could pave the way to establish flow cytometry or

transcriptome sequencing-based assays in clinical practice to

informed ICI treatment decisions.
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