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Introduction: Lung adenocarcinoma is a leading subtype of lung cancer with 
high rates of recurrence and metastasis. Identifying novel prognostic biomarkers 
is essential for improving patient outcomes. 

Methods: Transcriptomic and clinicopathological data from TCGA (55 tumor 
samples and 38 normal samples) were used to construct a prognostic model, 
with 30 samples for internal validation. An external validation cohort (10 tumor-

normal pairs) was obtained from the First Affiliated Hospital of Wenzhou Medical 
University. Differentially expressed genes and immune-related genes from the 
IMMPORT database were integrated using WGCNA. Three machine learning 
algorithms—Random Forest, LASSO, and SVM-RFE—were applied to identify key 
hub genes. A multivariate Cox regression model was built to predict survival. Model 
performance was assessed by time-dependent ROC and ANN models. Immune 
infiltration was analyzed using TIMER and ssGSEA, with consensus clustering 
performed to explore immune subtypes. Protein expression and biological 
functions of hub genes were validated using the HPA database and GSEA. 

Results: A total of 1,822 DEGs were identified, with 68 immune-related genes 
significantly associated with LUAD prognosis. Four hub genes—CBLC, GDF10, 
LTBP4, and FABP4—were selected to construct the prognostic model, which 
showed strong predictive performance in both ROC and ANN analyses. Immune 
profiling revealed elevated CD4⁺ T cells, macrophages, and dendritic cells in 
LUAD. Consensus clustering identified two immune subtypes with distinct 
prognoses and immune landscapes. 

Discussion: This study established a robust immune-related prognostic model 
for LUAD and identified key biomarkers associated with immune infiltration and 
survival. These findings offer valuable insights for personalized diagnosis and 
treatment strategies in LUAD. 
KEYWORDS 
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1 Introduction 

Lung cancer remains the leading cause of cancer deaths (1, 2), 
with lung adenocarcinoma (LUAD) accounting for about 40% of 
cases and a poor five-year survival rate of 12%-15% (3). Early 
diagnosis is critical, but current methods often fail to predict 
recurrence or metastasis effectively. Therefore, identifying reliable 
prognostic biomarkers is urgently needed (4). 

Immune-related genes (IRGs) have shown strong prognostic 
value in several cancers, but their role in LUAD remains 
underexplored, limiting immunotherapy advances. Discovering new 
IRGs could refine LUAD treatment and enhance personalized care. 

Weighted Gene Co-expression Network Analysis (WGCNA) is 
a powerful tool that identifies gene modules related to clinical traits, 
uncovering disease mechanisms and novel biomarkers (5–8). 
Widely applied across fields, it enhances understanding beyond 
single-gene analyses. 

Meanwhile, machine learning, including algorithms like 
Random Forest (RF), Least absolute shrinkage and selection 
operato (LASSO), Support vector machine - recursive feature 
elimination (SVM-RFE), and Artificial Neural Networks (ANN), 
has revolutionized biomarker discovery and prognosis modeling, 
offering precise insights from complex data (9). 

In this study, we combined WGCNA and machine learning to 
analyze TCGA LUAD data, identifying four key immune genes 
linked to overall survival. We constructed an immune prognostic 
model, explored their clinical correlations and immune infiltration 
mechanisms, providing a new basis for LUAD diagnosis, treatment, 
and prognosis improvement. 
2 Materials and methods 

2.1 Research process 

The detailed research workflow is illustrated in Figure 1. 
 

2.2 Data acquisition and processing 

Gene expression data for LUAD were obtained from The Cancer 
Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/) using 
the R software package “TCGAbiolinks”. 

Clinical data were directly acquired from TCGA, comprising 
535 LUAD patients and 59 healthy controls. After rigorous quality 
control and preprocessing, which included removal of duplicate and 
incomplete records, we established our training set with 55 LUAD 
patients and 38 healthy controls. Concurrently, we constructed a 
TCGA  validation  set by randomly selecting 30 samples  with
complete grouping information and unbiased gene expression 
profiles, excluding those used in the training set. 
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2.3 Clinical sample acquisition 

From January 2020 to April 2022, we prospectively collected 
medical records and tissue specimens from 10 patients undergoing 
surgical resection for primary LUAD at the First Affiliated 
Hospital of Wenzhou Medical University. These 10 LUAD 
specimens and their matched adjacent normal tissues (n = 10) 
were subsequently processed for gene sequencing analysis, serving 
as an independent external validation cohort. This study protocol 
was approved by the Institutional Review Board of the First 
Affiliated Hospital of Wenzhou Medical University (Approval No. 
YS2023-706). 
2.4 RNA preparation and sequencing 
protocol 

Paired-end sequencing (150 bp) was conducted on the Illumina 
NovaSeq platform (Illumina, California, USA) following standard 
protocols. Raw sequencing data were processed on the BMK Cloud 
bioinformatics platform (https://www.biocloud.net) for

downstream analysis. 
2.5 Differential expression gene analysis 

In the R software environment, the “limma” package was used 
to normalize and annotate probe data from a training set of LUAD 
patients (55 cases) and control population (38 cases) in public 
databases. Differential gene expression analysis was performed to 
identify differentially expressed genes (DEGs) between the lung 
cancer group and the control group. To visualize the expression 
patterns of these DEGs, hierarchical clustering was conducted using 
the heatmap package, while the ggplot2 package was employed to 
generate volcano plots, providing an intuitive representation of gene 
expression differences. 
2.6 Construction of gene co-expression 
networks 

To elucidate the interactions among genes in LUAD, we 
employed WGCNA on expression profile data from the TCGA 
training set. Data integrity was assessed using the “Good Samples 
Genes” function to ensure robust downstream analysis. 
2.7 Immune-related gene screening 

Following the removal of duplicate entries, IRGs were retrieved 
from the Immunology Database and Analysis Portal (ImmPort, 
https://www.immport.org), yielding a total of 1,793 unique genes 
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(10). These genes were subsequently cross-referenced with those 
identified through gene clustering analysis using Venn diagrams, 
enabling the precise selection of immune-related genes. 
2.8 Cox analysis related to prognosis 

To investigate the association between DEGs and patient overall 
survival, univariable Cox regression analysis was performed. 
Hazard ratios (HRs) were calculated to classify genes as either 
protective (HR < 1) or risk factors (HR > 1) for prognosis. For visual 
representation of the results, a volcano plot was generated to 
illustrate the statistical significance and risk ratios of DEGs. 
Additionally, a forest plot was employed to display detailed 
univariable Cox regression results, including HR values and their 
95% confidence intervals (CIs). 
Frontiers in Oncology 03 
2.9 GO enrichment analysis and KEGG 
pathway analysis 

Gene Ontology (GO) term (https://www.geneontology.org/) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway (https://www.genome.jp/kegg/) enrichment analyses were 
conducted using the R package “cluster Profiler” (11). 
2.10 Machine learning 

In this study, we adopted three distinct machine learning 
algorithms—LASSO, SVM-RFE, and RF—to screen out HUB 
genes from specific modules. By independently applying these 
three algorithms and intersecting their selected genes, we 
identified robust diagnostic biomarkers. 
FIGURE 1 

Research process. 
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2.11 Gene expression difference analysis 

To evaluate the differential expression of HUB genes between 
tumor and normal tissues, we generated box plots using the 
“ggplot2” package. Statistical significance was assessed using 
Student’s t-tests. To ensure the robustness of our results, we 
further validated these findings in an independent external dataset. 
2.12 Single-gene diagnostic ROC analysis 

For the key genes identified during screening and validation, we 
utilized RNA-Seq data from LUAD, and adjacent non-tumor tissues 
obtained from the TCGA database. To assess the diagnostic 
potential of individual genes, we performed logistic regression 
analysis, treating gene expression levels as the independent 
variable and LUAD status (tumor vs. non-tumor) as the 
dependent variable. The diagnostic performance of each gene was 
quantified by calculating the area under the receiver operating 
characteristic (ROC) curve (AUC). 
2.13 Gene expression correlation analysis 

We employed Pearson correlation analysis to examine pairwise 
relationships between key genes, followed by visualization using 
heatmaps. This approach enables the identification of co-expression 
patterns and potential functional interactions among genes, 
providing insights into their regulatory networks. 
2.14 Analysis of clinical and pathological 
features 

To investigate the potential associations between gene 
expression levels and clinicopathological characteristics, we 
performed chi-square tests in this study. 
2.15 Development of an immune-related 
prognostic model 

We constructed a prognosis model for lung adenocarcinoma 
patients using univariate and multivariate Cox regression analysis 
methods. First, univariate Cox regression analysis was used to 
identify individual variables significantly associated with patient 
survival time. Subsequently, multivariate Cox regression analysis 
further evaluated the independent effects of these variables on 
patient prognosis while considering other potential confounding 
factors. The risk score was calculated as a linear combination of 
gene expression levels and corresponding Cox regression 
coefficients. To facilitate clinical use, we created a nomogram 
using the “rms” package in R. 
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Model performance was assessed through: 1. Calibration curves 
to compare predicted vs. actual survival, validated on an 
independent dataset; 2. ROC curves via the “pROC” package, 
with AUC values measuring predictive accuracy across thresholds. 
2.16 Construction of an artificial neural 
network diagnostic model 

We used the “neuralnet” and “neuralnettools” packages in R to 
construct an ANN diagnostic model based on hub gene expression. 
The model architecture included an input layer (hub genes), two 
hidden layers (with 8 and 3 neurons, respectively), and an output 
layer representing “normal” and “tumor” classes, with softmax 
activation. To avoid overfitting, we applied 10-fold cross-
validation and used gene weight information during training. 

Model performance was assessed using accuracy, precision, 
recall, F1-score, and AUC in both the training and validation sets. 
ROC curves were also used to evaluate the discriminative ability of 
both individual hub genes and the ANN model across the TCGA 
training set, internal validation set, and external cohort. ROC 
analysis assessed diagnostic accuracy, with AUC values reflecting 
its classification ability. 
2.17 Consensus clustering analysis 

To identify potential molecular subgroups in LUAD samples, 
we applied the ConsensusClusterPlus algorithm (12), which 
determines the optimal number of clusters (k) by resampling the 
dataset and evaluating clustering stability. 

To validate the robustness of the classification, we used two 
high-dimensional visualization techniques: UMAP and t-SNE. 
Additionally, Kaplan-Meier survival analysis was performed to 
assess the prognostic relevance of the identified subgroups by 
comparing survival curves across groups. 
2.18 Analysis of immune cell infiltration 

To assess immune infiltration patterns in LUAD, we leveraged 
the TIMER database (https://cistrome.shinyapps.io/timer) (13). 
Here, we utilized TIMER to examine correlations between the 
expression of four candidate genes (CBLC, GDF10, LTBP4, and 
FABP4) and Tumor immune infiltrating cells (TII Cs) populations, 
providing insights into their potential immunomodulatory roles 
in LUAD. 

For a more comprehensive evaluation of the tumor immune 
microenvironment, we applied single-sample gene set enrichment 
analysis (ssGSEA) (14). Using the GSVA and GSEA Base R 
packages, we quantified immune infiltration levels in each LUAD 
sample based on 28 immune-related gene sets curated from the 
TISIDB (http://cis.hku.hk/TISIDB/) database. 
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2.19 Gene Set Enrichment Analysis 

To investigate the transcriptomic characteristics of LUAD 
tumor samples and identify key biological pathways potentially 
involved in disease pathogenesis, we performed Gene Set 
Enrichment Analysis (GSEA). Pathways with a nominal P-value 
(NOM P) < 0.05 and a false discovery rate (FDR Q-value) < 0.05 
were considered statistically significant. 
2.20 Immunohistochemical staining 

The Human Protein Atlas (HPA; https://www.proteinatlas.org/ 
) is a comprehensive online repository that maps the expression and 
localization of human proteins across various cells, tissues, and 
organs using diverse biological techniques. We analyzed the 
immunohistochemical (IHC) staining patterns of selected hub 
genes in normal lung tissue and lung cancer specimens using data 
and analytical tools available on the Human Protein Atlas platform. 
2.21 Statistical analysis 

Significant differences between groups were assessed using the 
log-rank test and univariate COX regression analysis, with P-values 
and HR with 95% CI calculated. Multivariate COX regression 
analysis and stratified analysis were performed to evaluate the 
independence of the risk score model. The performance of gene 
prognostic signatures was assessed using ROC curves, with the area 
under the curve (AUC) as the metric. Statistical significance was 
defined as P < 0.05. All statistical analyses were conducted using R 
language version 4.3.0. 
 

 

 

3 Results 

3.1 Patient information 

The original mRNA expression data for LUAD were obtained 
from TCGA database, comprising 535 LUAD tumor samples and 
59 matched adjacent normal tissue samples. Following quality 
control and data filtering, our final study cohort consisted of 55 
LUAD samples as the experimental group and 38 adjacent normal 
tissue samples as controls. The complete clinical characteristics of 
the 55 LUAD cases are summarized in Table 1. 
 

3.2 Differential analysis 

There is a significant difference between the tumor group and 
the control group. Differential analysis identified a total of 1822 
DEGs (log2FC > 2, P < 0.001), including 719 downregulated genes 
and 1103 upregulated genes. These differences  are intuitively

displayed in the volcano plot (Figure 2A) and heat map (Figure 2B). 
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3.3 WGCNA 

We adopted the WGCNA method to identify gene modules 
associated with LUAD. First, by evaluating the scale-free fit index 
and average connectivity under different soft thresholds, the 
optimal soft threshold was determined to be b=17 (Figure 3A). 
Subsequently, sample clustering analysis was performed 
(Figure 3B), a topological overlap matrix was constructed, and 
hierarchical clustering was applied to identify modules. By using the 
dynamic tree cut algorithm and merging modules with similarity 
greater than 0.75, a final module clustering map was obtained 
(Figure 3C). Then, correlation analysis between modules and 
clinical features was conducted, and a heatmap was drawn to 
show the correlation coefficients and P-values (Figure 3D). A total 
of 4 modules were identified, among which the blue module with 
the highest correlation with the tumor group (r=0.96, P=4e-50) was 
selected, containing 604 genes. 
3.4 Immune gene screening 

A set of data consisting of 1793 IRGs was obtained from 
IMMPORT database (15). To further explore the immune genes 
associated with LUAD, we compared these immune genes with 604 
genes screened by gene clustering methods. A total of 102 immune 
genes closely associated with LUAD were identified, and these 
findings were visualized in a Venn diagram (Figure 4A). 
TABLE 1 Patient clinical characteristics table. 

Category LUAD 

Gender Male 33 

Female 22 

T  T1  9

T2 26 

T3 13 

T4 7 

N  N0  33

N1 12 

N2 10 

M  M0  37

M1 9 

MX 9 

Stage Stage I 14 

Stage II 17 

Stage III 15 

Stage IV 9 
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3.5 Prognostic analysis 

After a one-way regression analysis of 102 differential immune 
genes related to LUAD, the results showed that 68 differential 
immune genes were significantly correlated with the overall 
survival rate of LUAD patients (P < 0.05) (Figures 4B,C). These 
significantly related differential immune genes may affect tumor 
progression and patient survival prognosis by affecting the immune 
microenvironment of LUAD. 
3.6 Enrichment analysis 

GO and KEGG analyses revealed the functional localization of 68 
differentially expressed immune genes significantly associated with 
overall survival in lung adenocarcinoma. GO analysis indicated that 
these genes are mainly involved in signal pathway regulation (such as 
cell surface receptor signaling, G protein-coupled receptor pathway), 
cell proliferation, substance metabolism (such as protein 
phosphorylation), and immune inflammatory response (such as 
chemotaxis, MAPK cascade regulation) (Figure 5A). KEGG 
analysis further found that these genes are enriched in immune-

related pathways (such as PI3K-Akt and Jak-STAT pathways) and 
tumor proliferation-related pathways (such as Ras, Rap1, and MAPK 
signaling pathways) (Figure 5B). These results help to better 
understand the role of differentially expressed immune genes in the 
occurrence and development of LUAD. 
3.7 Identification of diagnostic biomarkers 

Machine learning identified 68 candidate genes. LASSO, SVM­

RFE, and RF algorithms further narrowed them to 16, 18, and 16 
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genes, respectively. By overlapping the three groups, four key 
diagnostic biomarkers were finally identified (Figure 6). The 
information related to 4 genes is shown in Table 2. 
3.8 Diagnostic biomarker verification 

In lung cancer research, by comparing the lung cancer samples in 
the TCGA cohort with the normal control group, it was found that 
the expression level of CBLC genes was significantly increased, while 
the expression levels of the three genes FABP4, GDF10, and LTBP4 
were significantly decreased (Figure 7A). This result was validated in 
an independent externally sequencing sample cohort (Figure 7B), 
showing gene expression patterns consistent with the TCGA cohort, 
enhancing the reliability and universality of this finding. 

To evaluate the predictive utility of these genes as biomarkers of 
lung cancer, the study performed a ROC curve analysis. In the 
TCGA cohort, the AUC values of CBLC, FABP4, GDF10, and 
LTBP4 genes were 0.982, 0.997, 0.980, and 0.983, respectively 
(Figure 7C), indicating that these genes have a high diagnostic 
efficiency in distinguishing lung cancer samples from normal 
control groups. In an independent external sequencing sample 
cohort, these genes also performed impressively, with the AUC 
value for CBLC at 0.800, while the AUC values for FABP4, GDF10, 
and LTBP4 all reached 1.000 (Figure 7D), further validating their 
potential as diagnostic markers for lung cancer. 
3.9 Analysis of clinical staging and genetic 
correlation 

To gain a deeper understanding the role of the four genes 
CBLC, FABP4, GDF10, and LTBP4, and their genetic interactions 
FIGURE 2 

Volcano plot (A) and heat map (B) of differentially expressed immune genes. The horizontal axis of the heat map represents the samples: the blue 
area represents normal tissue, and the red area represents tumor tissue; the vertical axis represents genes. On the volcano map, the blue area 
represents downregulated differentially expressed genes, and the red area represents upregulated differentially expressed genes. 
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in LUAD, Pearson correlation coefficients were calculated. The 
calculation results (Figure 8A) show that, except for CBLC, there is 
a good correlation between the three genes FABP4, GDF10, and 
LTBP4, indicating that they may play similar or synergistic roles in 
the development of LUAD. 

In addition, through statistical analysis of the TCGA dataset, the 
study further explored the relationship between these gene expression 
levels and the clinicopathological status of patients with LUAD 
(Figures 8B–E). The analysis results revealed, the high expression 
of CBLC in LUAD is positively correlated with poor clinical and 
pathological stages in patients, which means that the high expression 
of CBLC may be an indicator of poor progression and prognosis of 
lung adenocarcinoma. In contrast, high expression of FABP4, 
GDF10, and LTBP4 is associated with better clinical and 
Frontiers in Oncology 07 
pathological stages, indicating that the increased expression levels 
of these genes may be related to a better prognosis of LUAD. 
3.10 Establishment of immune prognostic 
model 

A multi-factor COX regression analysis was used to construct 
an immune prognostic model for predicting the 1-year, 3-year, and 
5-year survival rates of LUAD patients, which was visualized as a 
nomogram (Figure 9). The analysis results of the calibration 
curve (Figures 10A, C) showed that there is a good consistency 
between the model predictions and the ideal model. In 
addition, the AUCvalues of the model training set were 0.80 
FIGURE 3 

(A) Scatter plot of fitting index and average connectivity: The left figure shows the relationship between soft threshold (power) and fitting index, and 
the right figure shows the relationship between soft threshold and average connectivity. To achieve a correlation of 0.9, b=17 is selected as the 
optimal soft threshold. (B) Sample clustering diagram and trait heat map: Show the results of sample clustering and grouping information of tumor 
and normal samples, with red representing the tumor group and white representing the normal group. (C) Module clustering tree diagram: 
Construct a scale-free network and topological overlap matrix (TOM), and perform hierarchical clustering based on the hclust function. Set the 
minimum number of module genes to 100, depth split=2, and module merging threshold to 0.25 (merge when similarity > 0.75). (D) Module and 
clinical trait correlation heat map: The horizontal axis represents traits (tumor and control), and the vertical axis represents each module. The blue 
module with the highest correlation with the tumor group (Cor=0.96, P=4e-50) is selected for subsequent analysis. 
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(95% CI: 0.91–0.69) for 1-year survival rate, 0.85 (95% CI: 0.95– 
0.76) for 3-year survival rate, and 0.83 (95% CI: 0.95–0.70)for 5-year 
survival rate, respectively (Figure 10B), while in the TCGA 
validation set, the AUC values were 0.76 (95% CI: 0.97–0.55), 
0.76 (95% CI: 0.88–0.65), and 0.77 (95% CI: 0.93–0.61), 
respectively (Figure 10D). 
3.11 Validation of the immunoprognostic 
model 

Furthermore, based on four HUB genes, an ANN model was 
developed (Figure 11A) to enhance prediction accuracy. The TCGA 
dataset was used as the training set, while independent sequencing 
results served as the test set. The diagnostic performance of the ANN 
model was evaluated using ROC curves. In the training set, the model 
achieved an AUC of 0.929 (95% CI: 0.878–0.980) (Figure 11B), while 
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in the TCGA validation set and independent external validation set, 
the AUC values were 0.876 (95% CI: 0.812–0.940) and 0.906 (95% CI: 
0.849–0.963), respectively (Figures 11C, D). 
3.12 Immune prognostic model subtype 
analysis 

When analyzing the gene expression profiles of 55 tumor 
samples in the TCGA training set cohort, we first performed 
cluster analysis using  the consensus clustering method. The 
analysis determined that when k=2, the classification of the 
samples was both highly reliable and stable (Figures 12A–C). To 
further validate the differences between these two subgroups, two 
dimensionality reduction techniques, Uniform Manifold 
Approximation and Projection (UMAP) and t-Distributed 
Stochastic Neighbor Embedding (t-SNE), were employed. The 
FIGURE 4 

(A) The Venn diagram shows reliable biomarkers between WGCNA and IRGs. (B) Volcano plot of prognostic genes. Red indicates genes related to 
prognosis, and blue indicates genes without significant prognostic correlation. (C) Forest plot of 68 differentially expressed immune genes in a 
single-factor COX regression model. The brackets indicate the 95% confidence intervals. HR stands for hazard ratio, with HR < 1 displayed in green, 
indicating a risk factor; HR > 1 displayed in red, indicating a protective factor. 
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results confirmed the significant differences between the two 
subgroups (Figure 12D). Based on this classification, the samples 
were divided into two clusters: Cluster 1 (C1, N=29) and Cluster 2 
(C2, N=26). Next, survival analysis was performed to explore the 
prognostic differences between these two subgroups. The analysis 
results showed (Figure 12E) that there were significant survival 
differences between the two subgroups (P < 0.001). 
Frontiers in Oncology 09
3.13 Immune cell infiltration 

This study utilized the ssGSEA algorithm to analyze the immune 
cell infiltration and immune gene correlation in LUAD samples and 
the control group. The results show (Figure 13B): CBLC is negatively 
correlated with various immune cells (such as activated CD8 T cells, 
dendritic cells, regulatory T cells, etc.); FABP4 is positively correlated 
FIGURE 5 

(A) GO enrichment analysis. (B) KEGG major pathway enrichment analysis. 
FIGURE 6 

Diagnostic biomarker screening based on machine learning. (A) Variable selection in the LASSO model (n=3). (B) SVF-RFE algorithm screens the best 
biomarkers (n=6). (C) Significant features selected by the random forest algorithm (n=7). (D) Venn diagram of overlapping genes in the three 
algorithms. 
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with various immune cells (such as memory T cells, macrophages, 
neutrophils, etc.); GDF10 is positively correlated with memory CD4 T 
cells, eosinophils, plasma cell-like dendritic cells, etc.; LTBP4 is 
positively correlated with memory T cells, eosinophils, and dendritic 
Frontiers in Oncology 10 
cells. Further analysis (Figure 13C) found that CBLC is mainly 
negatively correlated with dendritic cells, macrophages, and CD8 T 
cells; FABP4 is positively correlated with dendritic cells, macrophages, 
and neutrophils; GDF10 and LTBP4 are mainly positively correlated 
TABLE 2 Overall information of the 4 genes constructing prognostic features. 

Gene ID Gene symbol Gene type Chromosome Gene start point (bp) Gene end (bp) 

ENSG00000170323 FABP4 Protein encoding chr8 81478419 81483236 

ENSG00000266524 GDF10 Protein encoding chr10 47300197 47313577 

ENSG00000090006 LTBP4 Protein encoding chr19 40592883 40629820 

ENSG00000142273 CBLC Protein encoding chr19 44777869 44800652 
FIGURE 7 

Verification of identified biomarkers. (A) Box plot for differential expression analysis in TCGA cohort (n =55). (B) Box plot for differential expression 
analysis in independent external sequencing cohorts (n =10). (C) ROC curve for evaluating the diagnostic ability of the TCGA cohort. (D) ROC curve 
for evaluating the diagnostic ability of the independent external sequencing cohort. P < 0.05 is considered statistically significant. 
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with macrophages and CD4 T cells, and LTBP4 is also positively 
correlated with dendritic cells. These results indicate that different 
genes play different roles in immune cell infiltration, reflecting the 
complexity and diversity of the LUAD tumor microenvironment. 
Frontiers in Oncology 11 
Further research compared the differences in 28 immune cell 
types between two immune subgroups and found significant 
differences and heterogeneity in immune cell infiltration between 
the high-risk and low-risk groups (Figure 13A). Compared to the 
FIGURE 8 

(A) Heat map of gene correlation analysis, blue and red indicate positive and negative correlation, respectively. (B–E) Analysis of correlation between 
gene and clinical stage. * P < 0.05, **P < 0.01, *** P < 0.001. 
FIGURE 9 

A nomogram for predicting the 1-year, 3-year, and 5-year overall survival (OS) probabilities in LUAD patients. 
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C2 group, the C1 group had significantly elevated levels of central 
memory CD4 T cells, follicular helper T cells, regulatory T cells, 
natural killer cells, myeloid-derived suppressor cells, plasmacytoid 
dendritic cells, and mast cells (Figure 13D). In further studies, we 
found significant increases in CD4 T cells, CD8 T cells, 
macrophages, and dendritic cells in the C1 group (Figure 13E). 
3.14 Immunohistochemical staining of HUB 
genes in normal and tumor tissues 

According to the immune staining intensity comparisons 
provided by the HPA database (Figure 14), the expression levels 
of FABP4, GDF10, and LTBP4 were higher in normal samples, 
while the expression level of CBLC was higher in lung 
adenocarcinoma samples. This result is consistent with previous 
studies on gene expression differences. 
Frontiers in Oncology 12 
3.15 GESA 

The GSEA analysis of four HUB genes in the progression of 
lung adenocarcinoma (LUAD) indicates that these genes are mainly 
enriched in the following biological processes and pathways 
(Figure 15): 1. Allogeneic rejection response 2. Asthma 3. Amino 
acid biosynthesis 4. DNA replication. 
4 Discussion 

LUAD, a major subtype of NSCLC, remains a global health 
challenge due to its high incidence, mortality, and poor five-year 
survival rates despite advances in targeted therapies (16). 
Traditional prognostic assessments based on clinical and 
pathological features are limited by interindividual heterogeneity, 
highlighting the need for molecular biomarkers to guide diagnosis 
frontiersin.or
FIGURE 10 

(A) Calibration plot of the line chart for the training group, used to predict the probability of OS at 1, 3, and 5 years. (B) Time-dependent ROC curve 
analysis of the immunological prognostic model line chart for the training group. (C) Calibration plot of the line chart for the TCGA validation group, 
used to predict the probability of OS at 1, 3, and 5 years. (D) Time-dependent ROC curve analysis of the immunological prognostic model line chart 
for the TCGA validation group. 
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and treatment (17). With the rise of sequencing technologies, 
precision medicine has become central in LUAD management, 
promoting individualized therapeutic strategies. Increasing 
evidence suggests that tumor progression is influenced not only 
by genetic changes but also by immune system involvement (18). 
Immune cells play crucial roles in all stages of cancer development 
(19, 20). 

In LUAD, transcriptomic analysis of DEGs highlights 
enrichment  in  key  biological  processes such as signal

transduction, cell proliferation, metabolism, immune responses, 
and inflammation. KEGG analysis further implicates immune-

related pathways, notably PI3K/Akt and Jak-STAT, in LUAD 
progression. The PI3K/Akt axis promotes tumor survival and 
proliferation (21), while Jak-STAT facilitates immune evasion 
(22), with their interplay potentially enhancing tumor resilience. 
These findings underscore the functional relevance of DEGs and 
reveal therapeutic opportunities to simultaneously inhibit tumor 
growth and immune escape, improving LUAD outcomes. 

WGCNA is a robust bioinformatics tool designed to identify 
functionally related gene modules associated with specific biological 
states or disease prognosis from large-scale gene expression datasets 
(23, 24). In LUAD studies, WGCNA combined with immune-
Frontiers in Oncology 13 
related genes identified four key hub genes: CBLC, FABP4, 
GDF10, and LTBP4, showing significant differential expression 
between tumor and normal samples. CBLC is significantly 
upregulated in LUAD, especially in patients with poor prognosis, 
suggesting that it may promote tumor invasion (25, 26). Conversely, 
FABP4, GDF10, and LTBP4 are expressed at higher levels in normal 
tissue and patients with good prognosis, possibly having antitumor 
or immune protective effects. CBLC belongs to the CBL family and 
is an E3 ubiquitin ligase involved in EGFR ubiquitination and 
degradation, widely upregulated in various cancers, including 
NSCLC, hinting at its oncogenic potential (27–29). FABP4 
regulates lipid signaling and metabolism, and its high expression 
in lung cancer is associated with poor prognosis (30–34). LTBP4 is a 
member of the TGF-b pathway, which can both inhibit tumor 
growth and promote progression in tumors, and its downregulation 
is common in advanced LUAD (35–39). GDF10 is involved in 
antitumor and Epithelial-mesenchymal transition (EMT) (40, 41), 
and is often associated with methylation dysregulation in lung 
cancer, having potential as a therapeutic target (42, 43). In 
summary, these four genes play an important role in the 
occurrence and development of LUAD and are expected to 
become potential therapeutic targets and prognostic biomarkers. 
FIGURE 11 

(A) Schematic diagram of the ANN model. (B) ROC curve of the ANN model in the training set. (C) ROC curve of the ANN model in the TCGA 
validation set. (D) ROC curve of the ANN model in the independent external validation set. 
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Unsupervised consensus clustering in the TCGA cohort. (A) Delta plot showing the change in the
2 to 9.  (C) Heatmap displaying two DN sample clusters at k = 2. (D) Dimensionality reduction ba
C2 subgroups. 
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Nomograms are valuable tools for integrating clinical features 
to predict patient outcomes. Here, we constructed a nomogram 
combining clinical parameters and immune-related signatures to 
estimate Overall survival (OS) in LUAD patients. Calibration plots 
showed strong agreement between predicted and actual survival, 
confirming the model’s reliability. 
Frontiers in Oncology 15 
ROC analysis assessed predictive accuracy, with AUCs of 0.83 
(training set) and 0.76 (TCGA validation set), indicating strong 
discrimination. An ANN model further improved prognostic 
precision, showing consistent performance across TCGA and 
external datasets, confirming the robustness of our immune-based 
LUAD prognostic framework. 
FIGURE 13 

The association between biomarkers and immune infiltration in samples. (A) Heatmap of metabolic and immune-related gene sets from GSVA. (B, C) 
Heatmap of immune landscape from ssGSEA. (D, E) Box plots showing the correlation between immune subgroups and infiltrating immune cells. 
*P < 0.05, **P < 0.01, *** P < 0.001. 
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FIGURE 14 

Representative immunohistochemical images of HUB genes in lung adenocarcinoma and normal
GDF10; (D) Comparison of LTBP4. HPA, Human Protein Atlas. In each pair of images, the staining
gene expression in lung cancer samples. 
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Our findings further demonstrated a strong association between 
the identified hub genes and key biological processes, including 
immune response, inflammation, cell proliferation, and the 
regulation of cytokines and chemokines. Using ssGSEA, we 
characterized the immune cell infiltration landscape in the LUAD 
microenvironment, revealing significantly elevated levels of CD4+ T 
cells, CD8+ T cells, macrophages, and dendritic cells in LUAD tissues 
compared to normal controls. Notably, CD4+ and CD8+ T cells are 
well-established for their potent antitumor activity (44, 45), while 
dendritic cells and macrophages play critical immunomodulatory 
roles across multiple cancer types (46–48). Correlation analyses 
indicated that most hub genes exhibited positive associations with 
these immune cell populations—particularly CD4+ T cells, CD8+ T 
cells, macrophages, and dendritic cells—with the notable exception of 
CBLC, which showed negative correlations. This observation aligns 
Frontiers in Oncology 17 
with the poor prognostic implications of elevated CBLC expression in 
LUAD, collectively underscoring the pivotal role of the immune 
microenvironment in LUAD pathogenesis and clinical outcomes 
(49–51). Our results further suggest that the four hub genes 
(CBLC, FABP4, GDF10, and LTBP4) may serve as key regulators 
of LUAD progression. 

Despite providing valuable insights, this study has limitations. 
Large, multicenter clinical validations are needed, and reliance on 
TCGA RNA-seq data may limit generalizability. Moreover, the lack 
of functional validation calls for cautious interpretation of the 
bioinformatic results. 

Although this study provides valuable insights, it has some 
limitations. First, to verify the accuracy of the predictive model, 
more large-scale evidence-based medical studies from different 
centers are needed. Second, our prognosis assessment model 
FIGURE 15 

(A–D) represent the GSEA enrichment plots for CBLC, FABP4, GDF10, and LTBP4, respectively. 
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mainly relies on RNA sequencing data from the TCGA database, 
which may limit the model’s general applicability. Finally, due to the 
lack of functional validation from clinical, cellular, and animal 
model aspects, the reliability of our data analysis results needs 
further confirmation. 

This study demonstrates that the selected features are strongly 
associated with overall survival in LUAD patients, showing 
consistent prognostic value across training, test sets, and 
subgroups. Their correlation with clinicopathological parameters 
further supports their potential as reliable tools for risk stratification 
and personalized treatment. 
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