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Department of Medical Oncology, The First People’s Hospital of Xiaoshan District, Hangzhou, China
Gastric cancer (GC) remains a major global health challenge, particularly in its

advanced stages where prognosis is poor, and treatment responses are

heterogeneous. Precision oncology aims to tailor therapies, but current

biomarkers have limitations. Artificial Intelligence (AI), encompassing machine

learning (ML) and deep learning (DL), offers powerful tools to analyze complex,

multi-dimensional data from advanced GC patients, including clinical records,

genomics, imaging (radiomics), and digital pathology (pathomics). This review

synthesizes the current state of AI applications in unresectable, advanced GC. AI

models demonstrate significant potential in refining diagnosis and staging,

predicting treatment efficacy for chemotherapy, immunotherapy, and targeted

therapies, and assessing prognosis. Multi-modal AI approaches, integrating data

from diverse sources, consistently show improved predictive performance over

single-modality models, better reflecting the complexity of the disease. Key

challenges remain, including data quality and standardization, model

generalizability and interpretability, and the need for rigorous prospective

validation. Future directions emphasize multi-center collaborations,

development of robust and explainable AI (XAI), and seamless integration into

clinical workflows. Overcoming these hurdles will be crucial to translate AI’s

potential into tangible clinical benefits, enabling truly personalized and effective

management for patients with advanced gastric cancer.
KEYWORDS

artificial intelligence, advanced gastric cancer, precision oncology, treatment response
prediction, multi-modal data
1 Introduction

Gastric cancer (GC) represents a significant global health burden, ranking as the fifth

most common malignancy and a leading cause of cancer-related mortality worldwide (1).

Despite advances in treatment, the prognosis for patients diagnosed with advanced or

metastatic GC remains poor, with 5-year overall survival rates often falling below 30%, and

in metastatic settings, below 10% (2). A substantial proportion of patients present with
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unresectable disease at diagnosis due to non-specific early

symptoms. Standard therapeutic approaches, including systemic

chemotherapy, targeted therapy for specific molecular subtypes

(e.g., human epidermal growth factor receptor 2-positive tumors),

and immunotherapy (immune checkpoint inhibitors, ICIs), form

the backbone of management (3). However, patient responses to

these treatments are highly heterogeneous, and many individuals

derive limited benefit or develop resistance, highlighting a critical

unmet need for more effective and personalized therapeutic

strategies (4).

Precision oncology seeks to address this challenge by tailoring

treatment strategies based on the unique characteristics of an

individual patient’s tumor and host factors (5). This paradigm

relies heavily on the identification and utilization of predictive

biomarkers. In advanced GC, established biomarkers such as

HER2 amplification, programmed death-ligand 1 (PD-L1)

expression (often measured by Combined Positive Score, CPS),

microsatellite instability-high (MSI-H) or deficient mismatch repair

(dMMR) status, and more recently, claudin 18.2 (CLDN18.2)

expression, guide the use of specific targeted therapies and

immunotherapies (6). However, these biomarkers have inherent

limitations. Their assessment often requires invasive tissue

sampling, which may not be feasible or representative, especially

in the metastatic setting. Interpretation of immunohistochemistry

(IHC) can be variable, and genomic sequencing assays like next-

generation sequencing (NGS) can be costly with significant

turnaround times. Crucially, existing biomarkers often fail to

capture the full spectrum of tumor heterogeneity and the complex

interplay within the tumor microenvironment (TIME), leading to

imperfect prediction of treatment response (7, 8).

Artificial Intelligence (AI), particularly its subfields of Machine

Learning (ML) and Deep Learning (DL), offers a powerful set of

tools to overcome these limitations. ML algorithms, such as Support

Vector Machines (SVM), Random Forests (RF), and logistic

regression, learn patterns from data to make predictions without

explicit programming (9). DL models, including Convolutional

Neural Networks (CNNs) and Artificial Neural Networks

(ANNs), utilize hierarchical layers of processing units to

automatically extract complex features and relationships from

high-dimensional data. These capabilities make AI uniquely

suited to analyze the vast and complex datasets generated in

modern oncology, including clinical records, genomic and

transcriptomic data (NGS), medical images (computed

tomography, positron emission tomography, magnetic resonance

imaging, endoscopy), and digitized histopathology slides (Whole

Slide Images, WSI) (10, 11). The confluence of pressing clinical

needs in advanced GC, the exponential growth in digital biomedical

data, and the maturation of AI algorithms has fueled a rapid

increase in research exploring AI’s potential in this field (12).

While much early AI research in GC focused on improving

endoscopic detection of early-stage disease, a significant

opportunity lies in leveraging AI for the complex decision-

making required in advanced stages. The profound tumor

heterogeneity, diverse treatment options, and high stakes

associated with advanced GC management present challenges
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where AI’s capacity for integrating multi-faceted data can offer

substantial clinical value (13).

This review provides a comprehensive overview of the current

applications of AI in the precision oncology landscape specifically

for advanced, unresectable gastric cancer. It synthesizes evidence on

the use of AI for refining diagnosis relevant to treatment selection,

predicting treatment efficacy and toxicity, enabling personalized

therapy through multi-modal data integration, and exploring novel

strategies for managing refractory disease. The aim is to critically

evaluate the current state-of-the-art, highlighting both the practical

utility of emerging AI tools for clinicians and researchers and the

key challenges and future directions necessary to translate these

technologies into improved patient outcomes.
2 AI-driven precision diagnostics and
staging refinement in advanced
gastric cancer

Although the primary focus of this review is unresectable

advanced GC, the accurate characterization and staging of the

disease remain fundamental for determining prognosis and

guiding the selection and intensity of systemic therapies. AI offers

capabilities to extract deeper insights from standard diagnostic

modalities, potentially refining risk stratification beyond

traditional Tumor-Node-Metastasis (TNM) staging.
2.1 Radiomics for advanced GC
characterization

Radiomics involves the high-throughput extraction and analysis

of quantitative features from medical images (CT, PET, MRI),

converting them into mineable data that can reveal underlying

pathophysiology often invisible to the human eye (14). In advanced

GC, radiomics models have shown promise in several areas. AI

algorithms, particularly CNNs and Faster Region-based

Convolutional Neural Networks (FR-CNN), have been developed

to identify preoperative peritoneal metastasis from CT images (15).

Predicting lymph node metastasis (LNM) is another critical

application, as conventional CT imaging has known limitations,

especially after neoadjuvant therapy which can alter lymph node

morphology and size (16). Several studies have demonstrated that

CT-based radiomics models, often employing ML algorithms like

K-Nearest Neighbors (KNN), SVM, or DL approaches, can predict

LNM status or quantify the number of metastatic nodes with

significantly higher accuracy (Area Under the Curve [AUC]

values often exceeding 0.75-0.80) compared to radiologists’

assessment alone (15). This improved LNM prediction, even in

unresectable patients, provides valuable prognostic information

that could influence decisions regarding the aggressiveness of

palliative treatment or eligibility for clinical trials targeting

specific metastatic patterns (13). Beyond metastasis detection,

radiomics can quantify intra-tumoral heterogeneity, a known

factor influencing treatment response and prognosis, by analyzing
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texture features within the tumor volume (17). Furthermore, AI

applied to CT scans can perform automated body morphometry

analysis, assessing features like sarcopenia (muscle wasting), which

may correlate with patient frailty, treatment tolerance, and overall

survival (18). The ability of radiomics to extract such detailed

information non-invasively from standard-of-care imaging is a

key advantage (19). Patients with advanced GC typically undergo

repeated CT or PET scans for initial staging and treatment

monitoring. Radiomics leverages this existing data to provide

deeper biological insights without requiring additional invasive

procedures, enabling longitudinal assessment of tumor

characteristics and heterogeneity, which is crucial for adapting

treatment in the dynamic advanced disease setting (20).
2.2 Radiomics for occult peritoneal
metastasis detection

Peritoneal metastasis represents the most common pattern of

distant metastasis in advanced GC, occurring in up to 66% of

patients and serving as a major determinant of prognosis and

treatment strategy selection (15, 20). The detection of occult

peritoneal metastasis remains a critical clinical challenge, as

patients with undetected peritoneal disease may undergo

inappropriate surgical interventions or miss opportunities for

optimal systemic therapy.

Conventional CT imaging demonstrates significant limitations in

detecting early-stage peritoneal metastasis, with sensitivity as low

as 28.3%-50.9%, particularly for tumor implants smaller than 1 cm

(20, 21). These diagnostic limitations have led to the development of

AI-driven approaches specifically targeting occult peritoneal

metastasis detection. Dong et al. developed a pioneering radiomic

nomogram incorporating both primary tumor and peritoneal region

features, achieving excellent performance with AUCs of 0.958 in

training and 0.928-0.941 in external validation cohorts across

multiple centers (20). This approach demonstrated that both the

tumor characteristics (“seed”) and peritoneal microenvironment

features (“soil”) contribute to metastatic potential, reflecting the

biological basis of the “seed and soil” hypothesis.

Building upon radiomics approaches, deep learning models have

shown even greater promise. The Peritoneal Metastasis Network

(PMetNet) developed by Jiang et al. achieved remarkable

performance with AUCs of 0.946-0.920 in external validation,

demonstrating sensitivities of 75.4%-87.5% and specificities of 92.9%-

98.2% (22). Importantly, this model substantially outperformed

conventional clinicopathological factors and could identify occult

peritoneal metastasis missed by radiologist interpretation. The

integration of gradient-weighted class activation mapping (Grad-

CAM) provided interpretability by highlighting intra-tumoral regions

associated with metastatic potential, suggesting that tumor

heterogeneity may be a key factor in determining peritoneal spread.

Beyond imaging-based approaches, novel AI-assisted molecular

techniques are emerging. Chen et al. developed stimulated Raman

molecular cytology (SRMC), combining three-color stimulated

Raman scattering microscopy with deep learning for analyzing
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exfoliated cells in peritoneal lavage fluid (23). This approach

achieved 81.5% sensitivity and 84.9% specificity within 20 minutes,

representing a significant advancement over conventional cytology’s

<60% sensitivity. The method’s ability to analyze both cellular

morphology and molecular composition (lipid, protein, and DNA

content) demonstrates the potential for AI-driven integration of

multiple biological features.

These advances in AI-powered peritoneal metastasis detection

address a critical unmet clinical need in advanced GC management.

The ability to accurately identify occult peritoneal disease

preoperatively could significantly impact treatment decision-

making, helping to avoid unnecessary surgical procedures while

ensuring appropriate patients receive optimal systemic therapy or

are considered for specialized peritoneal-directed treatments.
2.3 Pathomics for advanced GC
characterization

Pathomics, or computational pathology, applies AI techniques

to analyze digitized WSI obtained from tissue biopsies or surgical

specimens (24). Even from small biopsy samples typically available

in the advanced/metastatic setting, AI can extract a wealth of

information. DL models, such as those based on ResNet or

Inception architectures, have demonstrated high accuracy (often

>90-95%) in classifying gastric tissue as normal, dysplastic, or

cancerous, potentially aiding pathologists and reducing inter-

observer variability (15). AI can also automate tasks like

histological grading or classifying GC subtypes according to

systems like the Lauren classification (25). A particularly

promising application is the analysis of the TIME from H&E

stained slides. AI algorithms can automatically detect and

quantify TILs or assess stromal characteristics, features known to

be associated with prognosis and response to immunotherapy (26).

Furthermore, AI can assist in the interpretation of IHC staining for

key biomarkers like HER2 and PD-L1. By objectively quantifying

staining intensity and distribution, AI may improve the consistency

and accuracy of biomarker assessment, which is critical for guiding

targeted therapy and immunotherapy decisions (6). Similar to

radiomics, pathomics offers a way to extract quantitative,

objective data from routinely collected diagnostic materials

(biopsy slides), providing insights into tumor biology and

heterogeneity (27). This is valuable in advanced GC where

metastatic tissue biopsies might be the only available samples, and

understanding their characteristics is key to treatment planning.
3 AI for predicting treatment efficacy
in advanced gastric cancer

Amajor goal of precision oncology in advanced GC is to predict

which patients are most likely to benefit from a specific therapy,

thereby maximizing efficacy while minimizing unnecessary toxicity

and cost. AI is being extensively investigated for its potential to

predict responses to various systemic treatments (Table 1).
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3.1 Predicting response to systemic
chemotherapy

Systemic chemotherapy remains a cornerstone of treatment for

many patients with advanced GC, either in the palliative setting or

potentially as neoadjuvant treatment for initially unresectable

patients who might become candidates for conversion surgery.

Predicting response is crucial for optimizing treatment selection.

Numerous studies have explored the use of CT-based radiomics to

predict pathological response (often assessed by Tumor Regression

Grade, TRG) or clinical response (e.g., according to Response

Evaluation Criteria in Solid Tumors, RECIST) to neoadjuvant or

palliative chemotherapy (28). These studies employ various ML

algorithms, including logistic regression (LR), SVM, RF, eXtreme

Gradient Boosting (XGBoost), and DL models like DenseNet or V-

Net, trained on features extracted from pre-treatment CT scans or

changes observed between baseline and follow-up scans (delta-

radiomics) (28). Reported performance metrics, such as AUC

values, often range from 0.70 to over 0.85, suggesting a definite

predictive signal. Some evidence suggests these radiomic signatures

might generalize across different chemotherapy regimens, although

inconsistencies in methodology and patient cohorts remain a

challenge. Pathomics is also emerging as a predictive tool; for

instance, interpretable AI frameworks like iSCLM (incremental

Supervised Contrastive Learning Model), using supervised

contrastive learning on pre-treatment biopsy WSIs combined

with CT data, have achieved AUCs around 0.85 for predicting

neoadjuvant chemotherapy response (29). Additionally, older

studies explored ML models like SVM using clinical and

demographic data, or gene expression profiles, to predict benefit

from adjuvant chemotherapy, indicating the potential of non-

imaging data as well (15). While the numerous radiomics studies

reflect a strong clinical need for pre-treatment stratification, the

variability in methods and often moderate predictive accuracy

suggest that radiomics alone may not be sufficient for robust

clinical decision-making. Its value likely lies in capturing tumor

phenotypic information that complements other data modalities

within integrated models.
3.2 Predicting response to immunotherapy
(ICI)

ICIs, particularly anti-PD-1/PD-L1 antibodies, have become

integral to the treatment of advanced GC, both as monotherapy

in later lines and increasingly in combination with chemotherapy in

the first-line setting (23). However, only a subset of patients

responds, making predictive biomarkers essential. AI offers

promising avenues to improve upon or complement existing

biomarkers like PD-L1 CPS, TMB, and MSI/dMMR status, which

have recognized limitations related to predictive accuracy and

assessment challenges (30). Radiomics models based on CT or

PET imaging features have been developed to predict response or

survival outcomes in patients receiving anti-PD-1 therapy, with

reported AUCs reaching up to 0.86. Delta-radiomics, assessing
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changes in imaging features during treatment, may also provide

prognostic information (31). Pathomics approaches using DL on

diagnostic H&E biopsy WSIs have shown remarkable success in

predicting response to first-line PD-1 inhibitor plus chemotherapy

combinations, achieving AUCs exceeding 0.90 in some validation

cohorts (23). These models likely capture subtle morphological

features of the tumor cells and the surrounding microenvironment

(e.g., TIL density, stromal characteristics) that correlate with

immune response. On the genomic front, AI algorithms like SVM

have been used to analyze immuno-oncology related gene

expression signatures from tumor samples to generate predictive

scores (e.g., ‘ Immuno-Oncology Score’) for durable clinical benefit

(21). Furthermore, innovative approaches like biology-guided deep

learning (BgDL) explicitly link imaging features (from CT) to

predicted TME subtypes (based on IHC markers like IS_GC_ and

POSTN) to predict ICI response (22). Notably, such models may

identify potential non-responders even within biomarker-positive

groups like dMMR patients, suggesting a role in refining patient

selection beyond current guidelines (22). The ability of AI to

leverage non-invasive imaging or readily available biopsy slides

offers a significant practical advantage over repeated invasive

sampling, potentially providing a more comprehensive and

dynamic assessment of immunotherapy response likelihood (23).
3.3 Predicting response to targeted
therapies

Anti-HER2 therapy (e.g., trastuzumab) is standard for HER2-

positive advanced GC, but response rates are not universal, and

resistance can develop. While HER2 status determined by IHC/

FISH is the primary selection criterion, AI may offer ways to refine

prediction within this group. Research is exploring whether

radiomic or pathomic features can capture tumor heterogeneity

or other biological factors associated with response or resistance to

anti-HER2 agents (32). Multi-modal AI models, such as the MuMo

(Multi-Modal) model, integrate radiology, pathology, and clinical

data to specifically predict response to anti-HER2 monotherapy

(achieving an AUC of ~0.82) and, importantly, to the increasingly

used combination of anti-HER2 therapy plus ICIs (AUC ~0.91)

(32). The development of AI models specifically targeting

combination therapies reflects the evolving treatment landscape

and AI’s capacity to handle the increased complexity of predicting

outcomes for multi-agent regimens, moving beyond single-agent

prediction to potentially guide more complex treatment selections.
4 AI-powered multi-modal data
integration for personalized treatment
selection

The inherent complexity and heterogeneity of advanced GC

necessitate a holistic understanding that often transcends the

information available from any single data source (36). Clinicians

naturally integrate diverse information—patient history, physical
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TABLE 1 Summary of key AI studies predicting treatment efficacy in advanced gastric cancer.

Patient Cohort
rformance Metric(s) Key Limitations/Notes Ref.

m AUC: 0.893 (Test)
First radiomics study for nICT
response; Small test set (n=18)

(20)
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PFS difference
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72-0.82 across NAC cohorts;
SOXA cohort (AUC 0.50)

Shows generalization for NAC but not
targeted therapy; Retrospective

(28)

22 (PP)
Small sample size; Heterogeneity
in methods

(4)

AUC: 0.71 (Test I), 0.70
Detection AUC: 0.74 (Test
est II)

Retrospective, specific chemo regimens
(SEEOX/SOX)

(34)

m AUC: 0.934
Retrospective, two centers, small
sample size

(35)

l AUCs: 0.920 - 1.000 across
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First study for 1st line ICI+Chemo
prediction from biopsy; Retrospective

(23)

ZV feature predictive of PFS
1, C-index 0.705)
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21 (Anti-HER2), 0.914
d); Predicted
ifference

Multi-modal approach for specific
subtypes/treatments; Retrospective

(32)

ent prognostic factor;
chemo benefit; Predicted ICI
complemented MMR/PD-L1

Links imaging to biology;
International validation; Retrospective

(22)

846-0.876 (Test cohorts)
Large multi-center study; Focus on
interpretability (SHAP, heatmaps)

(29)

puted Tomography; DL, Deep Learning; DFS, Disease-Free Survival; EHR, Electronic Health
T, Immune Response Evaluation Criteria In Solid Tumors; LAGC, Locally Advanced Gastric
Learning; MMR, Mismatch Repair; MRI, Magnetic Resonance Imaging; MSI, Microsatellite
vival; Patho, Pathomics; PD-1, Programmed Death-1; PD-L1, Programmed Death Ligand-1;
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Study (Size, Stage,
Treatment)

AI Model Type
Input Data
Modality(ies)

Prediction Task Key Pe

Zhang (2024) 60 AGC, nICT
XGBoost (Radiomics),
Nomogram
(Radio+Clinical)

Baseline CT Radiomics,
Clinical (PD-L1,
cTNM, etc.)

Pathological Response
(TRG) to nICT

Nomogra

Liang (2022)
87 Advanced GC, Anti-
PD-1

Radiomics Nomogram
(Radio+Clinical)

CT Radiomics, Clinical Response to Anti-PD-1
AUC: 0.8
Predicted

Chen (2022) 286 AGC, NAC/Targeted Radiomics (LASSO-LR) Baseline CT Radiomics
Pathological Response
(TRG) to NAC

AUCs: 0.
Poor for

Li (2018) 58 LAGC, Preop Chemo
LDA Filter +
RF (Radiomics)

Pre-treatment CT
Radiomics (Portal Phase)

Pathological Response (GR
vs non-GR)

AUC: 0.7

Xu (2021)
292 AGC,
Neoadjuvant Chemo

Radiomics (LASSO-LR)
Baseline CT (Prediction),
Restaging CT (Detection)

Pathological
Downstaging (pDS)

Predictio
(Test II);
I), 0.76 (

Liu (2021) 69 AGC, Systemic Chemo
Multi-energy Radiomics
Nomogram
(Radio+Clinical)

Dual-Energy CT Radiomics
(Multi-keV), Clinical
(Stage, IC)

Clinical Response (RECIST)
to Systemic Chemo

Nomogra

Liu (2024)
264 Advanced GC, 1st Line
PD-1 + Chemo

Ensemble DL (ICIsNet:
EfficientNet, DenseNet,
Swin Transformer)

Pre-treatment Biopsy WSI
(H&E Pathomics)

Response (iRECIST) to 1st
Line ICI+Chemo

WSI-leve
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Li (2022) 58 Stage IV GC, ICI
Delta-Radiomics
(LASSO-Cox)

Baseline & Follow-up CT
Radiomics (Intra- &
Peri-tumoral)

Progression-Free Survival
(PFS) on ICI

DVintra_
(HR 1.91

Zhou (2025)
429 HER2+ GC (310 Anti-
HER2, 119 Anti-
HER2+ICI)

Deep Learning (MuMo)
Radiology, Pathology,
Clinical (Multi-modal)

Response to Anti-HER2 or
Anti-HER2+ICI

AUC: 0.8
(Combin
survival d

Jiang (2023)
2799 GC (Prognosis/
Chemo); 303 Advanced
GC (ICI)

Biology-Guided DL (BgDL
- CNN)

Preoperative CT Imaging
(linked to TME classes
via IHC)

Prognosis (DFS), Chemo
Benefit, ICI Response

Independ
Stratified
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Gao (2024)
2387 LAGC (10 centers) +
132 prospective,
Neoadjuvant Chemo

Interpretable AI (iSCLM -
Supervised
Contrastive Learning)

Pre-treatment CT + Biopsy
WSI (Multi-modal)

Pathological Response to
Neoadjuvant Chemo

AUCs: 0.

AGC, Advanced Gastric Cancer; AI, Artificial Intelligence; AUC, Area Under the Curve; CI, Confidence Interval; Clin, Clinical; CNN, Convolutional Neural Network; CT, Com
Record; GR, Good Response; H&E, Hematoxylin & Eosin; HER2, Human Epidermal Growth Factor Receptor 2; HR, Hazard Ratio; ICI, Immune Checkpoint Inhibitor; iRECIS
Cancer; LASSO, Least Absolute Shrinkage and Selection Operator; LDA, Linear Discriminant Analysis; LR, Logistic Regression; LNM, Lymph Node Metastasis; ML, Machine
Instability; NAC, Neoadjuvant Chemotherapy; nICT, Neoadjuvant Immunochemotherapy; NGS, Next-Generation Sequencing; ORR, Objective Response Rate; OS, Overall Sur
PET, Positron Emission Tomography; PFS, Progression-Free Survival; pDS, Pathological Downstaging; Radio, Radiomics; RECIST, Response Evaluation Criteria In Solid Tum
TRG, Tumor Regression Grade; WSI, Whole Slide Image; XGBoost, eXtreme Gradient Boosting.
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examination, laboratory results, imaging reports, pathology findings

—to make treatment decisions. AI, particularly through multi-

modal learning, aims to replicate and enhance this integrative

process by computationally combining data from various

modalities, such as clinical records, genomics/transcriptomics,

radiomics (from CT, PET, MRI), and pathomics (from WSI) (36).

This approach promises a more comprehensive patient profile,

potentially leading to more accurate predictions and truly

personalized treatment selection (37).

Several strategies exist for integrating multi-modal data within

AI frameworks. Early fusion involves concatenating raw or

processed features from different modalities before feeding them

into a single model. Intermediate fusion learns separate

representations for each modality first, then integrates these

representations at one or more hidden layers within the model;

this allows for more flexibility and can utilize techniques like

attention mechanisms, gating mechanisms, graph neural networks

(GNNs), or Kronecker products to model cross-modal interactions

effectively (29). Late fusion involves training separate models for

each modality and then combining their outputs or predictions

(e.g., through averaging, voting, or meta-learning) to reach a final

decision (37). The choice of fusion strategy often depends on the

specific task, data types, and desired level of interaction modeling.

Numerous studies are now demonstrating the value of multi-

modal AI in advanced GC. Integrating radiomic features derived

from CT or PET scans with clinical variables (like TNM stage,

performance status, lab values) has consistently shown improved

performance in predicting survival or treatment response compared

to using either modality alone, often reflected in higher C-indices or

AUCs (13). Similarly, combining pathomic features fromWSIs with

clinical data has enhanced prognostic accuracy (37). More advanced

integrations are also emerging. The iSCLM framework successfully

combined pre-treatment CT scans and H&E biopsy images to

predict neoadjuvant chemotherapy response with high accuracy

across multiple centers (29). Radiopathomics models integrating

features from both imaging and pathology slides are being

developed for improved staging (38). Biology-guided approaches

explicitly link imaging features to molecular or TME characteristics

(derived from IHC or genomics) to predict outcomes, as seen in the

BgDL model (22). Perhaps the most comprehensive examples

involve integrating three or more modalities; the MuMo model

effectively combined radiology, pathology, and clinical data to

predict response to HER2-targeted therapy with or without

immunotherapy (32), and other studies have integrated CT-

derived radiomic and DL features with clinical variables for

survival prediction (39). These studies consistently report that

multi-modal models outperform their unimodal counterparts,

underscoring the benefit of data integration (37). The increasing

focus on such integrative models signals a maturation of the field,

moving beyond single-modality proofs-of-concept towards

approaches that better mirror the complexity of clinical reality

and offer potentially more robust and relevant predictions (Table 2).

Despite the promise, significant challenges remain in multi-

modal AI. Acquiring complete datasets with all desired modalities

for the same patient cohort can be difficult. Aligning data from
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different sources (e.g., mapping genomic alterations to specific

regions on an image) is non-trivial. The computational cost and

complexity of training these models are higher and ensuring the

interpretability of how different data types contribute to the final

prediction is crucial for clinical trust and adoption (36). Addressing

the “black box” nature of complex models is vital. The development

of interpretable multi-modal models, such as those using attention

mechanisms (e.g., Grad-CAM for visualizing image focus) or

Shapley values to quantify feature contributions, or those

explicitly guided by biological principles (like BgDL or iSCLM

linking predictions to TME or molecular features), represents a

critical step towards clinical acceptance. By providing insights into

the model’s reasoning process and linking predictions to

recognizable biological or visual features, these approaches

enhance transparency and facilitate validation.

Radiomics excels in non-invasive applications but struggles with

generalizability, as seen in variable AUCs across regimens (28).

Pathomics provides granular biological insights but is biopsy-

dependent, limiting its use in serial monitoring. Multi-modal DL

addresses these by synergizing modalities, consistently outperforming

unimodal approaches (e.g., C-index gains in (39)), though it demands

advanced XAI for clinical trust. Overall, multi-modal models

represent the frontier but require prospective validation to mitigate

data gaps (Table 3).
5 AI applications in refractory
advanced gastric cancer

Patients with advanced GC whose disease progresses despite

standard first- and second-line therapies face a particularly

challenging situation with limited treatment options and a dismal

prognosis (5). Identifying effective strategies for this refractory

setting is a critical unmet need. AI offers potential avenues to

address this challenge, although applications are currently more

exploratory than established.

One potential role for AI is in understanding the mechanisms of

treatment resistance. By analyzing longitudinal multi-modal data

(e.g., serial imaging, sequential biopsies with genomic/

transcriptomic profiling) from patients who develop resistance, AI

algorithms might identify patterns or biomarkers predictive of

failure. For example, identifying an epithelial-mesenchymal

transition (EMT) phenotype, potentially detectable through

imaging or molecular analysis, has been linked to resistance to

both chemotherapy and immunotherapy in some cancers, and AI

could help detect such signatures (42).

AI-driven drug repurposing represents another promising

strategy (43). This involves using computational methods to

identify existing drugs, approved for non-cancer indications, that

may have anti-cancer activity in GC. AI algorithms can analyze vast

databases encompassing drug structures, protein targets, gene

expression profiles, pathway interactions, and scientific literature to

predict potential drug-disease associations much faster than

traditional screening methods. While numerous drugs have been

investigated for repurposing in GC (e.g., metformin, statins, certain
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TABLE 2 Overview of multi-modal AI models in advanced gastric cancer.
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Combined imaging features with clinical
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Multi-energy radiomics
improved prediction
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ER2 or AUC: 0.821 (Anti-HER2), 0.914
(Combined); Predicted survival

Addresses specific combination therapy;
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Independent prognostic factor;
Improved ICI prediction over
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AUCs: 0.846-0.876 (Test cohorts)
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Separate models for radiomics/pathomics;
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antibiotics, antidepressants), the use of AI specifically to identify these

candidates for refractory GC is not yet widely documented in

validated studies. However, the potential to rapidly screen existing

compounds with known safety profiles makes this an attractive

approach for finding new options quickly.71 This approach holds

particular promise for refractory GC because it offers a potentially

faster and less expensive route to finding effective therapies compared

to the lengthy and costly process of de novo drug development.

Furthermore, AI could facilitate cross-cancer learning to

generate treatment recommendations (44). Models trained on

large datasets encompassing multiple cancer types might identify

shared molecular vulnerabilities or predictive signatures for

response to specific drugs, even if those drugs are not typically

used in GC (45). This aligns with the concept behind basket trials

like the NCI-MATCH study, which enrolls patients based on

molecular alterations rather than tumor histology (46). However,

the clinical utility of simply identifying an “actionable alteration”

via NGS alone has been limited in advanced GC, with low rates of

enrollment onto genotype-matched trials and uncertain clinical

benefit. This highlights a potential key role for AI: moving

beyond simple mutation matching to integrate genomic data with

clinical context, imaging phenotypes, and pathway information,

potentially learned from broader cross-cancer datasets, to more

accurately predict the likelihood of benefit from a targeted therapy

in a refractory patient (47, 48). AI might be a necessary component

to effectively translate genomic findings into successful therapeutic

strategies in the complex refractory setting.

Currently, these AI applications for refractory GC remain largely

conceptual or in early research stages. Realizing their potential will

require significant advancements in data infrastructure (integrated

knowledge graphs, cross-institutional data sharing), robust predictive

modeling capable of handling diverse data types, and validation in

prospective clinical settings.
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6 Bridging the gap: challenges, future
directions, and clinical translation

Despite the significant progress and immense potential of AI in

managing advanced GC, several substantial challenges must be

addressed to bridge the gap between research findings and

routine clinical practice.
6.1 Recap of key challenges

A recurring theme throughout the literature is the set of obstacles

hindering the widespread adoption of AI tools. Data-related issues

are paramount, including limitations in data quality, quantity, and

heterogeneity across institutions. Lack of standardized data

acquisition protocols (especially for imaging and digital pathology)

and annotation methods makes it difficult to compare results and

train generalizable models. Accessing large, well-curated, multi-

modal datasets representing diverse patient populations remains a

major hurdle, often leading to studies based on single-center,

retrospective cohorts with limited external validity. Data privacy

and security concerns also complicate data sharing efforts. Model-

related challenges include the risk of overfitting to training data and

poor generalizability to new, unseen data. The inherent “black box”

nature of many complex DL models poses a significant barrier to

clinical trust and adoption, as clinicians require transparency and

understanding of how predictions are generated. Validation

represents another critical bottleneck. The vast majority of studies

rely on retrospective validation, with a striking lack of prospective

trials evaluating AI tools in real-world clinical workflows.

Standardized evaluation metrics and benchmarks are needed for

objective comparison of different models. Finally, implementation

challenges include integrating AI tools seamlessly into existing
TABLE 3 Comparative analysis of key AI models in advanced gastric cancer.

Model Type Strengths Weaknesses
Best Applications in
Advanced GC

Example
Studies

Radiomics (e.g., feature extraction
from CT/PET via ML like LASSO-
LR, SVM)

Non-invasive; Uses existing
imaging; Quantifies heterogeneity
(e.g., texture features); High-
throughput and cost-effective.

Dependent on image quality/
standardization; Risk of overfitting
due to high-dimensional features;
Limited biological interpretability
without XAI.

Metastasis detection (e.g.,
peritoneal); Response prediction
(AUC 0.70-0.85); Longitudinal
monitoring via delta-radiomics.

Li et al. (4);
Jiang et al. (22)

Pathomics (e.g., DL on WSIs via
ResNet, EfficientNet)

Captures microenvironment
details (e.g., TILs, stroma);
Objective biomarker quantification
(e.g., PD-L1); Works on small
biopsies common in
advanced disease.

Requires digitized slides (not
universal); Computationally
intensive; Inter-scanner variability;
Less effective for
macroscopic features.

TIME analysis for ICI response
(AUC >0.90); Subtype
classification; Toxicity
prediction potential.

Liu et al. (23);
Gao et al. (29)

Multi-Modal DL (e.g., fusion of
radiomics + pathomics + clinical
via CNNs, GNNs, or
contrastive learning)

Holistic integration reflects disease
complexity; Superior performance
(AUC improvements of 0.05-0.15
over unimodal); Models
interactions (e.g., via
attention mechanisms).

Data alignment challenges; Higher
computational demands; “Black
box” issues amplified; Scarce
complete multi-modal datasets.

Personalized therapy selection
(e.g., HER2+ICI); Prognosis in
refractory settings; Adaptive
models for resistance.

Zhou et al. (32);
Jiang et al. (22);
Gao et al. (29)
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clinical decision support systems, navigating complex regulatory

approval pathways (e.g., FDA clearance), and addressing ethical

considerations surrounding algorithmic bias and accountability.

The evidence suggests that the primary impediment to clinical

translation may not be the sophistication of AI algorithms

themselves, but rather these persistent issues surrounding data

infrastructure and robust validation.
6.2 Future research directions

Addressing these challenges requires a multi-pronged

approach. Data strategies should focus on fostering multi-center

collaborations and establishing data sharing consortia to build

larger, more diverse datasets. Implementing standardized

protocols for data acquisition (e.g., imaging parameters, WSI

scanning) and annotation is crucial. Techniques like federated

learning, which allow models to be trained across multiple

institutions without centralizing sensitive patient data, offer a

promising solution to privacy concerns. Model development must

prioritize robustness, generalizability, and interpretability.

Continued research into Explainable AI (XAI) techniques is

essential to build trust and facilitate clinical adoption. Advancing

multi-modal fusion techniques to better capture synergistic

information from different data sources remains a key area.

Developing dynamic models that can incorporate longitudinal

data (e.g., changes in imaging or biomarkers over time) could

enable adaptive treatment strategies. Validation efforts must shift

towards rigorous prospective clinical trials designed to assess the

real-world impact of AI tools on clinical decision-making and

patient outcomes. Head-to-head comparisons against current

clinical standards and biomarkers are necessary. Specific needs for

advanced GC include developing AI tools tailored for predicting

response to novel combination therapies, identifying mechanisms

of acquired resistance, guiding optimal therapy sequencing,

improving toxicity prediction, and potentially incorporating

patient-reported outcomes into predictive models.
6.3 Path to clinical translation

The journey from AI research to clinical practice requires

careful navigation. Clear regulatory frameworks are needed to

evaluate the safety and efficacy of AI medical devices. Successful

implementation necessitates designing AI tools that are user-

friendly and integrate smoothly into existing clinical workflows,

providing actionable information to clinicians at the point of care.

Education and training programs will be vital to equip clinicians

with the knowledge and skills to effectively use and interpret AI-

driven insights. Crucially, achieving meaningful clinical integration

will demand a paradigm shift towards sustained interdisciplinary

collaboration, bringing together oncologists, radiologists,

pathologists, AI scientists, bioinformaticians, implementation

scientists, ethicists, and regulatory bodies. This collaborative
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ecosystem is essential for ensuring that AI tools address genuine

clinical needs, are rigorously validated, ethically deployed, and

ultimately contribute to improved patient care.
7 Conclusion

Artificial intelligence is rapidly emerging as a transformative

force in the management of advanced gastric cancer. Significant

progress has been demonstrated in leveraging AI, particularly ML

and DL techniques, to analyze complex data derived from radiomics,

pathomics, genomics, and clinical records. These approaches show

considerable promise in refining diagnostic accuracy relevant to

treatment planning, predicting patient prognosis with greater

precision, and, crucially, forecasting response to various systemic

therapies including chemotherapy, immunotherapy, and targeted

agents. The development of multi-modal AI models, capable of

integrating information from diverse sources, represents a

particularly important advancement, offering a more holistic

understanding of tumor biology and patient characteristics, often

leading to superior predictive performance compared to unimodal

approaches. Furthermore, nascent applications of AI in identifying

potential therapeutic avenues for refractory disease highlight its

potential to address critical unmet needs.

The ultimate potential of AI lies in its ability to facilitate truly

personalized medicine for patients with advanced gastric cancer. By

uncovering subtle patterns hidden within complex data, AI can

provide deeper insights into individual tumor biology, predict

responses to specific treatments with greater accuracy, identify

patients at high risk of toxicity, and optimize therapeutic

strategies in ways previously unattainable.

However, the translation of this potential into routine clinical

practice faces significant hurdles. Challenges related to data quality,

accessibility, and standardization, coupled with the need for robust,

prospective validation of AI models in diverse, real-world settings,

remain major obstacles. Ensuring model interpretability and

generalizability, navigating regulatory pathways, and achieving

seamless integration into clinical workflows are also critical steps.

Overcoming these challenges will require sustained, collaborative

efforts involving researchers, clinicians, data scientists, industry

partners, and regulatory agencies. Continued rigorous research

focusing on high-quality data, robust validation, and the

development of interpretable, clinically integrated AI tools is

paramount. If these efforts are successful, AI holds the promise to

fundamentally reshape the management of advanced gastric cancer,

moving beyond empirical approaches towards a future of data-

driven, personalized care that offers improved outcomes and hope

for patients facing this challenging disease.
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