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Introduction: Schizophrenia is a severe psychological disorder that significantly

impacts an individual’s life and is characterized by abnormalities in perception,

behavior, and cognition. Conventional Schizophrenia diagnosis techniques are

time- consuming and prone to error. The study proposes a novel automated

technique for diagnosing Schizophrenia based on electroencephalogram (EEG)

sensor data, aiming to enhance interpretability and prediction performance.

Methods: This research utilizes Deep Learning (DL) models, including the Deep

Neural Network (DNN), Bi-Directional Long Short-TermMemory-Gated Recurrent

Unit (BiLSTM-GRU), and BiLSTMwith Attention, for the detection of Schizophrenia

based on EEG data. During preprocessing, SMOTE is applied to address the class

imbalance. Important EEG characteristics that influence model decisions are

highlighted by the interpretable BiLSTM-Attention model using attention weights

in conjunction with SHAP and LIME explainability tools. In addition to fine-tuning

input dimensionality, F-test feature selection increases learning efficiency.

Results: Through the integration of feature importance analysis and conventional

performance measures, this study presents valuable insights into the

discriminative neurophysiological patterns associated with Schizophrenia,

advancing both diagnostic and neuroscientific expertise. The experiment’s

findings show that the BiLSTM with attention mechanism model provides and

accuracy of 0.68%.

Discussion: The results show that the recommended approach is useful for

Schizophrenia diagnosis.
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1 Introduction

Schizophrenia is a severe brain disorder that significantly

impacts a person’s memory, cognition, comprehension, behavior,

and communication (1). This chronic mental disease impacts an

individual’s entire quality of life by having a substantial impact on

lifestyle, relationships, and profession (2). Disturbingly, 20-40% of

people with Schizophrenia have attempted suicide at least once, and

a significant portion of them have difficulty functioning in

professional settings (3). The World Health Organization (WHO)

estimates that 20 million people worldwide have this mental illness

(4). Furthermore, the WHO has also underlined that Schizophrenia

is curable, emphasizing the need for an accurate and timely

diagnosis for patients’ recovery and overall health.

The subjective assessment of behavioral symptoms by clinicians,

such as continuous functional deterioration, delusions,

hallucinations, and disordered speech or thought patterns, is

currently a significant component of the diagnosis of

Schizophrenia. Standardized criteria, such as those listed in the

DSM-5, are typically used to guide these assessments; however,

ultimately, the clinician’s opinion and experience are what matter

most. Due to this, the diagnostic process is often susceptible to bias,

inconsistency, andmisdiagnosis, particularly in atypical or early-stage

situations. The absence of a globally recognized, objective clinical

diagnosis for Schizophrenia continues to be a significant obstacle to

prompt and precise diagnosis. To address these limitations, biological

data-based techniques that are repeatable, automated, and

dependable are needed. One advantage of such a system is that it

can be applied in a wide range of situations without requiring experts

with extensive experience. Electroencephalograms (EEGs) are a

potent tool in the diagnosis of mental disorders because they can

accurately assess the state of the brain (5, 6). Clinical applications

have made extensive use of it (7). Moreover, EEG is commonly used

due to its portability, non-invasiveness, ease of setup, and high

temporal resolution (8). EEGs in source localizations have been

used to successfully diagnose several brain disorders, including

epilepsy, Schizophrenia, and Parkinson’s disease (9, 10). For

instance, identifying active areas linked to spikes is a crucial

difficulty in epilepsy research. However, accurate source

localizations are essential for TMS treatment techniques for mental

diseases like schizophrenia (11). According to recent research,

human-computer interface technologies have been greatly

improved by the combination of AI and EEG. AI-based EEG

systems prioritize robustness and interpretability over traditional

EEG systems. These studies provide the first thorough survey,

classifying robustness against noise and artifacts, human variety,

inconsistent data collection, adversarial threats, and interpretability

into backpropagation, perturbation, and intrinsically interpretable

techniques. It discusses possible potential paths and brings attention

to unresolved problems (12, 13).

Motivation: Numerous machine learning (ML) approaches

based on electroencephalogram (EEG) data have been

investigated for feature extraction, relevant feature selection, and

classification to automate the recognition of schizophrenia (14).

However, the advent of deep learning (DL) models has raised much
Frontiers in Oncology 02
attention lately since they offer a more potent and automated way to

discover discriminative patterns directly from unprocessed or

limited processed data (15). Convolutional neural networks

(CNNs), in particular, which are extremely significant for

classification problems, including in clinical neuroscience, can

automatically extract hierarchical features, in contrast to

traditional attribute-based approaches. According to Afzali et al.

(16), these methods replicate how the human brain processes

information and generates decision-making patterns.

Developments in Neural Network (NN) architecture design and

training have transformed deep learning (DL), allowing researchers

to focus on challenges in learning that were previously difficult. In

the context of diagnosing Schizophrenia using EEG, CNNs’ capacity

to capture temporal and spatial correlations in brain signal patterns

has demonstrated significant promise (17). Furthermore, deep

representations for classifying Schizophrenia in fMRI data have

been captured using advanced network topologies, such as 3D

CNNs in combination with autoencoders (18). There are still

major challenges to be solved, however. Current DL and ML

models typically have low generalizability due to the use of small

and unbalanced datasets, which is problematic because clinical trust

and acceptance rely on clear decision-making procedures. In this

study, we present an interpretable deep-learning pipeline for

utilizing EEG data in the detection of Schizophrenia. Our method

combines several elements: a strong preprocessing pipeline that

prepares the raw EEG signals by segmenting, normalizing, and

removing artifacts; carefully chosen DL architectures, such as a

baseline DNN, a hybrid BiLSTM-GRU model to capture temporal

dependencies, and a BiLSTM-Attention model that improves

feature relevance through attention mechanisms; synthetic

minority over-sampling technique (SMOTE) to address class

imbalance; and explainable AI (XAI) techniques SHAP, LIME,

and Integrated Gradients to visualize and interpret the model’s

predictions. In addition to improving classification accuracy, the

result provides the degree of interpretability required for practical

healthcare implementation.

This research enables a more accurate and efficient diagnosis of

Schizophrenia. The following lists the main findings and

contributions of the research.
• The study develops and evaluates three deep learning

models: DNN, BiLSTM-GRU, and BiLSTM, with

attention to the objective of detecting Schizophrenia using

EEG. Each architecture captures distinct spatial and

temporal patterns in the data. The BiLSTM-Attention

model outperforms the other models by effectively

focusing on the most informative EEG segments,

emphasizing the significance of attention processes in

clinical applications.

• The implementation of an interpretable BiLSTM-Attention

model is improved with SHAP and LIME tools, which

provide concise rationales for the model’s conclusions.

Consequently, key EEG features that are most

discriminative in identifying Schizophrenia can be

discovered, providing clinically significant insights.
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• This study uses SMOTE to handle class imbalance and F-

test feature selection to improve model efficiency. By

integrating feature importance analysis with conventional

performance measurements, the evaluation methodology

provides a thorough and accessible assessment of model

performance, along with the underlying neurophysiological

processes that contribute to Schizophrenia.
The notions used throughout the paper are shown in Table 1.

The following section provides further structure for the paper.

Section 2 details the background data on schizophrenia diagnosis.

Section 3 describes the suggested approach. In Section 4, the

effectiveness of the suggested approach is evaluated and compared

to the baseline methods. Section 5 concludes the entire paper and

provides recommendations for further research.
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2 Related work

This section details the background of Schizophrenia Diagnosis

using different ML and DL techniques. In research (19), the author

investigates ML approaches to categorize individuals with

schizophrenia proneness levels according to demographic and

behavioral features such as age, movement, pain, slowness,

exhaustion, and cleanliness. The dataset comprises 1,000 samples,

divided into five categories of proneness. Logistic Regression,

Support Vector Machine (SVM), Gradient Boosting, and Decision

Tree classifiers were all assessed in the study. Logistic Regression

yielded the highest accuracy, 94.2%. In (20), the author developed a

diagnostic tool using ML software to extract known dysregulated

miRNAs from the List literature that have been demonstrated to

have potential as biomarkers. To distinguish SCZ-associated

miRNA biomarkers from those chosen at random, a method was

developed. After validation, the model’s accuracy on an

independent test set was 88.88%, having achieved a peak of

94.32% with the sequential classifier. In the study (21), the

authors employed nine global centers to train and test the

generalizability of the 3D ResNet model. Using a leave-one-

center-out validation technique, the model achieved an 82%

classification performance on all datasets originating from various

countries. The study identified significant abnormalities between

healthy controls and those with Schizophrenia in the thalamus,

pallidum, and inferior frontal gyrus. An anatomical atlas was

utilized to enhance the SHAP permutation explainer’s therapeutic

applicability by providing accurate neuroanatomical and

functional interpretations.

In research (22), the author presents a novel approach for

optimizing preprocessing stages for better EEG data quality by

using the Mutation-boosted Archimedes Optimization (MAO)

algorithm for schizophrenia Detection. Using a Long Short-Term

Memory (LSTM) network based on Convolutional Neural

Networks (CNNs), the spatial and temporal patterns are retrieved

from multichannel EEG data. Experimental testing on various

datasets confirms the efficacy of the suggested method. The

method outperforms current methods with 98.2% accuracy. In

the study (23), the authors present a spatial-temporal residual

graph convolutional neural network (STRGCN)- based

classification method for SZ patients. The model primarily utilizes

single-channel temporal convolution and spatial graph convolution

to collect temporal and spatial frequency data, respectively and then

combines these two for classification learning. Extensive

experiments were conducted on the author’s dataset and the

publicly accessible Zenodo dataset. The classification accuracy of

the two datasets using the recommended method was 85.44% and

96.32%, respectively. In the study (24), the author presents a novel

approach to SZ diagnosis that combines adaptive statistical

parametric mapping, level analysis, and seed-based voxel

activation. The study incorporates pre-trained deep learning

models (DLMs) from the ImageNet dataset, including VGG-16,

ResNet50, MobileNet, and a recently created simplified DLM called

SZ-Net. The results demonstrate that SZ-Net is capable of correctly
TABLE 1 Abbreviations.

Abbreviation Description

AI Artificial Intelligence

ANN Artificial Neural Network

NB Naive Bayes

CNN Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

DT Decision Tree

DWT Discrete Wavelet Transform

EEG Electroencephalogram

GRU Gated Recurrent Unit

KNN K-Nearest Neighbor

LSTM Long Short Term Memory

LIME Local Interpretable Model-Agnostic Explanations

ML Machine Learning

MAO Mutation-boosted Archimedes Optimization

NB Naive Bayes

RF Random Forest

RNN Recurrent Neural Network

RT Random Tree

SZ Schizophrenia

SHAP Shapley Additive Explanations

SMOTE Synthetic Minority Oversampling Technique

STRGCN Spatial-Temporal Residual Graph Neural
Convolutional Network

SVM Support Vector Machine

WHO World Health Organization

XAI Explainable AI
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classifying fMRI scans, with an excellent 10-fold validation

classification accuracy of 99.24%.

In research (25), the author presents a novel method for

automatically identifying Schizophrenia by fusing fuzzy logic with

deep convolution models. CNN uses type-2 fuzzy notions for its

activation functions to handle uncertainty. Generative adversarial

networks are utilized to process data, thereby reducing overfitting

and enhancing diagnostic accuracy. This technique is evaluated

using electroencephalogram signals from both healthy controls and

patients with Schizophrenia, showing a remarkable 99.05%

accuracy rate in differentiating between the two groups.

Additionally, the suggested method is externally validated using a

database of unseen electroencephalograms, yielding a 96.42%

diagnosis accuracy, 100% sensitivity, and 92.85% specificity. In

research (26), the authors present the usage of deep learning and

EEG connection measurements, which indicates potential in

accurately identifying brain disorders, including Schizophrenia

and Alzheimer’s. Using coherence and PLV analysis, the system

detected and quantified disease-specific changes in brain patterns

with 94% accuracy for AD and 91% accuracy for Schizophrenia.

While maintaining low diagnostic costs and employing non-

invasive techniques, the combination of deep learning and EEG

technology demonstrates improved accuracy and a more

straightforward implementation in clinics.

In research (27) , the author uses short-durat ion

electrocardiogram (ECG) signals captured using a lowcost

wearable device to develop and evaluate an automated

classification technique for bipolar illness and Schizophrenia. The

study analyzed R-R interval windows extracted from brief ECG

recordings and performed classification tests using machine

learning (ML) techniques. There were 60 participants in the

study: 30 people with bipolar illness or Schizophrenia and 30

control subjects. The study evaluated numerous ML models,

achieving classification accuracy of 83% for the 5-fold cross-

validation and 80% for the leave-one-out scenario. In research

(28), the authors present five new frameworks based on machine

learning (ML) and deep learning (DL) for detecting Schizophrenia

from EEG signals. The present study is among the first to diagnose

Schizophrenia using a 2D representation of entropy features taken

from DWT and MEMD-processed signals. In the proposed DWT-

based framework, the classification performance of different CNN

models ranges from 57.14% to 86.59%. Likewise, CNN’s

performance for the MEMD-based framework ranges from 54.19

to 85.19%. The maximum accuracy attained by the basic CNN for

DWT and MEMD-based complexity features was 86.59% and

85.19%, respectively. The FFNN model produces a remarkable

88.18% classification accuracy. Lastly, the fifth framework further

improves classification accuracy, achieving 90.15% and

90.64%, respectively.

Current research on the diagnosis of Schizophrenia by ML and

DL has several significant limitations. Numerous methods suffer from

small or sparse datasets, which limit the model’s generalizability and

diminish its resilience across various populations. The complex,
Frontiers in Oncology 04
multimodal nature of Schizophrenia might not be adequately

represented by particular models that rely on single-modality

inputs like EEG, fMRI, miRNA, or ECG data. Despite frequently

attaining great accuracy, DL architectures are less feasible for clinical

implementation due to their large computing resource requirements.

EEG-based techniques are especially vulnerable to signal noise and

inter-individual variability, which compromises their consistency and

reproducibility. Table 2 summarizes the related work

for Schizophrenia.
3 Materials and methods

The proposed architecture provides a comprehensive and

computational basis for diagnosing Schizophrenia using EEG data

and advanced machine learning (ML) techniques, such as the XAI

tools in Figure 1. Step 1 (EEG Acquisition) collects raw EEG signals

as multivariate time-series data with Ne electrodes and T time

points. To distinguish between individuals with Schizophrenia

and healthy controls, the data on cerebral electrical activity are

significant. SMOTE is used in Step 2 (Preprocessing) to filter out

noise and address the issue of class imbalance. It performs this by

interpolating between nearest neighbors in feature space to create

fresh samples x̂ j ∈ Rd for the minority class. The ANOVA F-test

statistic and Random Forest significance scores are used for feature

selection. For feature fi,MSBi andMSWi represent the mean squares

between and within groups, respectively. Thus, X 0 ∈ Rn�d0 , where

d0 < d, is a reduced feature matrix. Three deep learning models are

created and trained on X 0 with corresponding labels in Step 3

(Model Construction & Development). The activation occurs at

layer l of the DNN model, which is built of several completely

connected layers. To analyze sequential EEG data forward and

backward and capture both short-term and long-term

dependencies, the BiLSTM-GRU model combines LSTM units

with GRUs. By calculating attention weights, the BiLSTM with

Attention model improves this by concentrating on informative

time steps in the EEG series. In Step 4 (Explainability), model

interpretability is accomplished by estimating the marginal

contribution of each feature fi to a prediction using SHAP values

fi, which are obtained using cooperative game theory. Using a

sparse linear model g(z0) ≈ f (z), LIME provides instance-level

interpretability by approximating local model behavior. When

individual features are permuted, the model performance drops

DL(fi) and is evaluated using a specific permutation importance

approach. Furthermore, Integrated Gradients provide an alternative

viewpoint on the relevance of input features by computing the

attribution score. The DNN is notable for its low complexity (q ≈

3.8 × 103) and short training time (t ≈ 3.7 minutes). Still, the

BiLSTM-Attention model delivers better accuracy and

interpretability despite its larger complexity (q ≈ 85 × 103). The

ideal trained model f̂ :X0 → 0, 1f g is then used to unseen EEG data

in Step 6 (Prediction) to identify individuals as either “Healthy”

or “Schizophrenia”.
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TABLE 2 Related work summary.

References Dataset Model/Techniques Results Limitations

Lalawat et al. (24) fMRI connectivity matrices Deep learning +
connectivity analysis

Enhanced diagnostic precision
using synergy of modalities

Limited to fMRI modality,
high computational cost

Yang (25) EEG signals Fuzzy deep learning model Effective diagnosis with
uncertainty modeling

Lack of clarity in fuzzy
logic interpretability

Sarwer et al. (26) EEG data (Alzheimer
+ Schizophrenia)

Deep learning on
functional connectivity

Distinguishes AD and SCZ
with high accuracy

Limited generalizability across
neurological conditions

ksikazek et al. (27) RR intervals (ECG) Deep learning on heart
rate data

Promising results for SCZ/
BP classification

ECG-based diagnosis less
validated clinically

Heda et al. (20) miRNA expression data ML classifiers on
miRNA features

Identified miRNA signatures
with diagnostic value by
achieving accuracy 90.5%,
precision 89.3% and F1-
score 90.1%

Limited by lack of
multimodal data

Norouzi et al. (19) Clinical patient records ML models (SVM, RF, etc.) Accurate (93%) classification of
schizophrenia vs controls

Limited generalization due to
small dataset

Weng et al. (21) Multi-site MRI data Deep learning with
interpretability methods

High performance and
interpretable models

Requires extensive
computation and
crosssite harmonization

Srinivasan & Johnson (22) Multi-channel EEG signals Preprocessing + Deep
learning (CNN)

Improved detection accuracy
with optimized pipelines

EEG data prone to noise
and variability

Xu et al. (23) fMRI time- series data Spatio-temporal residual GCN High precision in
automated diagnosis

Complex architecture may
hinder clinical translation

Bhadra et al. (28) Multiview EEG datasets Optimized DL on
multiview signals

Outperformed traditional EEG-
based classifiers

Model optimization and
reproducibility concerns
F
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FIGURE 1

Proposed architecture for schizophrenia detection.
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3.1 Dataset description and preprocessing

The EEG Data from the Basic Sensory Task in the Schizophrenia

dataset is a publicly available resource developed to make it easier to

compare the brain responses of individuals with Schizophrenia to

those of healthy controls. EEG recordings made during a sensory task

that involved pressing buttons and listening to sounds are included in

the dataset, which Brian Roach and collaborators gathered. This setup

aims to investigate event-related potentials (ERPs), with a focus on

the N1 and P2 components, which are crucial for understanding

sensory processing impairments associated with Schizophrenia.

Table 3 provides a comprehensive overview of the EEG dataset

used to identify Schizophrenia. The dataset includes EEG

recordings from 81 individuals, 32 of whom are healthy controls

and 49 of whom have been diagnosed with Schizophrenia. The

gender distribution shows a potential gender gap that may limit the

generalizability of the model’s results, with 67 men and 14 women.

EEG patterns and cognitive responses may be impacted by the

average participant age of 39 years and the mean educational

attainment of 14.5 years. EEG data were collected using 64 scalp

electrodes and 8 external electrodes using the BioSemi ActiveTwo

system, which provides excellent spatial resolution. The temporal

resolution of the signals, which were captured at 1024 Hz, was

adequate to capture rapid neural transitions. An auditory tone was

played after a button was pressed in a straightforward exercise

intended to elicit particular event-related potential (ERP)

components from the participants. The analysis concentrates on

the N1 (80–100 ms) and P2 (150–190 ms) post-stimulus ERP

components, which are recognized for their importance in the

study of Schizophrenia and early sensory processing. The Fz, FCz,

and Cz electrodes, which are frequently used to track fronto-central

brain activity, are among the key electrodes examined.

The preprocessing procedure for EEG data included multiple

essential phases to ensure high-quality input for classification

models designed to detect Schizophrenia. EEG recordings from
Frontiers in Oncology 06
two directories, which provided data on individual subjects, were

first retrieved. These recordings included 9216 readings per trial

across specific electrodes. Every N consecutive row (n = 16) in the

EEG matrix a was averaged using a custom function called

averaged_by_N_rows(a,n). This reduced temporal resolution does

not sacrifice core signal dynamics. The data was smoothed, and this

downsampling significantly reduced its dimensionality. To compute

the reshaped matrix b, the original matrix awas reshaped into a new

shape (a.shape[0],n,a.shape[1]). By taking the mean over axis 1 (i.e.,

across every set of n rows), bmean was obtained. The data was

smoothed, and temporal resolution was greatly decreased without

compromising essential features due to this downsampling

procedure. After the initial matrix a was reshaped into a three-

dimensional array of shape (a.shape[0],n,a.shape[1]), the matrix

bmean was created by computing the mean along the second axis. In

addition to these procedures, the preprocessing pipeline included

essential artifact removal methods to eliminate noise from EEG

recordings. To increase the robustness and comparability of the

model, amplitude variations were also standardized across trials and

patients using signal normalization techniques. These stages were

followed by recording the associated diagnostic labels in vector Y

and storing the flattened feature vectors from each processed trial in

array X. By ensuring that the data input into classification models

was clean and consistent, this thorough preprocessing approach

supported more accurate schizophrenia identification.

3.1.1 Synthetic minority over-sampling technique
The dataset exhibited a large class imbalance since the class

distribution had more schizophrenia cases (Y) than controls. This

was tackled by generating new samples for the minority class

(controls) synthetically using the Synthetic Minority Over-

sampling Technique (SMOTE). By mathematically interpolating

between a minority class instance xi and one of its k-nearest

neighbors xzi, SMOTE creates synthetic samples in a process

described in Equation 1:

xnew = xi + l · (xzi − xi), (1)

where l ∼ U(0,1) is a random integer selected from a uniform

distribution, xi ∈ Rd is a minority class sample, and xzi ∈ Rd is one

of its nearest neighbors. The feature space of the minority class is

efficiently filled by the synthetic samples, which are guaranteed to lie

along the line segments connecting xi and its neighbors, thanks to

this interpolation technique. This enhances the classifier’s capacity

for generalization and reduces the bias introduced by

class imbalance.

3.1.2 Feature selection
Three complementary techniques were employed to choose

features: Random Forest importance, Mutual Information (I(X,

Y)), and ANOVA F-test. For each technique, the top k attributes

were selected based on scoring measures. For instance, the ANOVA

F-test calculates the F-statistic (Equation 2).

F =
Between − group variance
Within − group variance

, (2)
TABLE 3 Dataset overview.

Attribute Description

Total Subjects 81 (49 with Schizophrenia, 32 healthy controls)

Gender Distribution 14 females, 67 males

Average Age 39 years

Average Education 14.5 years

EEG Channels 64 scalp electrodes + 8 external electrodes (BioSemi
ActiveTwo system)

Sampling Rate 1024 Hz

Task Button press followed by auditory tone

ERP
Components
Analyzed

N1 (80–100 ms), P2 (150–190 ms) post-stimulus

Electrodes of Interest Fz, FCz, Cz

Data Size Approximately 8.2 GB
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To assess feature importance. Mutual Information (MI) is

computed as in Equation 3.

I(X,Y) = H(X) −H(X jY) (3)

Where H stands for entropy and H(X | Y) is the conditional

entropy between the target class and the characteristics. The Gini

index, which measures the decrease in impurity that each feature

contributes across all decision trees in the ensemble, thereby

indicating its significance in classification tasks, was used to

compute the Random Forest relevance.
3.2 Explainability and transparency

Artificial Intelligence, specifically machine learning (ML) and

deep learning (DL) models, has shown promise in diagnosing

Schizophrenia through the analysis of complex biomedical data,

including genetic markers, MRI, fMRI, EEG, and ECG. A significant

obstacle to incorporating AI algorithms into clinical practice is

explainability, or the ability to understand and evaluate how these

algorithms arrive at their conclusions. Explainable AI (XAI)

approaches aim to make these “black-box” models more

transparent and dependable for researchers and medical

practitioners. To ascertain which parts of the brain, connection

patterns, or signal properties have the most influence on diagnosis,

techniques like SHAP (SHapley Additive exPlanations) and LIME

(Local Interpretable Model-agnostic Explanations) have

been employed.
3.2.1 SHapley Additive exPlanations
SHAP is a unified approach for evaluating ML model

predictions based on Shapley values from cooperative game

theory. To explain the model’s output, f(x), it calculates the

contribution of each input feature to the prediction. According to

cooperative game theory, the feature i’s Shapley value fi is defined
in Equation 4:

fi(f , x) = o
S⊆N ∖ if g

Sj j !  ( Nj j − Sj j − 1) !
Nj j ! ½fS∪ if g(xS∪ if g) − fS(xS)� (4)

In this case, N represents the set of all input features, S

represents a subset of features that lack the feature i, fS(xS)

represents the model prediction using only features in subset S, xS
represents the input feature values in subset S, and fi represents the
Shapley value, or the contribution of feature i to the prediction.

SHAP belongs to the category of additive feature attribution

techniques, which describes a model by (Equation 5):

f (x) = f0 +o
M

i=1
fi (5)

The model output for input x is f(x), and the base value is f0.
The predicted model output tends to be E½f (x)�. where fi represents
feature i’s contribution to the prediction. When diagnosing
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Schizophrenia, SHAP is used to assign model predictions to

particular brain regions or biomarkers, especially when modalities

like EEG data are used. Clinicians may gain a deeper understanding

of which anatomical or functional features have the greatest

influence on the model’s choice by utilizing SHAP’s interpretable

outputs, which quantify the contribution of each input feature to

the overall prediction.

3.2.2 Local interpretable model-agnostic
explanations

LIME is a method for deciphering predictions from black-box

models by learning a simpler, interpretable model (such as a linear

model) that locally approximates the complex model. Given a

complex model f, LIME learns an interpretable model g that

approximates f in the neighborhood of x to explain the prediction

f(x) for a specific instance x. When G is the family of interpretable

models, LIME formulates an optimization problem to identify the

explanation model g ∈ G by minimizing (Equation 6):

L(f , g, px) +W(g) (6)

Simpler, more understandable explanations are encouraged by

L(f,g,px) si Local fidelity, which measures how closely g

approximates f near x, px(z), a proximity measure between z and

x that weights the significance of occurrences around x, and Ω(g),

the complexity of the explanation model. LIME employs a loss

function such as squared loss given in Equation 7.

L(f , g, px) = o
z∈Z

px(z)(f (z) − g(z))2 (7)

The collection of perturbed samples related to x is denoted by Z,

the complex model’s prediction for sample z is f(z), the local

surrogate model’s prediction is g(z), and a kernel function

assessing similarity is px(z). LIME was used to explain why an

ML model classified an individual as neurotic by identifying the

features (such as brain area sizes, EEG signal statistics, or

connection metrics) that had the most considerable local

influence on that specific prediction.
3.3 Deep neural network

A Deep neural network (DNN), also known as a fully connected

network (FCN), is a type of artificial neural network in which all

neurons in one layer are connected to all neurons in the layer above.

Because DNNs can replicate complex correlations in data such as

genetic, EEG, and neuroimaging signals, they are widely used for

classification tasks, including schizophrenia diagnosis. DNN usually

comprises several layers. Measurements of EEG signal intensities

are examples of features that are received by the input layer. These

layers’ neurons concentrate on the complicated relationships

between input and output. The final layer generates the

prediction, usually employing the class label (Schizophrenia vs.

healthy) that is provided in Algorithm 1. The DNN can be

expressed mathematically as (Equation 8) (29):
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Require: Input feature vector x ∈ Rd, weights Wi, biases

bi, dropout rate p = 0.2

Ensure: Predicted class label ŷ

1: function DNN-FORWARD(x)

2: h0 ← x ⊳ Input layer

3: z1 ← W1h0 + b1 ⊳ First hidden layer (size: 64)

4: h1 ← ReLU(z1) ⊳ Apply ReLU activation

5: h1 ← Dropout(h1,0.2) ⊳ Apply dropout

6: z2 ← W2h1 + b2 ⊳ Second hidden layer (size: 32)

7: h2 ← ReLU(z2) ⊳ Apply ReLU activation

8: h2 ← Dropout(h2,0.2) ⊳ Apply dropout

9: z3 ← W3h2 + b3 ⊳ Output layer (size: 2)

10: ŷ ← softmax(z3) ⊳ Class probabilities

return ŷ

11: end function

12: function TRAIN-DNN(X,y)

13: Initialize weights W1, W2, W3 and biases b1, b2, b3

14: for epoch = 1 to num_epochs do

15: for each batch (Xb,yb) do

16:ŷ b ← DNN-FORWARD(Xb)

17: L ← CrossEntropyLoss(ŷ b,yb)

18: Compute gradients ∇L w.r.t. weights and biases

19: Update weights and biases using Adam optimizer

20: end for

21: end for

22: end function
Algorithm 1. Deep neural network model for Schizophrenia diagnosis.

h(l) = f (l)(W(l)h(l−1) + b(l)) (8)

With h(l) representing the l-th layer’s (activation) output, W(l)

representing the l-th layer’s weight matrix, b(l) representing the l-th

layer’s bias vector, f(l) representing the activation function (e.g.,

ReLU and Sigmoid), and h(l−1) representing the output from the

previous layer (for the input layer, this is the original data). The final

prediction (Equation 9) is generated using the output h(L) of the last

layer L:

ŷ = f (L)(W(L)h(L−1) + b(L)) (9)

Where ŷ represents the network’s prediction (such as the

probability of Schizophrenia), f(L) is usually a sigmoid function

for binary classification or a softmax function for multi-class

classification. A crossentropy loss function (Equation 10) is

frequently employed in a standard classification problem, like

diagnosing Schizophrenia:

L(y, ŷ ) = −o
C

i=1
yi log  (ŷ i) (10)

Where y is the real label, C is the number of classes

(Schizophrenia vs. healthy), and ŷ is the predicted probability for

each class. The loss for binary classification reduces to (Equation 11):

L(y, ŷ ) = −(y log  (ŷ ) + (1 − y) log  (1 − ŷ )) (11)
tiers in Oncology 08
3.4 Long short term memory

Long Short-Term Memory (LSTM) is a type of recurrent neural

network (RNN) designed to identify long-term dependencies in

sequential input (30). To diagnose Schizophrenia, LSTMmodels are

beneficial for analyzing temporal sequences from EEG recordings,

where each time step comprises activity from multiple brain regions

or sensors. The time series data input is represented as X = x1,x2,…,

xT, where T is the number of time steps and xt ∈ Rd is the feature

vector at time step t. The LSTM processes the sequence to produce

hidden states as H = h1, h2,…, hT. The LSTM uses the following

equations to update its internal states at each time step t: Initially,

the data from the prior cell state should be erased, as decided by the

forget gate. It is computed as Equation 12 (30):

ft = s (Wf xt + Uf ht−1 + bf ) (12)

In this case, s represents the sigmoid activation function, xt is

the input at time t, and ht−1 is the prior hidden state. The input gate

then determines which additional data should be included in the

cell state (Equation 13):

it = s (Wixt + Uiht−1 + bi) (13)

This complements the candidate cell state, which is calculated as

in Equation 14:

~ct = tanh  (Wcxt + Ucht−1 + bc) (14)

The hyperbolic tangent function that aids in bounding the

candidate values in this case is tanh. The candidate data and the

prior state are then combined, modulated by the input and forget

gates, to update the cell state according to Equation 15:

ct = ft ⊙ ct−1 + it ⊙~ct (15)

To indicate element-wise multiplication while maintaining the

data’s structure, use the operator ȯ. The output gate in Equation 16

uses the cell state and current input to identify the next hidden state:

ot = s (Woxt + Uoht−1 + bo) (16)

Finally, the hidden state is updated according to Equation 17:

ht = ot ⊙ tanh  (ct) (17)

Subsequent classification tasks, such as recognizing

Schizophrenia from brain activity sequences, are then performed

using this hidden state ht. The sigmoid activation function is s, the
hyperbolic tangent function is tanh, element-wise multiplication is

indicated by ȯ, and trainable parametersW∗, U∗, and b∗ are learned

during the training process in all of the equations above.
3.5 Gated recurrent unit

Gated Recurrent Units (GRUs) are an effective kind of recurrent

neural network (RNN) that captures temporal dependencies and

are easier and faster to train than LSTMs when diagnosing
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electrophysiological data (31). The update gate and the reset gate

are the two gates that the GRU uses to update its hidden state at

each time step t. These gates regulate the flow of information and

mitigate the vanishing gradient issue that conventional recurrent

neural networks (RNNs) often encounter. The update gate

determines which aspects of the previous concealed state should

be retained and how much should be updated with new

information, as represented in Equation 18 (31):

zt = s (Wzxt + Uzht−1 + bz) (18)

where wz, Uz, and bz are trainable parameters, zt is the update

gate vector, xt is the input at time t, ht−1 is the prior hidden state,

and s is the sigmoid activation function. When determining the

candidate concealed state, the reset gate (Equation 19) decides the

amount of the past data to disregard:

rt = s (Wrxt + Urht−1 + br) (19)

Where the trainable parameters areWr, Ur, and br, and the reset

gate vector is rt. The previous hidden state that has been reset is used

to calculate the candidate hidden state ~ht given in Equation 20:

~ht = tanh  (Whxt + Uh(rt ⊙ ht−1) + bh) (20)

where ⊙ is the element-wise multiplication and tanh is the

hyperbolic tangent function. A linear interpolation between the

candidate hidden state and the previous hidden state is represented

by ht, the ultimate hidden condition in Equation 21, which is the

update gate’s control:

ht = (1 − zt)⊙ ht−1 + zt ⊙ ~ht (21)
3.6 Bidirectional-LSTM

Bidirectional Long Short-Term Memory (BiLSTM) networks

are highly effective at identifying both past and future dependencies

in the data, particularly when analyzing sequential neuroimaging

data for the diagnosis of Schizophrenia (32). Identifying fragile

temporal patterns associated with the condition necessitates this.

BiLSTM is formed of two LSTM networks: processing the sequence

from the past to the future using a forward LSTM. Processing the

sequence from the future to the past using a reverse LSTM. The

model is then provided with both preceding and succeeding context

by concatenating the hidden states from both directions at each

time step. This is especially helpful in clinical time series, where the

interpretation of previous patterns of brain activity can be

influenced by future context. At time step t, the forward LSTM

pass in Equation 22 calculates the hidden state

h
→

t by processing the input xt, the cell state c
→
t−1, and the prior

forward hidden state h
→

t−1:

h
→

t= LSTMforward(xt , h
→

t−1, c
→
t−1 ) (22)

Likewise, the backward LSTM pass reverse-processes the input

sequence to calculate the hidden state h
←

t . The following cell state
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c
←
t+1 and the following hidden state h

←

t+1 are used (Equation 23):

h
←

t= LSTMbackward(xt , h
←

t+1, c
←
t+1 ) (23)

The outputs of the forward and backward LSTM passes are

concatenated at each time step t to create the BiLSTM

representation hbit , which incorporates contextual data from both

directions as seen in Equation 24:

hbit = ½h→t ; h
←

t � (24)
3.7 BiLSTM-GRU

The BiLSTM and Gated Recurrent Unit (GRU) layers are

incorporated in the BiLSTM-GRU model to efficiently capture

intricate temporal patterns in EEG-based feature sequences for the

classification of Schizophrenia. To handle the input feature vector x ∈
Rd as a time series, Algorithm 2 initially transforms it into a sequence

structure. The forward LSTM computes the hidden state ht and updated

cell state ct using conventional LSTM gate operations, forget, input, and

output, enabling the model to retain and update pertinent memory over

time. Two LSTM units in the BiLSTM layer have opposing functions:

the forward LSTM processes the sequence chronologically to generate

hidden states h
→

t and cell states c
→
t . In contrast, the backward LSTM

processes the sequence in reverse order to generate 111 h
←

t and 111 c
←
t ,

capturing future context. To create a bidirectional representation, the

concealed states from both sides are concatenated at each time step:
1: Input feature vector x ∈ Rd, BiLSTM weights, GRU

weights, FC weights

2: Predicted class label ŷ

3: function BILSTM-FORWARD(x,ht,ct)

4: xt ← reshape x as sequence of length 1: xt ∈ R1×d

5: //Forward LSTM

6: ft ←s(Wf ·  ½ht−1, xt� + bf) ⊳ Forget gate

7: it ←s(Wi ·  ½ht−1, xt� + bi) ⊳ Input gate

8: ~ct ← tanh(Wc ·  ½ht−1, xt� + bc) ⊳ Cell state candidate

9: ct ← ft ȯ ct−1 + it ȯ~ct ⊳ Cell state update

10: ot ←s(Wo ·  ½ht−1, xt� + bo) ⊳ Output gate

11: ht ← ot ȯ tanh(ct) ⊳ Hidden state

12: //Backwards LSTM (similar operations but in

reverse sequence order)

13: h
←

t ←Backward LSTM operations

14: //Concatenate forward and backward representations

15: hbi
t ←½ht ; h

←

t� ⊳ hbit ∈ R2�hidden _ size

16: return hbit , ct

17: end function

18: function GRU-FORWARD (hbit , hgrut−1)

19: zt ←s(Wz · ½hgrut−1 , h
bi
t � + bz) ⊳ Update gate

20: rt ←s (Wr · ½hgrut−1 , h
bi
t � + br) ⊳ Reset gate

21: ~ht ← tanh (W · ½rt ȯ hgrut−1 , h
bi
t � + b) ⊳ Candidate hidden state

22: hgrut ← (1 − zt) ȯ h
gru
t−1 + zt o ̇ ~ht ⊳ Hidden state update
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23: return hgru
t

24: end function

25: function BILSTM-GRU FORWARD(x)

26: Initialize h0, c0, h
gru
0 to zeros

27: hbit ,ct ←BILSTM-FORWARD(x,h0,c0)

28: hgrut ← GRU-FORWARD (hbit , hgru0 )

29: hgrut ← Dropout (hgru0 ,p) ⊳ Apply dropout with rate p

30: h1← ReLU (W1h
gru
t + b1) ⊳ First fully connected layer

31: h1 ← Dropout(h1,p) ⊳ Apply dropout with rate p

32: z ← W2h1 + b2 ⊳ Output layer

3 3 : ŷ← s o f t m a x ( z ) ⊳ A p p l y s o f t m a x

for classification

34: return ŷ

35: end function ⊳ Return predicted probabilities
Algorithm 2. BiLSTM-GRU model for classification.

h
→

t = LSTMforward(xt , h
→

t−1, c
→
t−1 ) (25)

h
←

t = LSTMbackward(xt , h
←

t+1, c
←
t+1 ) (26)

hbit = ½h→t ; h
←

t � (27)

This combined representation hbit is then sent into a GRU layer,

which computes the hidden state hgrut by further refining the temporal

features through its update and reset gate processes. A fully linked layer

with ReLU activation is used to introduce non-linearity, and dropout is

used to lessen overfitting. The last Deep layer generates logits, which are

then normalized using the softmax function to obtain class probabilities.

Another dropout layer follows this. This architecture allows the model

to classify Schizophrenia from EEG features with efficiency and

resilience while utilizing both past and future temporal relationships.
3.8 BiLSTM with attention mechanism

The BiLSTM with Attention Mechanism is a potent deep learning

architecture that was created to boost interpretability in addition to

sequence classification performance (33). Bidirectional Long

ShortTerm Memory (BiLSTM) networks’ contextual learning

capabilities are combined in this model with a learned attention

mechanism that draws attention to the most instructive segments of

the input sequence. To determine which time steps have the greatest

influence on the final classification decision, the attention mechanism

gives weights to the hidden states, even if the BiLSTM component

records temporal dependencies in both forward and backward

directions. The approach provides more transparency into the

decision-making process by explicitly modeling these attention

weights, which helps practitioners and academics better comprehend

and have confidence in the model’s predictions. Because

interpretability is built into the model architecture, it is particularly

well-suited for applications in sensitive disciplines such as neuroscience

and healthcare, where understanding the model’s reasoning is crucial.

The model begins by processing the input feature vector x ∈ Rd

through a BiLSTM layer as presented in Algorithm 3. The input

undergoes forward and backward processing after first being
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rearranged into a sequence of length 1. This leads to a series of

hidden states H ∈ R1×2h, where h is the size of the hidden state of

the LSTM in one direction. Concatenating the final hidden states

from both directions, h
→

n and h
←

n, produces the context vector hn =

½h→n; h
←

n�. The attention mechanism then uses the formula in

Equation 28 (33) to determine each hidden state’s relevance score:
1: Input feature vector x ∈ Rd, BiLSTM weights,

Attention weights, FC weights

2: Predicted class label ŷ

3: function BILSTM-FORWARD(x)

4: x ← reshape x as sequence of length 1: x ∈ R1×d

5: H,(hn,cn) ← BiLSTM(x) ⊳ H ∈ R1×2h, where h is

hidden size

6: return H,hn

7: end function

8: function ATTENTION-FORWARD(H,hn)

9: hn ←½h→n ; h
←

n� ⊳ Concatenate final forward and backward

hidden states

10: //Compute attention scores

11: hn ← reshape hn to match sequence length: hn ∈ R1×2h

12: e ← tanh(Wa · [hn;H] + ba) ⊳

Energy scores

13: e← vTae ⊳ Attention weights, e ∈ R1

14: a ← softmax(e) ⊳ Normalize weights, a ∈ R1

15: //Apply attention weights to get context vector

16: c ← a · H ⊳ Context vector, c ∈ R2h

17: return c,a

18: end function

19: function BILSTM-ATTENTION-FORWARD(x)

20: H,hn ← BILSTM-FORWARD(x)

21: c,a ← ATTENTION-FORWARD(H,hn)

22: //Classification layer

23: c ← Dropout(c,p) ⊳ Apply dropout with rate p

24: h1 ← ReLU(W1c + b1) ⊳ First fully connected layer

25: h1 ← Dropout(h1,p) ⊳ Apply dropout with rate p

26: z ← W2h1 + b2 ⊳ Output layer

27: ŷ ← softmax(z) ⊳ Apply softmax for classification

28: return ŷ,a ⊳ Return predicted probabilities

and attention weights

29: end function
Algorithm 3. BiLSTM with attention for classification.

ei = v⊤ tanh  (Wa½hi; c�) (28)

The context vector in this instance is c, the learned weight

matrix is Wa, the learned parameter vector is v, and the i-th hidden

state is hi. The softmax function is then used to normalize these

scores (Equation 29):

ai =
exp   (ei)

oT
j=1exp   (ej)

(29)
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The proportional importance of each time step is indicated by

the attention weights ai that are produced. The attention context

vector is calculated as a weighted sum of the hidden states using

these weights (Equation 30):

cattn =o
T

i=1
aihi (30)

The sequence’s most instructive sections are combined in this

vector cattn. To add non-linearity and lessen overfitting, it operates

via a dropout layer and a fully connected ReLU layer. Before the

final output layer, which uses the softmax function to generate class

probabilities, a second dropout is performed. The classifier can thus

focus on the necessary time steps in the input, thanks to the

attention-enhanced BiLSTM model. This is particularly beneficial

in fields such as EEG-based schizophrenia diagnosis, where specific

signal segments may contain more potent diagnostic cues.
4 Experimental results and analysis

The effectiveness of the proposed deep learning architecture is

evaluated using a wide range of assessment metrics, including

training and testing time, model size, and model complexity, as

provided in Table 4. To ensure repeatability and ease of

experimentation, all models are developed and evaluated within

the Google Colab environment. Google Colab offers a reliable and

flexible cloud-based development platform featuring GPU

acceleration, seamless Python integration, and access to powerful

deep learning frameworks, including TensorFlow. The DNN is the

fastest model in terms of training time, completing in

approximately 3 minutes and 40 seconds. On the other hand, the

LSTM requires the most time, taking more than 14 minutes to train

in total. A similar pattern can be observed in the average epoch

training time: the LSTM has the longest epoch duration, indicating

that its sequential processing results in a higher computational cost.

The LSTM is the slowest, requiring more than two minutes for

assessment overall, while the DNN once again performs the best in

terms of testing time, with the shortest average and total epoch

testing lengths. The DNN is a lightweight model in terms of size,

with just 3,874 parameters and a model size of 0.01 MB (15.13 KB).

However, the BiLSTM-GRU has a massive amount of memory at

0.33 MB (337.88 KB) and the most parameters (86,498). Overall, the

DNN is the most efficient in terms of size and time. Still, it lacks the
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expressive potential of attention-based and recurrent models, which

compromise size and speed for greater learning capacity.

The benchmark for assessing performance is accuracy, which is

the proportion of correctly identified samples relative to the total

number of samples. Equation 31 shows the model’s accuracy, which

indicates how confident people are in its capacity to generate precise

predictions. Despite its ease of use, it is essential to evaluate its

reliability and predictive capabilities.

A =
Ptrue + Ntrue

Ptrue + Ntrue + Pfalse + Nfalse
(31)

Precision is the degree of accuracy with which a model or

system predicts the positive class. Equation 32 suitably displays this

value to facilitate comprehension of the metric fundamental

equation.

Pre =
Ptrue

Ptrue + Pfalse
(32)

Recall is a statistical measure used to evaluate the performance

of classification algorithms, particularly in situations where

detecting positive instances is crucial. It is sometimes referred to

as the true positive rate or sensitivity. A model’s recall measures its

ability to accurately distinguish genuine positive examples from all

relevant occurrences, also known as true positives. The

computation of Equation 33 demonstrates the special benefit of

this varied viewpoint for an estimate.

Re =
Ptrue

Ptrue + Nfalse
(33)

Accuracy and recall are balanced by the appropriately calculated

F1 score, which may effectively convey the essence of balanced

performance. Although sophisticated, this simple estimation

method is well described by Equation 34.

F1 − score = 2� Pre + Re
Pre + Re

(34)
4.1 DNN model results analysis

Table 5 demonstrates the performance evaluation of a DNN

model used to diagnose Schizophrenia. Class 1 indicates those who

have been diagnosed with the condition, while Class 0 most likely
TABLE 4 Training time and model size statistics for different models.

Model DNN LSTM BiLSTM-GRU BiLSTM + Attention

Total Training Time 0:03:40.647739 0:14:22.014249 0:07:20.437193 0:05:43.926800

Avg Epoch Training Time 0:00:00.367746 0:00:01.436690 0:00:00.734062 0:00:00.573211

Total Testing Time 0:00:36.821652 0:02:03.156955 0:00:59.079024 0:00:46.524051

Avg Epoch Testing Time 0:00:00.061369 0:00:00.205262 0:00:00.098465 0:00:00.077540

Number of Parameters 3,874 50,562 86,498 72,002

Model Size 0.01 MB (15.13 KB) 0.19 MB (197.51 KB) 0.33 MB (337.88 KB) 0.27 MB (281.26 KB)
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indicates “Healthy” or “Non-schizophrenic” individuals. The

precision of the model, which indicates the proportion of

correctly predicted positive cases among all expected positives, is

0.70 for Class 0 and 0.65 for Class 1. This suggests that the model is

better at identifying healthy individuals than people with

Schizophrenia. Class 0 and Class 1 had recall values of 0.61 and

0.73, respectively, indicating that the model is better at identifying

schizophrenia cases but misses more healthy individuals. For Class

0 and Class 1, the F1-score is 0.65 and 0.69, respectively, indicating a

balanced trade-off. There were 1271 samples for Class 0 and 1270

samples for Class 1, which almost balanced the support values,

which represent the number of real cases for each class. With an

overall accuracy of 0.67, the model correctly identified 67% of all

cases. Furthermore, the macro average, which accounts for all

classes equally, produced precision, recall, and F1-scores of 0.67

each, demonstrating balanced performance independent of

class frequency.

Figure 2a summarizes the performance of a DNN throughout

600 training and testing epochs. The loss curve shows that the

training loss gradually decreases, indicating effective learning, while

the testing loss initially decreases, then plateaus, and subsequently

increases slightly after approximately 100–150 epochs. Since the

model continues to improve on the training data but struggles to

generalize to new data, this pattern suggests that the model is

overfitting to the training data. The accuracy curve is displayed

across 600 epochs in the figure on the right. A steady improvement

in training accuracy, approaching 80%, suggests that the training

data is being effectively learned. Testing accuracy shows little
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increase after first increasing and plateauing at roughly 67-68%

after 200 epochs. This trend indicates overfitting, as the model

performs well on the training data but struggles to generalize its

performance to new data. Figure 2b represents the confusion matrix

of a DNN model used to diagnose Schizophrenia. The confusion

matrix, which provides a visual comparison between the model’s

predictions and the true labels, indicates that the model accurately

diagnoses 61.4% of normal individuals (True Negatives) and 73.1%

of instances of Schizophrenia (True Positives). The model

sometimes misclassifies healthy people as having Schizophrenia

and vice versa, as evidenced by its comparatively high false-positive

rate of 38.6% and false-negative rate of 26.9%. Since incorrect

diagnoses can have serious clinical repercussions, these

misclassifications indicate that further model improvement

is necessary.

The relative significance of the features that the DNN model

uses to diagnose Schizophrenia is visually analyzed in Figure 3 using

a pie chart and a horizontal bar chart. The contribution of each

feature as a percentage of the total is shown in the pie chart on the

left, where larger slices represent more significant features.

Interestingly, traits like 34295 and 34155 occupy a significant

portion of the chart, suggesting that they are crucial to the

model’s decision-making. By arranging the elements in

descending order of significance and providing exact percentage

values for each, the horizontal bar chart on the right enhances the

visualization. For instance, feature 34295, which contributes 7.0% to

the model’s predictions, is the most significant among the others

with smaller percentages. These charts collectively demonstrate that

although the model incorporates several features, only a small

number of them are given significant weight. This data is

necessary to comprehend the behavior of the model and can help

direct feature selection strategies, especially when attempting to

simplify the model or understand its predictions in a

medical setting.

Figure 4 presents a comprehensive, three-part analysis of the

features used by the DNN model to diagnose Schizophrenia.

Permutation-based feature importance, inter-feature correlation,

and feature correlation with the target variable have been

included in this analysis. Figure 4a permutation-based bar chart
FIGURE 2

Performance visualization of the DNN model. (a) Training and validation accuracy and loss curve for DNN model. (b) Confusion matrix
representation for DNN model.
TABLE 5 DNN model performance.

Class Precision Recall F1-score Support

0 0.70 0.61 0.65 1271

1 0.65 0.73 0.69 1270

Accuracy 0.67 2541

Macro avg 0.67 0.67 0.67 2541

Weighted avg 0.67 0.67 0.67 2541
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illustrates the significance of each feature for the operation of the

model. Features that significantly reduce accuracy when shuffled at

random are considered very significant; these features manifest as

tall bars, especially among feature indices between 0 and 5 and 14

and 17. However, because they contribute less to the predictive

capacity of the model, shorter bars suggest characteristics that

might be candidates for dimensionality reduction. In Figure 4b,

the pairwise correlation between features is displayed using a

triangular heatmap; high positive and negative correlations are

represented by dark red and blue cells, respectively. Lightcolored

cells suggest feature independence, and these patterns can highlight

multicollinearity and feature redundancy. Finally, Figure 4c

illustrates the linear relationship between each attribute and the

target variable. Features that are most strongly linked to

Schizophrenia are 34264 and 34154. Green bars show positive

correlations, whereas red bars show negative correlations, such as

those between traits 34755 and 344286. Although features with

values close to zero exhibit inadequate linear correlations, they may

still help identify non-linear patterns.
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Figure 5 illustrates two complementary methods for examining

the predictions of a DNN model used to diagnose Schizophrenia:

SHAP and LIME. Figure 5a displays a SHAP summary plot that

shows that each feature affects the model’s output across the dataset.

A row represents each feature, and each dot inside a row represents

the SHAP value for a feature for a specific sample. The horizontal

axis displays whether a factor influenced the prediction toward

schizophrenia (positive SHAP value) or normalcy (negative SHAP

value). Wide horizontal spread features are more influential since

they exhibit a wider range of impact across events. For instance,

“Feature 23”, “Feature 3”, and “Feature 22” exhibit significant

variance, indicating that they have a substantial influence on the

model’s decisions. Likewise, it is possible to identify the correlation

between feature values and SHAP values; for example, high feature

values may consistently raise the likelihood of Schizophrenia,

indicating a positive association. A SHAP waterfall plot

explaining the model’s output for a single prediction is shown in

Figure 5b. It begins with a base value, which represents the average

prediction for the entire dataset and illustrates how each attribute
FIGURE 4

Feature correlation curves of DNN model for schizophrenia diagnosis. (a) Feature importance based on permutation. (b) Feature correlation.
(c) Feature correlation with target variable.
FIGURE 3

Relative feature importance analysis for DNN model in schizophrenia diagnosis.
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contributes to the final prediction for that specific instance. Red

arrows point to features that improved the prediction score, while

blue arrows point to features that made it worse. The magnitude of

each arrow shows the strength of its contribution. For instance, with

a SHAP value of +0.22, “Feature 22” significantly raised the

prediction score, whereas “Feature 3” reduced it by -0.11. In

Figure 5c, the LIME explanation for a single prediction appears as

a horizontal bar chart. Whereas LIME builds a local linear surrogate

model around the instance of interest, SHAP calculates accurate

additive contributions. Features that either support (green) or

contradict (red) the model’s classification choice are indicated by

the bars. While the associated values display the feature’s real value

in the instance, the length of each bar demonstrates the extent of the

feature’s influence within this local model.
4.2 LSTM model results analysis

Table 6 shows the performance characteristics of a Long Short-

Term Memory (LSTM) model designed for diagnosing

Schizophrenia. Class 0 probably represents the control group,

which is made up of normal people, whereas Class 1 indicates

those who have Schizophrenia. According to the per-class

performance, 62% of the samples that were anticipated to be class

0 were correctly identified, and the model’s precision for class 0 was

0.62. With a recall of 0.65, it accurately identified 65% of real class 0

instances, yielding an F1-score of 0.64. The model’s accuracy, recall,

and F1-score for class 1 were 0.63, 0.61, and 0.62, respectively. The

support for classes 0 and 1 is almost identical, with 1271 samples in
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class 0 and 1270 in class 1. The accuracy of 0.63 indicates that the

LSTM model successfully identified approximately 63% of the 2541

total cases, reflecting the model’s overall performance.

The training and testing curves in Figure 6a demonstrate the

effectiveness of the LSTM model developed for the diagnosis of

Schizophrenia. The training loss gradually approaches near-zero

values after rapidly decreasing in the early epochs, as demonstrated

by the loss curves on the left. This pattern demonstrates the model’s

efficiency in detecting and recognizing the training data. However,

the testing loss begins to rise between epochs 100 and 150 before

fluctuating, suggesting significant generalization to new data. The

accuracy curves are displayed in the graphic on the right. The

training accuracy steadily increases to 99.99%, confirming the

model’s outstanding fit to the training data. In parallel, the testing

accuracy first increases before plateauing and exhibiting minor

oscillations at approximately epochs 100 to 150, which is

consistent with the behavior of the testing loss curve. The

confusion matrix for the schizophrenia diagnosis LSTM model in

Figure 6b indicates moderate classification performance. Detecting

60.7% of cases of Schizophrenia and 65.1% of normal individuals,

the model showed an acceptable capacity to identify both classes.

However, there were significant error rates, misclassifying 29.3% of

patients with Schizophrenia as normal and 34.9% of healthy

individuals as having Schizophrenia (false positives and false

negatives, respectively). The estimated total accuracy for

schizophrenia cases is 62.9%, with precision and recall of 63.5%

and 60.7%, respectively. The model shows potential, but its high

misclassification rates suggest that further improvements are

needed to enhance its dependability in clinical applications.

Figure 7 depicts feature importance, providing crucial details on

which input variables the LSTM model relied on most when

predicting diagnoses of Schizophrenia. Both a pie chart and a

horizontal bar chart are employed to illustrate the proportional

contribution of each element. In both visualizations, longer bars or

larger pie slices show that a characteristic has a bigger impact on the

model’s decision-making. The most significant feature is ‘34225’,

which is closely followed by ‘34228’ and ‘33948’. A few other

features contribute minimally. The pie chart provides a

comparative summary, while the bar chart facilitates easier

comparison and ranking of feature relevance.
TABLE 6 LSTM model performance.

Class Precision Recall F1-score Support

0 0.62 0.65 0.64 1271

1 0.63 0.61 0.62 1270

Accuracy 0.63 2541

Macro avg 0.63 0.63 0.63 2541

Weighted avg 0.63 0.63 0.63 2541
FIGURE 5

Model explanation using SHAP and LIME for DNN schizophrenia diagnosis. (a) SHAP values. (b) SHAP waterfall plot. (c) LIME explanation for
predicted classes.
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Figure 8 provides a detailed analysis of the features used by the

LSTM model to diagnose Schizophrenia using three subplots:

permutation-based feature importance, pairwise feature

correlation, and feature correlation with the target variable.

Permutation-based feature importance is depicted in the first
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Figure 8a, where each bar indicates how significantly the model’s

performance deteriorates when the values of a particular feature are

randomly changed. Taller bar features are more crucial to the

model’s expected accuracy, indicating that while many features

have a minor effect, a few have a significant impact. This aligns with
FIGURE 7

Relative feature importance analysis for LSTM model in schizophrenia diagnosis.
FIGURE 8

Feature correlation curves of LSTM model for schizophrenia diagnosis. (a) Feature importance based on permutation. (b) Feature correlation.
(c) Feature correlation with target variable.
FIGURE 6

Performance visualization of the LSTM model. (a) Training and validation accuracy and loss curve for LSTM model. (b) Confusion matrix
representation for LSTM model.
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the commonly held notion in machine learning that a small set of

features often holds the majority of predictive potential. A heatmap

displaying pairwise relationships between features is the second

subplot 8b. Clusters of features with strong interrelationships are

seen in this illustration, suggesting possible redundancy where

highly linked features can contain overlapping information.

Potential feature reduction techniques that increase model

efficiency without significantly compromising performance can

benefit from recognizing such patterns. The final Figure 8c shows

the linear association between each feature and the target variable,

which is the diagnosis label for Schizophrenia. The height of each

bar can determine the strength of the association. The features that

are most linearly related to the diagnosis outcome are directly

presented in this graphic, indicating which traits are more common

in people with or without Schizophrenia.

Figure 9 illustrates the analysis of an LSTM model’s predictions

for schizophrenia diagnosis using SHAP and LIME. Each dot

represents the SHAP value of a feature for a single instance in the

SHAP summary plot depicted in Subplot 9a. Corresponding lists are

shown on the y-axis, and their SHAP values are shown on the x-axis

to demonstrate that features impact the model’s prediction. Positive

values drive toward Schizophrenia, whereas negative values push

toward a normal diagnosis. For instance, Feature 22 shows that

higher values generally correspond to a higher risk of

Schizophrenia. The distribution of dots along the x-axis for each

property illustrates how significantly that feature influences distinct

predictions. A thorough summary of each feature’s contribution to

the LSTM model’s prediction is given for a single instance in the

SHAP waterfall plot in subplot 9b. The SHAP value of each feature
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either increases or decreases the prediction, which is initially set to a

base value (the model’s predicted output). Positive contributions are

displayed by green bars, which raise the estimate, while negative

contributions are indicated by red bars, which decrease the forecast.

The cumulative effect that arises is the model’s result. This plot

helps to understand not only which features were most influential

but also the direction and size of those influences in that particular

case. Subplot 9c displays the LIME explanation for the same or a

different individual forecast at the end. LIME estimates the features

that contributed most to the projected class by creating a simple

interpretable model around the particular instance. Features and

their values are displayed on the y-axis, while the x-axis displays the

relative contributions of each feature to the categorization. The

anticipated class (Schizophrenia) is supported by green bars and

opposed by red bars. The feature has a larger impact on the forecast

the longer the bar. In addition to the broad perspective provided by

SHAP, this visualization offers an intuitive, local-level

comprehension of the model’s reasoning for a particular case.

When combined, these visuals improve confidence in the LSTM

model’s diagnostic predictions and demystify its decision-

making process.
4.3 BiLSTM-GRU model results analysis

Table 7 provides a thorough analysis of a BiLSTM-GRUmodel’s

performance, most likely when used for a binary classification

classifying individuals as normal (class 0) versus diagnosing

Schizophrenia (class 1). With a precision of 0.62 for class 0

(Normal), the model accurately identified 62% of the cases that

were predicted to be normal. The model effectively detected 66% of

real normal cases, as indicated by the recall of 0.66. The class’s

overall performance is moderate, as indicated by the F1-score of

0.64, which maintains a balance between recall and precision. 1271

is the number of real instances. The precision for class 1

(Schizophrenia) is slightly higher at 0.64, indicating that 64% of

the time, the model correctly identifies Schizophrenia. At 0.60, the

recall is minimally lower, indicating that 60% of real cases of

Schizophrenia are identified accurately. This class’s F1-score is

0.62, which once more indicates a moderate but balanced
FIGURE 9

Model explanation using SHAP and LIME for LSTM schizophrenia diagnosis. (a) SHAP values. (b) SHAP waterfall plot. (c) LIME explanation for
predicted classes.
TABLE 7 BiLSTM-GRU model performance.

Class Precision Recall F1-score Support

0 0.62 0.66 0.64 1271

1 0.64 0.60 0.62 1270

Accuracy 0.63 2541

Macro avg 0.63 0.63 0.63 2541

Weighted avg 0.63 0.63 0.63 2541
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prediction ability. Class 1 support is 1270, indicating a dataset that

is almost perfectly balanced. The model’s overall accuracy is 0.63,

indicating that approximately 63.

A BiLSTM-GRU model’s training and testing results over 600

training epochs are shown in Figure 10a. The loss value, which

measures the discrepancy between the actual target labels and the

model’s anticipated outputs, is displayed on the y-axis in the left

subplot (Loss Curves). Lower loss values indicate better

performance. The x-axis shows the number of epochs or

complete runs of the training dataset. The precipitation loss,

which starts high and progressively decreases, shows that the

model is effectively learning from the training data and lowering

prediction errors. The testing (or validation) loss initially exhibits a

decreasing trend, comparable to the training loss, suggesting that

the model is also improving at handling unobserved input.

However, the testing loss starts to increase while the training loss

continues to decrease after about 100 to 200 epochs. Training

epochs are represented by the x-axis in the right subplot

(Accuracy Curves), while accuracy, or the percentage of accurate

predictions, is represented by the y-axis. Training accuracy, which
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steadily rises to about 95% by the conclusion of training. This

indicates that the model is doing excellently in fitting the training

data. The accuracy of the tests initially rises similarly. It starts to

plateau, though, and then exhibits modest variations or even a slight

fall around the same epoch range (100-200). Figure 10b displays a

confusion matrix assessing a BiLSTM-GRU model’s performance

on a binary classification by differentiating between “Normal” and

“Schizophrenia” cases. The matrix shows that the model correctly

identified 59.6% of individuals with Schizophrenia and 66.0% of

“Normal” individuals. Additionally, it mislabeled 40.4% of actual

cases of Schizophrenia as “Normal,” indicating a significant

percentage of false negatives. However, the model performs

slightly better in identifying non-schizophrenic individuals, which

raises concerns given the potential clinical consequences of a

missed diagnosis.

Figure 11 provides a detailed analysis of the relative feature

relevance for the BiLSTM-GRU model, which is used to diagnose

Schizophrenia. The size of each slice in the pie chart on the left

shows the magnitude of the contribution each feature made to the

model’s predictions. Each slice is represented by a feature (identified
FIGURE 10

Performance visualization of the BiLSTM-GRU model. (a) Training and validation accuracy and loss curve for BiLSTM-GRU model. (b) Confusion
matrix representation for BiLSTM-GRU model.
FIGURE 11

Relative feature importance analysis for BiLSTM-GRU model in schizophrenia diagnosis.
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by number codes such as 34295, 34085, etc.). For instance, the most

significant slice (6.3%) of feature 34295 indicates that it has the most

influence, followed closely by features 34085 and 34228, each of

which contributes roughly 6.0%. The visual layout makes it easy to

understand which features are most crucial to the model’s decision-

making process. The same features are shown in descending order

of significance in the right subplot, a horizontal bar chart, where the

bar lengths represent the percentage contribution of each feature.

When there are few variations in relevance, this format enables a

more apparent and precise comparison of attributes. For instance,

the bar chart more accurately identifies the top contributors and

shows the slow drop in relevance among the remaining variables. In

contrast, the pie chart graphically conveys that several features

are significant.

Figure 12 provides a detailed assessment of the function and

connections between the features that the BiLSTM-GRU model

uses. Subplot 12a shows the feature importance obtained using a

permutation-based approach, with the y-axis listing the features

according to their numerical codes (e.g., 34295, 34085) and the x-

axis representing the importance score. The importance of each

feature to the model’s predictive accuracy is indicated by a vertical

bar. The degree to which a feature’s values are randomly shuffled

results in a decrease in the model’s performance, which is used to

calculate the importance. A heatmap illustrating correlations

between feature pairs is displayed in Subplot 12b, where lighter
Frontiers in Oncology 18
shades indicate weak or no correlation, blue indicates significant

negative correlation, and red shows high positive correlation. It

facilitates feature selection and dimensionality reduction by

highlighting redundant characteristics that can offer overlapping

information. Color-coded horizontal bars in Subplot 12c show the

correlation between each attribute and the target variable,

schizophrenia diagnosis. Positive correlations are shown by green

bars, negative correlations by red bars, and the strength of the

association is indicated by the length of each bar. The relevance of

some features in model predictions can be demonstrated by the

strong positive correlations they have with Schizophrenia, such as

‘34084’, and the strong negative correlations they have with

Schizophrenia, such as ‘34225’.

Figure 13 illustrates three visualizations that use SHAP and

LIME to interpret the BiLSTM model’s predictions. With x ∈ Rn

being the input feature vector, these techniques aid in elucidating

how input features xi contribute to the model’s output f(x). The

SHAP summary figure is displayed in Subplot 13a, where the x-axis

displays SHAP values fi, which quantify the influence of each

feature xi on the model output f(x), and the y-axis lists features

(e.g., Feature 17, Feature 21). Color-coded by the feature value xi
(red = high, blue = low), each dot represents a distinct case. Factors

that push the model output toward a diagnosis of Schizophrenia are

indicated by positive SHAP values fi > 0. In contrast, factors that

push the output toward a normal diagnosis are indicated by
FIGURE 13

Model explanation using SHAP and LIME for BiLSTM schizophrenia diagnosis. (a) SHAP values. (b) SHAP waterfall plot. (c) LIME explanation for
predicted classes.
FIGURE 12

Feature correlation curves of BiLSTM-GRU model for schizophrenia diagnosis. (a) Feature importance based on permutation. (b) Feature correlation.
(c) Feature correlation with target variable.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1630291
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Almadhor et al. 10.3389/fonc.2025.1630291
negative SHAP values fi< 0. The model’s decision-making is more

influenced by features that exhibit a larger degree of variation in

SHAP values among instances. A SHAP waterfall plot explaining

the prediction f(x) for a single data instance is shown in Subplot

13b. The predicted model output across the dataset is represented

by the base value E½f (x)�. The result is then shifted, either positively

or negatively, by each feature xi and its matching SHAP value fi.
The sum of the SHAP contributions yields the final prediction. In

this case, blue bars indicate positive contributions to the prediction

(e.g., Feature 22 with f22 = +3.86) while red bars indicate negative

contributions (e.g., Feature 6 with f6 = −4.4). The LIME

explanation is presented in Subplot 13c, which locally

approximates the BiLSTM model using a simpler linear model

around the specific cases. The prediction is expressed as f (x) ≈

owixi, where wi is the local weight or importance of feature xi for

the projected class. This contribution is shown by each horizontal

bar, whose length indicates the contribution’s absolute magnitude |

wixi|. Red bars oppose the expected class (such as Schizophrenia),

whereas green bars support it.
4.4 BiLSTM with attention results analysis

Table 8 presents an extensive assessment of a BiLSTM model

fitted with an attention mechanism that presumably predicts
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whether Schizophrenia would manifest (class 1) or not (class 0).

The precision of 0.66 for class 0 in the model implies that 66% of the

cases that were predicted to be class 0 were classified correctly, likely

indicating cases of non-schizophrenia. With a recall of 0.73, the

model identified 73% of true class 0 instances correctly. The F1-

score of 0.70 indicates a balanced prediction performance for this

class. Class 1 has a slightly higher positive predictive value than class

0, with a precision of 0.70. However, with a reduced recall of 0.62,

the model missed more real class 1 occurrences. With an F1-score of

0.66, this performance is less balanced than that of class 0. There are

about equal numbers of samples in each class, 1271 for class 0 and

1270 for class 1. With an overall accuracy of 0.68, the model

demonstrated that 68% of all predictions were accurate. Without

weighting by support, the macro average is likewise 0.68, indicating

that the average performance is constant across the two classes. The

weighted average, despite considering the distribution of the classes,

likewise produces 0.68 for every metric, which is compatible with

the roughly equal number of samples in the two classes.

Figure 14a illustrates the accuracy and loss curves in two

subplots for the training and testing performance of a BiLSTM

model with an Attention Mechanism across 600 epochs. When the

model memorizes training data instead of generalizing, overfitting is

indicated by the testing loss starting to rise around 50–100 epochs.

Still, effective learning is indicated by the consistent reduction in

training loss shown by the loss curves. While the training accuracy

exceeds 90% in the accuracy curves, the testing accuracy plateaus or

declines after approximately 50 to 100 epochs. Figure 14b depicts a

confusion matrix evaluating the performance of a BiLSTM model

with an Attention Mechanism, probably distinguishing between

“Normal” and “Schizophrenia” individuals. The four cells in the

matrix show the true positive, false positive, false negative, and true

negative rates for each class. 73.4% of cases were accurately

predicted by the algorithm for the “Normal” class, whereas 26.6%

of cases were misclassified as “Schizophrenia.” The model properly

predicted 62.4% of cases in the “Schizophrenia” class. However,

37.6% of cases were misclassified as “Normal.” With precision for
TABLE 8 BiLSTM with attention mechanism model performance.

Class Precision Recall F1-score Support

0 0.66 0.73 0.70 1271

1 0.70 0.62 0.66 1270

Accuracy 0.68 2541

Macro avg 0.68 0.68 0.68 2541

Weighted avg 0.68 0.68 0.68 2541
FIGURE 14

Performance visualization of the BiLSTM with attention mechanism model. (a) Training and validation accuracy and loss curve for BiLSTM with
attention mechanism model. (b) Confusion matrix representation for BiLSTM with attention mechanism model.
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“Normal” at roughly 66.13% and precision for “Schizophrenia” at

roughly 70.11%, the inferred accuracy is 67.9%. With greater

accuracy, recall for “Normal” (73.4% vs. 66.0%), recall for

“Schizophrenia” (62.4% vs. 59.6%), and a reduced false negative

rate for “Schizophrenia” (37.6% vs. 40.4%), the BiLSTM with

Attention Mechanism outperforms a BiLSTM-GRU model.

The relative significance of the various features utilized by the

BiLSTM model with an attention mechanism is depicted in

Figure 15. To illustrate this significance, a pie chart and a

horizontal bar chart are included. Larger slices indicate more

significant features in the pie chart, which displays the percentage

of each feature’s contribution to the model’s decision-making. For

instance, with a contribution of 7.0%, feature “34295” is the most

crucial, followed by “34155” and “34085.” This is enhanced by the

bar chart, which provides a more accurate comparison by

evaluating the qualities according to their significance, which

facilitates the comparison of features of comparable value.

Overall, the charts illustrate which features have a significant
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impact on the model’s predictions, with the most prominent

features contributing more substantially than the others.

Figure 16 illustrates three evaluations related to the features used by

the BiLSTMmodel with an attention mechanism. A feature’s relevance

score is indicated by each vertical bar in the subplot 16a, which shows

feature importance depending on permutation. While lower bar

characteristics have a lesser effect, higher bar elements are more

crucial for the model’s predictions. The correlation between features

is shown in the subplot 16b using a heatmap; lighter hues suggest little

to no link, blue denotes a negative correlation, and red denotes a

positive correlation. This approach identifies redundancy between

features, which can aid in feature selection and dimensionality

reduction. The subplot 16c analyzes the relationship between the

target variable (diagnosis of schizophrenia) and features. Whereas

red bars show negative correlations, features with longer green bars

have a positive linear association with the target. This subplot gives

information on the predictive behavior of themodel by highlighting the

attributes that have the strongest correlations with the target variable.
FIGURE 15

Relative feature importance analysis for BiLSTM with attention mechanism model in schizophrenia diagnosis.
FIGURE 16

Feature correlation curves of BiLSTM with attention mechanism model. (a) Feature importance based on permutation. (b) Feature correlation.
(c) Feature correlation with target variable.
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5 Conclusion

This paper presents an extensive deep learning (DL) system for

the automated detection of schizophrenia, utilizing EEG signals to

enhance diagnosis accuracy and support treatment decision-making.

By comparing and developing three architectures, the proposed

framework demonstrates how attention-based techniques

significantly enhance classification performance and interpretability.

In addition to having the best accuracy of all the models evaluated,

the BiLSTM-Attention model is a clinically valuable tool that

provides insight into the neurophysiological mechanisms associated

with schizophrenia. While the F-test feature selection increases

computational efficiency and reduces the risk of overfitting,

SMOTE effectively addresses the class imbalance in the dataset.

Additionally, by identifying important EEG properties that

contribute to predictions, the interpretability pipeline’s integration

of SHAP and LIME enhances model transparency.

Despite the favorable outcomes, many limitations have to be

addressed to contextualize the findings and direct future

developments. Due to the small size of the study’s dataset, it may

not accurately reflect the range of EEG patterns seen in different

individuals, populations, and subtypes of schizophrenia. Due to this

limited data scope, the model may not generalize effectively in larger

or more diverse clinical contexts. Second, EEG data are naturally

noisy and highly susceptible to aberrations from retinal squint,

muscle movements, and environmental interference. Despite the

use of preprocessing techniques to minimize noise, residual artifacts

may still affect model predictions. Furthermore, the model’s

capacity to acquire universally relevant properties may be limited

by the notable inter-subject variability in EEG signal amplitude and

spatial distribution. To enhance cross-subject robustness, future

research should explore techniques such as domain adaptation and

subject-independent modeling. Third, the attention weights

and explanations generated by SHAP and LIME have not yet

been clinically validated despite the BiLSTM-Attention model

improving interpretability and outperforming baseline designs. It

is unclear if the highlighted EEG findings represent significant

neurophysiological patterns associated with schizophrenia in the

absence of professional neurological input. There are issues

regarding the framework’s generalizability because it has not been

verified in various clinical contexts or with various EEG equipment.

Furthermore, even if SMOTE corrects for class imbalance, the

introduction of synthetic data may compromise model stability,

underscoring the need for cross-subject and external validation.

Finally, the real-world deployment of AI-based EEG diagnostic

systems presents several challenges, including seamless integration

into clinical workflows, ensuring that non-experts can utilize them

easily, and managing fluctuations in data quality. Misdiagnosis, an

excessive dependence on automation, and biases resulting from

incomplete or artificial data are among the risks. Important ethical

issues include data protection, informed consent, transparency,

equity, and managing the psychological effects on patients

through supervision and open communication.

Future research will focus on several key areas to enhance the

clinical relevance, generalizability, and robustness of the proposed
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EEG-based schizophrenia detection framework, building on the

encouraging findings of this study. To make the dataset more

broadly applicable and minimize potential biases, it must first be

expanded to include a larger number of participants from diverse

demographic backgrounds and various clinical subtypes of

schizophrenia. The model ’s dependability under various

technological circumstances will also be evaluated using

validation across several EEG devices and recording locations. To

increase diagnostic accuracy through deeper contextual awareness,

multimodal data sources like neuroimaging, cognitive tests, and

genetic information must be integrated. Future research should

include clinical validation of the highlighted components to verify

their alignment with established neurophysiological indicators and

to gain new insights, despite the use of interpretability techniques

such as SHAP, LIME, and attention mechanisms to highlight

relevant EEG aspects. Additionally, utilizing methods such as

model pruning and quantization, the model will be optimized for

low power and real-time deployment, making it suitable for

embedded and mobile EEG systems. Future developments will

further enhance the development of customized models for

patient longitudinal monitoring, enabling the tracking of

treatment responses and early detection of relapse. To further

enhance temporal pattern recognition and model expressiveness,

improvements to the model architecture will be examined,

including the addition of sophisticated attention mechanisms,

such as multi-head or transformer-based attention. These

approaches aim to enhance the practical application and

therapeutic effectiveness of the suggested system.
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