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Purpose: To determine the incremental diagnostic value of habitat radiomics for

risk stratification of thymic epithelial tumors (TETs) based on contrast-enhanced

CT (CECT).

Methods: This retrospective study included 220 patients with pathologically

confirmed TETs (82 high-risk [B2/B3/thymic carcinoma] and 138 low-risk [A/

AB/B1]) who underwent preoperative CECT. Tumors were segmented into 3

subregions (habitats) using k-means clustering, and radiomic features were

extracted from both whole-tumor and subregions. After feature selection

(variance threshold, reproducibility evaluation, XGBoost-based importance

ranking, and recursive feature elimination), three machine learning models

were developed (1): a conventional radiomics model (2), a habitat radiomics

model, and (3) a combined model integrating both feature sets. Model

performance was evaluated using ROC analysis, net reclassification

improvement (NRI), integrated discrimination improvement (IDI), calibration

metrics, and decision curve analysis (DCA).

Results: The combined model demonstrated superior discrimination (AUC:

0.900) compared to the conventional (AUC: 0.819) and habitat (AUC: 0.734)

radiomics models in the independent test set. Although DeLong’s test showed no

statistically significant difference (p=0.161), the performance of combined model

demonstrated incremental diagnostic value (NRI: 0.286; IDI: 0.209). Calibration

and DCA confirmed its robustness and higher net benefit across decision

thresholds. While the models’ training performance might suggest overfitting,

their test results demonstrate generalizability.

Conclusions: The habitat radiomics approach enables accurate risk stratification

prediction in TETs and demonstrates potential as a clinically valuable tool to

augment the performance of conventional radiomics models in routine practice.
KEYWORDS
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Introduction

Thymic epithelial tumors (TETs) represented the most prevalent

primary neoplasms originating in the anterior mediastinum (1–3).

According to the 2021 WHO classification, TETs were histologically

stratified into six distinct subtypes: type A, AB, B1, B2, B3, and

thymic carcinoma (TC) (4). The histopathological classification was

one of the important prognostic factors, particularly in guiding

postoperative therapeutic decision-making within the context of

neoadjuvant treatment strategies (5). Clinically, these subtypes

exhibited markedly divergent biological behaviors: types A, AB, and

B1 TETs were associated with favorable prognoses and significantly

lower recurrence rates, whereas types B2, B3, and TC demonstrated

aggressive clinical courses with substantially elevated recurrence risks

(6–8). TETs could be further classified into two prognostic groups:

low-risk TETs (LRT, encompassing A, AB, and B1) and high-risk

TETs (HRT, including B2, B3, and TC) (9–11). Reliable noninvasive

risk stratification prior to therapeutic intervention was critical for

prognostication and treatment optimization.

Among imaging modalities, contrast-enhanced computed

tomography (CECT) was the first choice for evaluating TETs due

to its cost-effectiveness, widespread accessibility, and capacity to

delineate detailed tumor morphology and vascular enhancement

patterns (12, 13). Previous studies had demonstrated the utility of

CECT features in TETs risk stratification (14–17). However, models

relying exclusively on conventional radiological signs exhibited

limited predictive performance in discriminating high-risk from

low-risk subtypes (18). Numerous studies had demonstrated the

efficacy of CECT-based radiomics in accurately differentiating LRT

from HRT (19–21). Nevertheless, most prior conventional

radiomics investigations had predominantly focused on whole-

tumor analysis as a single region of interest (ROI), with
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insufficient attention paid to tumor subregions exhibiting

heterogeneous (22, 23). Recently, habitat imaging had emerged as

a novel paradigm that specifically identifies intratumoral

heterogeneous regions or cellular subpopulations (24–26). By

analyzing tumor subregions, this approach enabled more precise

characterization of spatial heterogeneity and enhanced delineation

of intrinsic biological features, thereby holding significant promise

for refining TETs risk stratification. To date, no studies had

investigated the potential of habitat-based radiomics for the risk

stratification of TETs. Therefore, we implemented habitat-specific

radiomics analysis using CECT imaging for TETs risk stratification,

quantitatively assessing its complementary benefits to standard

whole-tumor radiomics.
Materials and methods

Patients

This study was approved by the institutional review board of the

hospital with a waiver for informed (KY2025-157). Figure 1

outlined the study workflow. This retrospective study

consecutively enrolled patients with pathologically confirmed

TETs at the Affiliated Second Hospital of Harbin Medical

University between December 2017 and December 2024, with

Figure 2 illustrating the workflow of patient inclusion. The

inclusion criteria were (1): histologically confirmed WHO

classification of TETs (2); preoperative CECT performed within 1

month prior to surgery (3); no prior oncologic therapy

(chemotherapy/radiotherapy). The exclusion criteria were (1):

recurrent lesion (2); poor-quality image (motion artifacts or

incomplete coverage) (3); undetermined WHO classification. The
FIGURE 1

Flowchart of the research.
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TETs were classified into LRT (A, AB, and B1) and HRT (B2, B3,

and TC). Patients with TETs were randomly divided into training

(80%) and test sets (20%) using stratified sampling while preserving

the original WHO subtype distribution.
Image acquisition

Three CT scanners (GE Discovery CT750HD; GE LightSpeed

VCT; PHILIPS iCT256) were used to perform CECT. The scanning

parameters were listed in Supplementary Material 1. The contrast

material about 80–100mLwas intravenously administered at a rate of

2.5 mL/s. All patients underwent supine-positioned CT examinations

spanning from the pulmonary apex to the infradiaphragmatic region.

Arterial phase was obtained by threshold trigger and the venous

phase scanning was performed after 30s. Image reconstruction was

consistently performed using a mediastinum-optimized convolution

kernel to ensure accurate interpretation of mediastinal anatomy. The

axial images in venous phase were exclusively selected for subsequent

quantitative analysis to avoid potential influences from superior vena

cava artifacts that were commonly observed in the arterial phase.
Segmentation

ROIs were manually delineated on axial slices (3D volume)

through consensus-based delineation by two radiologists (each with

>5 years of expertise in thoracic imaging) using ITK-SNAP software

(version 4.2.2, www.itksnap.org). To ensure unbiased evaluation,

both radiologists were blinded to all pathological findings and

clinical outcomes.

To mitigate outlier effects, intensity values were normalized by

truncating the histogram extremities (0.5th to 99.5th percentiles).
Frontiers in Oncology 03
All images were first spatially normalized to align with a common

coordinate space, then isotropically resampled to 1×1×1 mm3 voxel

dimensions to ensure uniform spatial resolution.

The tumor heterogeneity was quantitatively assessed by

partitioning the images into distinct subregions (habitats) using

the k-means clustering algorithm. The elbow method, based on the

within-cluster sum of squared errors (SSE), was employed to

identify the most plausible segmentation. To determine the

optimal number of clusters, we evaluated values of k ranging

from 2 to 10. The elbow point was determined by locating the

value of k where the rate of decrease in within-cluster SSE

sharply diminishes.
Feature extraction

To strictly prevent data leakage, the test set was reserved solely

for independent model evaluation and never involved in any prior

steps, including feature selection or model development. Radiomic

feature extraction was performed on both the whole-tumor ROI

and its subregions using PyRadiomics (version 3.1.0, https://

pyradiomics.readthedocs.io/en/latest/), encompassing shape-

based, first-order statistical, and texture-based features with all

available filters applied. Feature definitions and computational

methods were listed in the PyRadiomics documentation. For each

patient, a total of 6,752 radiomic features were obtained, consisting

of 1,688 features from the whole-tumor ROI and an additional

5,064 features (1,688 × 3) derived from three distinct subregions.

The extracted features from each subregion were labeled with their

corresponding cluster number. Feature normalization was

subsequently performed using z-score standardization, where the

mean and standard deviation (SD) calculated exclusively from the

training set were applied to both training and test sets.
FIGURE 2

Workflow of patient inclusion.
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Feature selection

The feature selection pipeline was implemented in four sequential

steps (1): Initial variance thresholding eliminated non-informative

features (zero variance across the training set) (2); Reproducibility

assessment using a randomly selected subset of 30 patients by two

radiologists independently delineating ROIs, retaining only features

demonstrating good reproducibility (ICC > 0.75) (3); Feature

importance was assessed using an XGBoost classifier, with the top

300most discriminative features selected according to the importance

(4); Final selection through recursive feature elimination with 5-fold

cross-validation (RFECV) using a XGBoost classifier to determine the

minimal optimal feature subset maximizing AUC. To mitigate the

class imbalance between the two groups, the support vector machine

synthetic minority over-sampling technique (SVMSMOTE) was

employed to augment the sample size of high-risk TETs through

synthetic data generation.
Model development

The conventional radiomics feature and habitat radiomics

feature were independently selected through the established

pipeline. Subsequently, two machine learning models were

developed using the XGBoost algorithm on the SVMSMOTE-

balanced training set (1): a conventional radiomics model

incorporating conventional imaging features, and (2) a habitat

radiomics model capturing tumor subregional heterogeneity

patterns. Following the same selection procedure, a combined

model was constructed by using the selected features extracted

from the whole tumor and subregions.
Statistics

Sex and group were reported as counts (percentages), while age

was summarized as mean ± SD. The difference between training set

and test set were assessed using chi-square test (or Fisher’s exact

test) for categorical variables and independent t-test (or Mann-

Whitney U test) for continuous variables. Model performance was

evaluated through receiver operating characteristic (ROC) analysis

with calculation of AUC, complemented by metrics including

accuracy, sensitivity, and specificity. The incremental prognostic

value of habitat features was quantitatively assessed using net

reclassification improvement (NRI), integrated discrimination

improvement (IDI), and DeLong’s test for AUC comparison.

Calibration was verified through Brier score, Brier skill score and

calibration curve analysis, while clinical utility was appraised via

decision curve analysis (DCA). To enhance interpretability, SHAP

(SHapley Additive exPlanations) values were computed to

determine feature importance and explain model decisions. All

statistical analyses were conducted in Python 3.11. A two-tailed p-

values <0.05 considered statistically significant.
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Results

Baseline characteristics of patients

Of 229 patients, 9 were excluded according to exclusion criteria.

The workflow was shown in Figure 2. The eligible 220 patients with

TETs, randomly divided into training (n=176, 80%) and test (n=44,

20%) sets. According to WHO-based risk stratification, 82 (37.3%)

were HRT and 138 (62.7%) LRT. Detailed baseline characteristics

are summarized in Table 1. There were no statistically significant

differences (p>0.05) between the training and test sets in terms of

age, gender, group and WHO classification.
Feature selection

Using the elbow method (Figure 3), we identified k = 3 as the

optimal number of tumor subregions. From the initial 6,752 extracted

features, 6,164 demonstrated non-zero variance, with subsequent

reproducibility testing (ICC>0.75) retaining 1,946 robust features

(1,429 whole-tumor and 517 subregion-derived). All ICC values were

listed in Supplementary Material 2. RFECV distilled these to a 16-

feature signature selected from the top 300 features for combined

model, whose importance is quantified in Figure 4. The features

developed (n=28) conventional and habitat (n=40) radiomics models

were listed in Supplementary Material 3. Model interpretability was

enhanced through SHAP value heatmap plots Figure 5, which delineate

individualized feature impacts across the training and test sets.
Evaluation

The comparative performance analysis of the three predictive

models was listed in Table 2. All three models attained an AUC of

1.000, along with accuracy, sensitivity, and specificity all reaching

1.000 on the training set. In the test set, the combined model

achieved best performance compared to other models (AUC: 0.819,

0.734 vs 0.900; accuracy: 0.750, 0.705 vs 0.864). Although the

models’ performance on the training set could indicate potential

overfitting, their strong and consistent results on the independent

test set suggest reasonable generalizability. The ROC curve was

shown in Figure 6a. The comparison via DeLong’s test revealed no

statistically significant difference between conventional radiomics

and combined models (p=0.161). However, the combined model

showed clinically meaningful incremental value, evidenced by NRI

(0.286) and IDI (0.209).

Calibration curves (Figure 6b) revealed that the combined model

show favorable agreement and had best alignment across the full

probability range compared to other models. Quantitative evaluation

revealed that the combined model achieved a significantly lower Brier

score (0.121) compared to the conventional (0.193) and habitat

radiomics models (0.255), corresponding to a Brier skill score of

37.2% relative to the conventional radiomics model as the reference.

DCA (Figure 6c) demonstrated superior clinical utility of the
frontiersin.org
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combined model, which provided a higher net benefit across a wide

range of threshold probabilities compared to other models.
Discussion

This study developed and validated a CECT-based radiomics

model for the risk stratification of TETs, demonstrating favorable
Frontiers in Oncology 05
predictive performance. Radiomic features extracted from tumor

habitat heterogeneity could improve the diagnostic accuracy

compared to conventional radiomics models. Moreover, SHAP

value analysis was employed to quantitatively visualize the feature

importance in the combined prediction model.

CECT serves as the preferred non-invasive imaging modality

for preoperative evaluation of TETs, providing critical information

regarding tumor morphology and vascularity that guides

therapeutic decision-making (27). Given the high recurrence rates

and poor prognosis associated with HRT, comprehensive

preoperative assessment are essential (28). This underscores the

clinical importance of CECT-based risk stratification prior to

intervention. The arterial phase imaging is susceptible to beam-

hardening artifacts from high-concentration contrast media in the

superior vena cava, which may compromise image quality and

distort texture analysis of adjacent lesions (29). Therefore, our study

specifically employed venous phase images for radiomic feature

extraction and subsequent model development.

Radiomics represented a robust and well-validated quantitative

imaging analysis methodology that facilitated high-throughput

extraction of minable data from radiological images (30, 31). By

leveraging advanced machine learning algorithms, this approach

enabled the identification of clinically relevant imaging biomarkers

and the development of predictive models for precise estimation of

clinical outcomes and therapeutic endpoints. Prior investigations had

demonstrated the superior performance of radiomics in TETs risk

stratification, with enhanced discriminative capability compared to

conventional clinical model (18, 29). In the current study, our

conventional radiomics model demonstrated favorable

performance, achieving an AUC of 0.819 and an accuracy of 0.750
FIGURE 3

Line plot of finding optimal k.
TABLE 1 Baseline characteristics.

Characteristics Overall Train set Test set p-value

N 220 176 44

gender, n (%) 1

female 110 (50.0) 88 (50.0) 22 (50.0)

male 110 (50.0) 88 (50.0) 22 (50.0)

age, mean (SD) 52.9 (11.5) 53.3 (10.5) 51.4 (14.9) 0.425

group, n (%) 1

HR 82 (37.3) 66 (37.5) 16 (36.4)

LR 138 (62.7) 110 (62.5) 28 (63.6)

WHO classification, n (%) 0.510

A 9 (4.1) 9 (5.1) 0 (0.0)

AB 118 (53.6) 91 (51.7) 27 (61.4)

B1 9 (4.1) 8 (4.5) 1 (2.3)

B2 23 (10.5) 20 (11.4) 3 (6.8)

B3 39 (17.7) 30 (17.0) 9 (20.5)

TC 22 (10.0) 18 (10.2) 4 (9.1)
HR, high-risk; LR, low-risk; TC, thymic carcinoma.
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the independent test set, with balanced sensitivity and specificity

indicating minimal class prediction bias. Ren et al. reported a

radiomics model for TET histologic subtyping with an AUC of

0.860 and accuracy of 0.750, while Zhou et al. achieved an AUC of

0.716 and accuracy of 0.736 in predicting histological risk

categorization (18, 32). The slight variations of observed

performance may be attributable to methodological differences in
Frontiers in Oncology 06
feature selection and algorithmic implementation. Our approach

utilized RFECV, an iterative selection process that optimizes feature

combinations while preserving synergistic predictive value andmodel

generalizability. Furthermore, the XGBoost algorithm’s tree-based

architecture could accept feature collinearity while autonomously

capturing critical nonlinear relationships through hierarchical

feature interactions.
frontiersin.or
FIGURE 5

SHAP heatmap (combined model): training set (A), test set (B).
FIGURE 4

SHAP bar plot (combined model).
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The complex cellular and molecular milieu surrounding tumor cells -

the tumor microenvironment - critically influenced oncogenesis,

disease progression, and therapeutic outcomes (33). Most prior

studies on the risk stratification of TETs had primarily focused on

whole-tumor analysis, while largely neglecting the potential

significance of intratumoral subregion (23). Our study

implemented habitat imaging to explore the incremental value of

characterizing spatial tumor heterogeneity in TETs. We

systematically partitioned TETs into three distinct subregions and

extracted habitat-specific features. Habitat analysis identified distinct

subregions: Habitat_1/2 represented solid tumor components

(Habitat_2 showing lower enhancement), while Habitat_3 in

corresponded to necrotic foci or tumor margin. Among 16 features

developed combined model, 7 were conventional radiomic features,

and other 9 were habitat-derived features. Quantitative analysis of

tumor subregional architecture provided enhanced characterization

of intratumoral spatial heterogeneity and enabled more biologically

faithful representation of tumor phenotypic features. The combined

model achieved superior discriminative performance (AUC=0.900,

accuracy=0.864) in the test set compared to either feature set alone.

Although DeLong test revealed no statistically significant AUC

difference between conventional and combined models (p>0.05),

the numerical improvement and enhanced classification metrics

substantiated the incremental value of habitat radiomics for TETs

risk stratification, suggesting that spatial heterogeneity provided

complementary biological information.

The radiomic feature selection for the combined predictive model

identified three primary discriminators with significant prognostic
Frontiers in Oncology 07
value: Ibp-3D-m1_glszm_ZonePercentage, Ibp-3D-m2_glcm_

DifferenceVariance, and original_shape_Sphericity. These biomarkers

collectively characterize distinct tumor biological behaviors, where the

high-risk cohort exhibited (1): decreased Sphericity values, indicative

of irregular morphological patterns and invasive growth tendencies (2);

elevated DifferenceVariance, reflecting marked intratumoral textural

heterogeneity; and (3) reduced ZonePercentage, suggesting disordered

spatial distribution of tumor zones. Furthermore, three additional

habitat-specific features provided complementary pathophysiological

insights: original_shape_Maximum2DDiameterSlice_1 demonstrated

strong correlation with proliferative activity in solid tumor

components. wavelet-LIH_glcm_SumSquares_2 precisely quantified

textural heterogeneity within viable tumor regions, where heightened

values corresponded to areas of cellular atypia and structural

disorganization. wavelet-HHH_firstorder_Range_3 effectively

captured the complexity of necrotic and marginal zones through

density dispersion metrics, with elevated values indicating

pathological processes including hemorrhagic transformation,

dystrophic calcification, or residual tumor infiltration.

Unlike manually crafted radiomics features, deep learning

autonomously extracted task-specific features directly from images.

With rapid advancements in deep learning methodologies, these data-

driven features had emerged as a powerful complement to

conventional radiomics features in medical imaging (34). This

advantage is exemplified in the work of Zhou et al, who

systematically compared conventional radiomics, deep learning, and

combinedmodels for the risk stratification of TETs (32). Their findings

demonstrated that the combined model significantly outperformed
FIGURE 6

Performance comparison in test set. ROC curves (a), calibration curve (b), and DCA curves (c).
TABLE 2 Performance comparison of models.

Model Cohort AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Conventional Training 1.000 (1.000-1.000) 1.000 (1.000-1.000) 1.000 (1.000-1.000) 1.000 (1.000-1.000)

Test 0.819 (0.685-0.934) 0.750 (0.742-0.758) 0.500 (0.255-0.745) 0.893 (0.778-1.000)

Habitat Training 1.000 (1.000-1.000) 1.000 (1.000-1.000) 1.000 (1.000-1.000) 1.000 (1.000-1.000)

Test 0.734 (0.575-0.871) 0.705 (0.695-0.714) 0.625 (0.388-0.862) 0.750 (0.590-0.910)

Combined Training 1.000 (1.000-1.000) 1.000 (1.000-1.000) 1.000 (1.000-1.000) 1.000 (1.000-1.000)

Test 0.900 (0.797-0.981) 0.864 (0.858-0.869) 0.750 (0.538-0.962) 0.929 (0.833-1.000)
95% CI, 95% confidence interval.
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conventional radiomics (AUC improvement from 0.716 to 0.786;

accuracy increase from 0.736 to 0.774), likely due to the

complementary nature of hand-crafted radiomic features and deep

learning-derived representations (32). Building upon the established

risk stratification framework of Zhou et al., our study demonstrates that

integrating habitat-specific radiomic features yields significant

improvements in predictive performance compared to conventional

approaches. The combined model exhibited enhanced diagnostic

capability, with accuracy increasing from 0.750 to 0.864 and AUC

improving from 0.819 to 0.900. This performance surpasses previously

reported results (accuracy: 0.864 vs 0.774; AUC: 0.900 vs 0.786),

representing a meaningful advancement in predictive modeling.

Notably, our findings reveal that habitat feature incorporation

provides greater performance enhancement in conventional

radiomics models, suggesting these biologically relevant features may

capture distinct and complementary tumor characteristics.

Despite its methodological rigor, this study had several

limitations that should be acknowledged. First, the retrospective

nature of the analysis might still introduce selection bias,

particularly given the specific inclusion/exclusion criteria applied.

Second, although SVMSMOTE was implemented to address class

imbalance between high- and low-risk TETs (37.3% vs. 62.7%), the

fundamental disproportion in WHO subtype prevalence might still

influence model performance in real-world clinical settings. Third,

the utilization of multiple CT scanners, while reflecting clinical

reality, introduced inherent technical variability despite rigorous

standardization protocols. Fourth, while interobserver variability in

manual segmentation was mitigated through ICC-based filtering,

residual subjectivity inherent in manual annotations may persist.

Finally, although not employed in this study, the harmonization

technique (e.g., ComBat) could further improve feature robustness

in future multi-center investigations by explicitly addressing

scanner-induced heterogeneity.

In conclusion, the present study establishes that CECT-based

habitat radiomics offered significant improvements in risk

stratification for TETs compared to conventional radiomic

approaches, particularly within clinically relevant decision-making

ranges. The enhanced predictive performance of our combined

model substantiated the importance of characterizing intratumoral

heterogeneity through advanced habitat analysis, demonstrating

substantial potential for clinical translation.
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