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TCR and BCR repertoire
analysis reveals distinct
signatures between benign
and malignant ovarian tumors
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Zhenglin Du1, Bixia Tang1, Enhui Jin1, Hailong Kang1,
Wenming Zhao1* and Yuanguang Meng2*

1National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China
National Center for Bioinformation, Beijing, China, 2Department of Obstetrics and Gynecology,
Seventh Medical Center of Chinese PLA General Hospital, Beijing, China, 3Changping Laboratory,
Beijing, China, 4Gynecological Mini-Invasive Center, Beijing Obstetrics and Gynecology Hospital,
Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
Background: The immune system is of paramount importance in maintaining

human health and defending against pathogens. Among them, the adaptive

immune system is a crucial component of the immune system, as it is responsible

for generating and modulating the immune repertoire, which is vital for

immune responses.

Methods:We conducted a comprehensive analysis of T cell receptor (TCR) and B

cell receptor (BCR) clonotypes in the peripheral blood immune repertoire of 20

patients with benign and malignant ovarian tumors. The analysis elucidates the

differences between the two immune repertoires in various aspects and

constructs an early screening machine learning model for ovarian tumors

based on the characteristics of the immune repertoire.

Result: The finding revealed that patients with malignant ovarian tumors

exhibited a reduction in balance, richness, and diversity in their immune

repertoires compared to those with benign tumors. Additionally, there was a

negative correlation between patient age and immune repertoire diversity, and

the immune repertoire of patients with malignant tumors displayed high

heterogeneity. By employing machine learning techniques, we have developed

an early screening model based on 16 TCR V-J genes and 11 BCR V-J genes,

which achieved an average AUC of 0.93 (TCR) and 0.958 (BCR) on the ovarian

tumor test dataset. Moreover, a comparison of the spatial distributions of TCR

and BCR revealed, for the first time, that TCR was more significantly associated

with the benign-to-malignant transformation of ovarian tumors.

Conclusions: Our study highlights the critical role of the adaptive immune

repertoire in distinguishing between benign and malignant ovarian tumors.

TCR demonstrated more distinct spatial distribution patterns between benign
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and malignant states, suggesting its potential as a more sensitive biomarker for

ovarian tumor detection. These findings provide new insights into the

immunological landscape of ovarian tumors and offer a promising avenue for

early diagnosis and prognosis assessment.
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Introduction

Ovarian tumors, which have their origin in the ovaries,

represent one of the most prevalent forms of neoplasia within the

female genital tract Ovarian cancer (OC) represents a significant

global health challenge, with a ranking as the eighth leading cause of

cancer-related death in women. Furthermore, it is one of the most

refractory malignancies in gynecology, with a 5-year survival rate of

only 47% (1). Globally in 2022, ovarian cancer accounted for over

324,398 newly reported cases and nearly 206,839 deaths (2). Early-

stage ovarian cancer is often asymptomatic or presents with non-

specific symptoms, making early detection difficult, which

complicates early detection. Consequently, many patients are

diagnosed only once the cancer has spread beyond the ovaries.

Current treatment options for ovarian cancer (OC) include

platinum-based chemotherapy following primary surgery, or

interval debulking surgery after neoadjuvant chemotherapy,

followed by continued chemotherapy. However, the efficacy of

these treatments is limited to a specific subset of patients, and the

overall prognosis for ovarian cancer remains disconcerting (3). The

most effective strategy for improving survival rates is early

diagnosis. Studies reveals that approximately 93% of patients

diagnosed at an early stage, such as stage IA or IB, with a small

tumor size or local disease, have a greater likelihood of surviving for

more than five years (4). At present, screening methods that

combine the assessment of cancer antigen 125 (CA125) levels

through blood tests with transvaginal ultrasound are particularly

effective for the detection of OC. Nevertheless, the impact of

widespread screening on overall survival rates remains to be

substantiated. Despite the availability of basic screening methods

for high-risk populations, the question of their efficacy in reducing

mortality remains a significant challenge. Consequently, there is an

increasing requirement for more specific biomarkers to improve

early detection (5).

In the immune response, specific T cells are clonally expanded

after activation to differentiate into helper T cells or cytotoxic

subsets that recognize infected histiocytes by antigens presented

by HLA-II or HLA-I molecules. Since the T cell response depends

on antigen recognition, the type of tumor antigen presented by

cancer cells affects the TCR repertoires. Tumor antigens are

typically classified as either tumor-associated antigens (TAA) or

tumor-specific antigens (TSA). TAA expression is highly elevated in
02
tumor cells, whereas TSA expression is restricted to cancer cells and

absent in healthy cells. Both TAA and TSA induce anti-tumor

responses and promote the expansion of specific T cells. The highly

variable complementarity-determining region 3 (CDR3) of the

TCRb chain is unique to each T cell clone, making monitoring

the TCR immune repertoire a powerful tool for observing disease

dynamics. Several studies have confirmed that the diversity and

similarity levels of TCR sequences between tumor tissues and

normal tissues can provide valuable insight into patient

prognosis, with lower diversity associated with poorer prognosis

(6–9). A high diversity of the TCR repertoires may be associated

with better health status and better outcomes. Overall, healthy

individuals with greater TCR diversity, as well as patients with

more favorable disease progression, tend to have better immune

system function and are more capable of mounting effective anti-

tumor responses.

TCR diversity signatures are detectable not only in tissues but

also in peripheral blood, enabling liquid biopsy approaches for

clinical monitoring. For instance, an investigation of TCR diversity

in the peripheral blood of patients with stage I-IV melanoma

revealed a correlation between higher diversity and improved

survival, while lower diversity is associated with a poorer

prognosis (10). A similar association was observed in a study of

breast cancer patients with lymphopenia and reduced TCR diversity

in the peripheral blood, as measured by the lymphatic-diversity

reduction index. These patients exhibited a significantly higher risk

of early mortality (11). These consistent findings across cancer types

validate peripheral blood TCR repertoire analysis as a clinically

informative and minimally invasive monitoring tool.

Despite the ambiguity surrounding the underlying causes of

conserved changes in TCR rearrangements across patients with

different genetic backgrounds remain unclear, the concept of

immunoediting (12) provides a framework for understanding the

early signals observed. Specifically, early exposure to tumor antigens

may trigger the rapid expansion of cancer-associated T cells (13),

resulting in detectable signals of TCR rearrangements in circulating

leukocytes. However, few studies have explored the discrepancies

and nuances between early and late tumor immune repertoire

TCRs/BCRs in peripheral blood. To address this gap, we

conducted a study analyzing preoperative blood samples from

ovarian tumor patients. We compared immune repertoire

characteristics and enriched TCR/BCR biomarkers between
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individuals with benign ovarian tumors and those with malignant

ovarian cancer. Our objectives were threefold: (1) to map the spatial

distribution of clonotypes and gene families in these cohorts, (2) to

evaluate how the phenotypic features of key TCRs/BCRs influence

immune responses in benign versus malignant tumors, and (3) to

clarify their roles in shaping the tumor microenvironment. By

elucidating these mechanisms, we aim to leverage immune

repertoire signatures to develop early-warning tumor detection

models. Such models hold promise for advancing early clinical

screening strategies and improving diagnostic outcomes.
Materials and methods

Patients

This study investigated the diversity of TCR (T-cell receptor)

and BCR (B-cell receptor) immune repertoire characteristics in

peripheral blood of patients with ovarian tumors, comparing benign

and malignant subtypes. A total of 20 female patients (aged 16–69

years) were recruited preoperatively at the General Hospital of the

Chinese People’s Liberation Army between 2020 and 2022. The

cohort included 12 patients with benign ovarian tumors (ovarian

teratomas, mucinous cystadenomas, and ovarian endometriosis
Frontiers in Oncology 03
cysts) and 8 patients with malignant ovarian tumors (high-grade

serous carcinoma, serous cystadenocarcinoma, and low-grade

adenocarcinoma). Preoperative peripheral blood mononuclear

cells (PBMCs) were collected in EDTA-containing tubes,

aliquoted, and stored at -80°C for subsequent TCR/BCR high-

throughput sequencing. Tumor diagnoses were confirmed by

histopathological review performed independently by two senior

pathologists. The study adhered to the tenets of the Declaration of

Helsinki and was approved by the Ethics Committee of the General

Hospital of the Chinese People’s Liberation Army (approval no.

S2022-403). Written informed consent was obtained from all

participants prior to enrollment. Detailed clinical and

demographic characteristics of the cohort are summarized

in Table 1.
TCR and BCR high-throughput sequencing

The high-throughput RNA multiplex sequencing workflow for

BCR/TCR analysis included several key steps. Initially, peripheral

blood mononuclear cells (PBMCs) were isolated from whole blood

using Ficoll density gradient centrifugation, ensuring cell viability

was ≥80% and a minimum cell count of 1×10^6. Total RNA was

then extracted employing the Trizol method. The quality of the
TABLE 1 Detail of patients.

No. Sample Age Diagnose Gravida Para Abortus Group

1 Malignant_1 68 High grade serous ovarian cancer 4 2 2 Malignant

2 Malignant_2 48 High grade serous ovarian cancer 3 2 1 Malignant

3 Malignant_3 58 High grade serous ovarian cancer 2 1 1 Malignant

4 Malignant_4 69 High grade serous ovarian cancer 3 3 0 Malignant

5 Malignant_5 59 Poorly differentiated adenocarcinoma of ovary 1 1 0 Malignant

6 Malignant_6 52 High grade serous ovarian cancer 2 1 1 Malignant

7 Malignant_7 69 High grade serous ovarian cancer 4 3 1 Malignant

8 Malignant_8 58 High grade serous ovarian cancer 2 2 0 Malignant

9 Benign_1 60 Ovarian endometriosis cyst 1 1 0 Benign

10 Benign_2 51 Ovarian cystadenoma 2 2 0 Benign

11 Benign_3 44 Ovarian endometriosis cyst 1 1 0 Benign

12 Benign_4 48 Ovarian Teratoma 2 2 0 Benign

13 Benign_5 36 Ovarian endometriosis cyst 1 0 1 Benign

14 Benign_6 16 Ovarian Teratoma 0 0 0 Benign

15 Benign_7 55 Mucinous cystadenoma 2 1 1 Benign

16 Benign_8 32 Ovarian Teratoma 0 0 0 Benign

17 Benign_9 57 Mucinous cystadenoma 5 1 4 Benign

18 Benign_10 27 Ovarian Teratoma 1 1 0 Benign

19 Benign_11 41 Ovarian endometriosis cyst 3 2 1 Benign

20 Benign_12 30 Ovarian Teratoma 0 0 0 Benign
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extracted RNA was assessed by Qubit 3.0 fluorometer (with a

requirement of total RNA ≥2 mg) and NanoDrop2000

spectrophotometer (with an OD260/280 ratio maintained between

1.8 and 2.1). The integrity of the RNA was further confirmed by

agarose gel electrophoresis, which was used to check for clear bands

and ensure a 28S/18S rRNA ratio of ≥1:1. Subsequently, BCR-H

sequencing libraries were constructed through multiplex PCR

amplification, which targeted the CDR3 region of the BCR and

TCR chains and covered all functional IGHV genes and TCR V/J

rearrangements. The quality control of the library involved

quantifying the DNA concentration (≥2 ng/mL) using Qubit 3.0

and confirming the fragment size (~300 bp) by agarose gel

electrophoresis to ensure there was no primer-dimer

contamination. The libraries were then pooled based on their

concentration and tagged for identification, with a minimum

concentration of 5 ng/mL. Finally, sequencing was carried out on

an Illumina platform using a PE150 bp strategy, with a target of

≥6M PE reads per sample and a Q20 value of ≥90%. The

Sequencing-By-Synthesis (SBS) principle was followed during

sequencing, which involved amplifying the fragments into clusters

and performing high-throughput parallel sequencing with

fluorescently labeled reversible terminators.
Identification and preprocessing of
sequencing data for TCR/BCR

The raw sequencing data were processed through a

standardized preprocessing pipeline to generate high-quality clean

data. First, sequence quality was assessed using FastQC (14), with

reads were then quality-filtered by trimming bases with Phred

scores <20 and discarding reads with either <90% of bases having

Phred scores ≥30 or post-trimming lengths <50 bp. Data quality

was validated before proceeding to downstream immune receptor.

The resulting clean data were then analyzed using MiXCR (15)

software, which identifies TCR and BCR clonotypes by aligning

sequencing data to IMGT database reference gene fragments (V, D,

J, C). After analysis, reads containing adapter sequences (>5%

adapter contamination) or undetermined bases (N >5%) were

removed, and only samples with successfully aligned reads >85%

were retained; otherwise, samples were subjected to re-sequencing.

MiXCR generates quantitative clonotype data by grouping

sequences with shared characteristics, allowing flexible assembly

criteria (e.g., focusing on CDR3 or specific VDJ regions). Its error-

correction process includes mass correction for sequencing errors

and low-quality reads, as well as PCR error correction via clustering

and fuzzy matching to differentiate true clonotypes from artifacts.

To further refine the data, VDJtools (16) was employed for

frequency-based correction to eliminate mismatched clonal pairs

and normalize smaller clones to the dominant clone through three

sequential steps: (1) Correct module merged erroneous clonotypes

differing by ≤2 nucleotides when their abundance ratio was <0.05

(mismatches), with correction restricted to clonotypes sharing

identical V/J gene assignments; (2) Decontaminate module

removed cross-sample contaminants by filtering clonotypes
Frontiers in Oncology 04
showing ≥20-fold higher abundance in other samples; (3)

FilterNonFunction module excludes non-functional clones (e.g.

those with stop codons or frameshift mutations), as these do not

contribute to immune function. (4) DownSample module

normalized sequencing depth by randomly subsampling to a

minimum number of reads per sample using a fixed random seed.
Statistical analysis

In the analysis of clonal diversity within a community, the Gini

coefficient, the Chao1 index, and the Inverse Simpson Index are

used to assess the distribution, richness, and diversity of clones.

Each of these indices offers unique insights into different aspects of

clonal distribution and composition. (1) The Gini coefficient

measures the inequality of clone distribution in a sample, with

values ranging from 0 to 1. A Gini coefficient closer to 0 indicates a

more uniform distribution of clones, while a value closer to 1

suggests greater clonal variation, where a few clones dominate. A

lower Gini coefficient reflects more evenness in clonal distribution.

The formula for calculating the Gini coefficient is:

Gini = o
n
i=1on

j=1 xi − xj
�
�

�
�

2n2�x

Where n is the number of clones, xi is the relative abundance of

the i − th clone, and �x is the average relative abundance.

(2) The Chao1 index is used to estimate the richness of a

community, considering not only the clones observed in the sample

but also those likely unobserved. It accounts for clones that appear

only once or twice, offering a more accurate reflection of the true

species richness. A higher Chao1 index suggests greater richness in

unobserved clones. The formula is:

Schao1 = Sobs +
a1(a1 − 1)
2(a + 1)

Where SChao1 is the number of observed clones, a1 is the number

of clones occurring only once, a2 is the number of clones

occurring twice.

(3) The diversity index reflects the overall state of species

richness and evenness, and the Inverse Simpson Index is a

commonly used index, with values typically ranging from 1 to the

number of species, with closer to 1 indicating lower diversity and

higher indexes indicating higher diversity. The calculation formula

is as follows:

Inv − Simp =
1

oS
i=1p

2
i

where Inv-Simp represents the inverse Simpson index, and S

represents the number of species in the sample, representing the

relative abundance of the i species in the sample.

The computational and statistical analysis of this study was

performed using the R programming language (v4.3.2) and python

(3.9.6), combined with the R package Immunarch for downstream

data analysis and processing. The equilibrium of the immune

repertoire was assessed by calculating the Gini Index, Chao1, and
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Inverse Simpson (Inv-Simp) indices. The spatial distribution of the

immune repertoire was analyzed using the diversity module in the

Immunarch package in R. For data visualization, the R software

package ggplot2 was used to plot the violin plot and the correlation

scatter plot. The calculation of differential clonotypes was

performed using the limma-voom software package, combined

with the ggplot2 and pheatmap packages in the R software, to

create the volcano map and heat map display, respectively. The

development of the early screening model was facilitated by a

machine learning-based approach, implemented through the

utilization of the R software package workflowsets.
Machine learning model for early screening
of ovarian tumors

To establish a robust biomarker model for the early diagnosis of

benign and malignant ovarian tumors using peripheral blood, the

following procedures were conducted: (1) Data preprocessing: V-J

gene data in peripheral blood samples were cleaned by removing

outliers and missing values. The frequency data of V-J genes were

standardized to ensure consistent scaling across different genes. (2)

Feature selection: 16 pairs of V-J genes with significant differences

were screened as input for training traits, while 11 pairs of V-J genes

with significant differences were selected as input for training

features. (3) Data division: The dataset stratified random splitting

using initial_split (prop = 0.7, strata = group) to partition the dataset

into training (70%) and testing (30%) sets, preserving the original

class distribution (60% benign, 40% malignant). The final subsets

comprised: training set (14 samples: 8 benign, 6 malignant) and test

set (6 samples: 4 benign, 2 malignant), ensuring proportional

representation of both classes. (4) Model construction & validation:

Three machine learning algorithms (Support Vector Machine,

Random Forest, and Logistic Regression) were implemented using

default hyperparameters to enable unbiased baseline performance

comparison. To ensure rigorous evaluation, we employed stratified 3-

fold cross-validation (vfold_cv(v = 3, strata = group)), training on 2

folds and validating on the third, with class ratios maintained in each

fold. Performance metrics were aggregated across all repetitions. (5)

Evaluation: Model efficacy was quantified primarily through ROC-

AUC, which comprehensively assesses discriminative ability across all

classification thresholds. This metric provides a reliable assessment

for ovarian tumor screening, as it evaluates the model’s capacity to

distinguish benign from malignant cases.
Results

Clonal statistical analysis in immune
repertoire

The number of sequencing reads obtained from TCR receptor

panels across a cohort of 20 patients was 11,503,414 - 24,988,362.

Clones were identified in each sample using MiXCR, and clone
Frontiers in Oncology 05
counts were normalized by downsampling all samples to the level of

the sample with the lowest clone count, which was 11,503,414

clones (Figure 1A). This normalization process helps account for

errors and reduces file size for faster computations. After

normalization, a range of 73,488 – 815,062 unique clone types per

sample were identified (Figure 1B), representing unique clones (V

+CDR3+J). Clones included 624 V-J panels, 48 different V gene

segments, and 13 different J gene segments. For BCR sequencing,

the mean number of reads per BCR immune panel was 23,546,466 -

43,039,304. Subsequent to clone identification, all samples were

downsampled to 23,546,466 clones (Figure 1C). The analysis

yielded a total of 267,338 – 1,167,848 distinct CDR3 amino acid

clonotypes, encompassing 348 V-J gene panels, 58 distinct V gene

fragments, and 6 different J gene segments (Figure 1D).

The number of unique clonotypes serves as a crucial indicator of

immune repertoire diversity. A higher TCR clonotype count

correlates with an enhanced capacity for antigen recognition,

reflecting a more robust and diverse adaptive immune response. As

depicted in Figure 1B, the eight ovarian malignancy samples

(represented by red bars, with different shades indicating individual

samples) exhibited a significantly reduced number of unique

clonotypes compared to the 12 benign ovarian tumor samples

(represented by blue bars, with different shades indicating

individual samples). This observation was further supported by

statistical analysis using the Wilcoxon rank-sum test, which

revealed significant differences between malignant and benign

samples, with p-values of 0.02 for TCR and 0.003 for BCR

(Supplementary Figure S1). These p-values provide strong evidence

that malignant samples have significantly fewer unique clonotypes

compared to benign ones. This finding suggests a diminished

immune repertoire richness in ovarian cancer patients relative to

individuals with benign ovarian tumors. Similarly, BCR clonotype

diversity was notably lower in the majority of ovarian malignancy

patients compared to those with benign tumors, further indicating a

compromised BCR immune repertoire in ovarian cancer.
Lower immune repertoire diversity in
malignant compared to benign tumors

In order to assess the differences in the peripheral blood

immune repertoire between patients with malignant and benign

ovarian tumors, three key indices were employed: evenness,

richness, and diversity. (1) The evenness of the immune

repertoire was quantified using the Gini index, which measures

the degree of clonal imbalance, with higher values indicating

increased dominance of a few expanded clones. As demonstrated

in Figures 1E, F, the TCR and BCR repertoires in patients with

malignant ovarian tumors exhibited significantly greater

heterogeneity compared to those in patients with benign ovarian

tumors (TCR: p = 0.0022; BCR: p = 0.02; Wilcoxon tests). This

finding indicates that malignancy is associated with an imbalanced

immune repertoire, characterized by the overexpansion of specific

clones that disrupts the equilibrium of the immune repertoire. (2)
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The richness of the immune repertoire was evaluated using the

Chao1 index, with higher values indicating a greater unobserved

clone richness within the sample. As illustrated in Figures 1G, H, a

significant disparity in the Chao1 index was observed between TCR

and BCR in the two groups, indicating that the immune repertoire

richness in patients with malignant ovarian tumors was

considerably diminished in comparison to patients with benign

ovarian tumors (TCR: p=0.016; BCR: p=0.003; Wilcoxon tests).

This reduction in richness is likely attributable to the clonal

expansion of specific clones. The diversity of the immune

repertoire was assessed using the inverse Simpson index, which

quantifies both richness and evenness. Higher values indicate

greater diversity and a more even distribution of clonotypes,
Frontiers in Oncology 06
whereas lower values suggest a skewed repertoire dominated by

specific clonotypes. As illustrated in Figures 1I, J, a significant

decrease in peripheral blood immune repertoire diversity was

observed in malignant ovarian tumor patients compared to those

with benign tumors (TCR: p = 0.016; BCR: p = 0.0073; Wilcoxon

tests). This suggests that as tumor malignancy increases, the

diversity of the immune repertoire decreases, which may be

correlated with a lower level of immune protection.

The findings revealed that the diversity of the peripheral blood

immune repertoire, as measured by both TCR and BCR, was

significantly reduced in patients with malignant ovarian tumors

compared to those with benign ovarian tumors. This suggests that

as tumor malignancy increases, the diversity of the immune
FIGURE 1

Diversity of immune repertoires among patients with benign and malignant ovarian tumors. (A, C) Clone counting with standard normalization for
TCR and BCR samples, respectively. All samples were down-sampled to 11,503,414 clones for TCR and 23,546,466 clones for BCR to ensure
normalization. Red bars indicate malignant tumor patients (n=8) and blue bars represent benign tumor patients (n=12). (B, D) The number of unique
clonotypes for TCR and BCR, respectively. The horizontal axes of the bar plots represent individual sample names, with the first 8 samples
corresponding to ovarian malignant patients and the last 12 samples representing ovarian benign patients. (E, F) Violin plots showing the differences
in Gini coefficients for TCR (p=0.0055) and BCR (p=0.082) immune repertoires between malignant (dark color) and benign (light color) ovarian
tumor patients. (G, H) Violin plots illustrating the differences in the Chao1 index for TCR (p=0.069) and BCR (p=0.02) immune repertoires between
malignant (dark color) and benign (light color) ovarian tumor patients. (I, J) Violin plots presenting the differences in the inverse Simpson index for
TCR (p=0.02) and BCR (p=0.025) immune repertoires between malignant (dark color) and benign (light color) ovarian tumor patients. Statistical
comparisons were performed using the Wilcoxon-Mann-Whitney test.
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repertoire also decreases, which may correlate with a lower level of

immune protection. Enhancing immune repertoire diversity may

thus represent a promising avenue for therapeutic interventions in

oncological diseases.
Increasing age correlates with decreased
diversity in the immune repertoire

As individuals age, the immune system undergoes a gradual

decline, leading to reduced immune cell function, a decrease in cell

numbers, and a weakened immune response. This aging process

may also impact the diversity of the b-repertoire of T cells (TCR)

and the H-chain repertoire of B cells (BCR). To assess whether the

diversity of these immune repertoires decreases with age, we

analyzed the relationship between the number of unique

clonotypes and age in the TCR immune repertoire. The results

shown in Figure 2A demonstrate a significant negative correlation

between TCR diversity and age. Specifically, TCR diversity

exhibited a marked decline with age in malignant patients (R =

-0.71, p = 0.05), while a more modest decrease was observed in

benign patients (R = -0.27, p = 0.39), and a moderate decrease in
Frontiers in Oncology 07
TCR diversity was evident in the overall cohort (R = -0.53, p =

0.0016). The age distribution revealed that malignant patients were

generally older than benign patients (mean age > 50 years). At the

same time, the Gini coefficient was positively correlated with age

(Figure 2B), and the higher the Gini coefficient, the more obvious

the TCR immune repertoire imbalance, which increased with age

(R=0.51, p=0.022). Notably, a Gini coefficient of 0.8 may serve as a

potential cut-off point to discriminate between benign and

malignant tumors, although further validation with a larger

sample size is needed. A similar pattern of age-related decrease in

diversity was observed in the BCR immune repertoire (R = -0.65, p

= 0.0019) (Figure 2C). Additionally, the Gini coefficient, which

measures the inequality of clonotype distribution, was positively

correlated with age (R = 0.57, p = 0.008) (Figure 2D) suggesting that

both the TCR and BCR repertoires exhibit decreased diversity with

increasing age.

Meanwhile, we investigated potential associations between

reproductive history and immune repertoire. The analysis revealed

positive trends for gravida, para, abortus with TCR diversity (Gini

coefficients), though abortus-BCR showed negative trends, suggesting

that increased reproductive events may correlate with clonal

expansion (reduced diversity). However, these correlations did not

reach statistical significance (p > 0.05 for all) in our cohort of 20
FIGURE 2

The decrease in immune repertoire diversity was associated with age. Scatter plots (A, C) show the correlation between the number of unique
clonotypes and age for the TCR and BCR immune repertoires. Scatter plots (B, D) show the relationship between Gini coefficients and age for the
TCR and BCR immune repertoires. The strength and direction of the linear relationship between these variables are quantified using the Pearson
correlation coefficient (PCC). The blue line represents the fitted curve for ovarian benign patients, the red line corresponds to malignant patients,
and the gray line shows the overall fitted curve for all samples. The horizontal axis represents age and the vertical axis represents the number of
unique clonotypes or Gini index. The correlation coefficient (r) and the significance level (p) of the correlation are provided for each group.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1630707
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1630707
participants. This may be due to limited statistical power caused by the

small sample size (see Supplementary Figures S2, S3).

The findings indicate that aging is associated with a progressive

decline in the diversity of the immune repertoire in both T cells and

B cells, accompanied by an increase in immune imbalance. This

deterioration in immune equilibrium may contribute to a

diminished capacity of the immune system to effectively eliminate

tumor cells, thereby heightening the risk of tumor initiation and

progression. Consequently, aging can be considered a significant

contributing factor to tumorigenesis and disease advancement.
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Higher clonal heterogeneity in malignant
ovarian tumors compared to benign

Given its role as the most variable TCR clonotype and a key

determinant of antigen binding, the CDR3 region was investigated

to assess the clonal heterogeneity of TCR b-chain and BCR H-chain

repertoires in patients with malignant and benign ovarian tumors.

The count of public clonal CDR3 was analyzed across three

categories: ovarian malignancy, ovarian malignant tumors, and a

comparison between patients with malignant and benign ovarian
FIGURE 3

Characterization of shared Clone CDR3 between benign and malignant groups in TCR and BCR. (A) Box line plots demonstrating the differences in
the number of shared clonal CDR3 in TCR immune repertoires among three groups: between malignant patients, between malignant and benign
patients, and between benign patients. These correspond to the three red boxes in the TCR heatmap. (B) where a redder color indicates a higher
number of shared CDR3. (C) Volcano plots based on all shared TCR clone CDR3 data, where red points represent clonal CDR3s with higher
expression in malignant, blue points represent clonal CDR3s with higher expression in benign, and gray points represent other clonal CDR3s (D)
Frequency expression heatmap of TCR clonal CDR3s (p < 0.01, logFC = 2)., with significant clones clustered and normalized by standard deviation
(331 malignant -associated clones and 442 benign -associated clones). (E, F) Sequence representation maps of significantly different malignant
-associated TCR clones and benign -associated TCR clones, respectively. (G) Box line plots demonstrating the differences in the number of shared
clonal CDR3 in BCR immune repertoires among three groups: between malignant patients, between malignant and benign patients, and between
benign patients. (H) Volcano plots based on all shared BCR clone CDR3 data, where red points represent clonal CDR3s with higher expression in
malignant, blue points represent clonal CDR3s with higher expression in benign, and gray points represent other clonal CDR3s. (I) Frequency
expression heatmap of BCR clonal CDR3s, with significant clones (p < 0.01, logFC = 2) clustered and normalized by standard deviation (13 malignant
-associated clones and 8 benign -associated clones).
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tumors. The results (Figure 3A) demonstrated that the abundance

of shared clonotypes was significantly higher in patients with

benign tumors compared to those with malignant ovarian tumors,

indicating greater heterogeneity in the malignant cohort (Wilcoxon

test, p < 0.001). Additionally, the TCR repertoire exhibited greater

variability across patient groups than the BCR repertoire, as

indicated by a smaller difference in shared clonotype abundance

within the BCR (Figure 3G) (Wilcoxon test, p<0.05). Figure 3B

further illustrate the number of shared clonal CDR3 sequences

between patients, where a deeper red coloration indicates a higher

number of shared clones. These results suggest that benign tumor

patients exhibit greater clonal sharing and richness, whereas

malignant tumor patients have fewer shared clones and higher

repertoire heterogeneity.

To systematically investigate differential clonal CDR3

expression in TCR repertoires between patients with malignant

and benign ovarian tumors, all 4,741,689 TCR CDR3 clones were

filtered against 117,600,502 BCR clones to exclude low-expression

clones. Differential expression analysis (p < 0.01, logFC = 2)

identified 331 malignant tumor-associated CDR3 clones that were

preferentially expressed in malignant ovarian tumor patients,

whereas 442 benign-tumor-associated CDR3 clones were

preferentially expressed in patients with benign ovarian tumors

(Figure 3C). The corresponding 773 clone CDR3 expression heat

maps are shown in Figure 3D, of which 331 malignant-tumor-

associated clones CDR3 were highly expressed in malignant

patients, and 442 benign-tumor-associated clones were highly

expressed in benign patients. In the BCR immune repertoire, 13

malignant-tumor-associated CDR3 clones were preferentially

expressed in malignant tumor patients, while 8 benign-tumor-

associated CDR3 clones were preferentially expressed in benign

tumor patients (Figures 3H, I).

Additionally, CDR3 motifs associated with malignant

(Figure 3E) and benign tumors (Figure 3F) were examined in the

TCR immune repertoire. A conserved “LRGS”motif at positions 6–

9 was identified among malignant-associated clones. Notably, this

sequence has been reported in local immunoinflammatory diseases

such as osteoarthritis (17), suggesting that it may represent a

conserved inflammatory sequence pattern.
Differential V-J gene usage in malignant
and benign ovarian tumors

To analyze the distribution of TCRb V and J genes, the

frequencies of V gene and J gene fragments were calculated for

each sample. The Wilcoxon test (p < 0.05, uncorrected) identified

six V gene segments with significantly different usage between

patient groups (Figure 4A). Specifically, TRBV11-3, TRBV19,

TRBV24-1, TRBV7-7, and TRBV5–4 were significantly more

frequent in malignant patients, whereas TRBV27 was more

frequent in benign patients. These findings are consistent with

previous reports of similar gene fragment enrichment in diseases

such as breast cancer (18), chronic myeloid leukemia (19), COVID-

19 (20), and colorectal cancer (21), suggesting that the expansion of
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these TCRb V gene clones may result from tumor antigen

stimulation. The J gene fragments, however, did not exhibit

significant differences (Figure 4B). In addition, the usage patterns

of TCRb V-J pairings in malignant and benign patient populations

were compared, and the red bubbles in Figure 4C indicate a

significant difference in 75 pairs of dominant V-J paired genes in

the two patient populations (p<0.05, Wilcoxon test, uncorrected).

Using 48 V gene segments, 13 J gene segments, and 624 V-J gene

combinations, the Spearman correlation coefficient between

patients with malignant tumors and the benign tumors was

calculated (Figure 4D). Spearman correlation coefficient analysis

of V-J gene combinations showed significantly lower correlation

among malignant patients compared to benign patients, indicating

high heterogeneity in TCR gene usage among malignant cases.

For the BCR H chain, Wilcoxon analysis (p < 0.05, uncorrected)

identified seven V gene segments from 58 V gene with significantly

different usage between malignant and benign groups (Figure 4E),

including IGHV3-25, IGHV3-30, IGHV3-47, IGHV3-60, IGHV3-

62, IGHV3-64, and IGHV4-55. The J gene fragments, however, did

not exhibit significant differences (Figure 4F). Notably, IGHV3–30

and IGHV3–64 have been implicated in chronic lymphocytic

leukemia (22) and head and neck squamous cell carcinoma (23).

The analysis also revealed 40 significantly different dominant V-J

pairs from 348 V-J genes, as shown by the red bubble in Figure 4G

(p<0.05, Wilcoxon test, uncorrected), reinforcing the hypothesis

that these amplified clones result from tumor antigen-driven

selection. The Spearman correlation coefficient between patients

with malignant and benign tumors was calculated for 58 V gene

segments, 6 J gene segments, and 348 V-J gene combinations

(Figure 4H), and the higher the value of Spearman correlation

coefficient, the more correlated the patients were, and the

correlation between patients with malignant tumors was

significantly lower than that of patients with benign tumors.

Compared with TCR, the V-J gene specificity of BCR is much

lower, suggesting that the V-J paired gene profile of BCR is highly

heterogeneous in patients with malignant tumors.
Early machine learning-based screening
model for distinguishing benign and
malignant ovarian tumors

The gene rearrangement of TCR/BCR gene rearrangement in

peripheral blood is crucial for tumor immune responses. This study

investigated whether TCR/BCR V-J pairing characteristics in

peripheral blood could serve as diagnostic biomarkers for ovarian

tumors by analyzing data from eight patients with malignant

ovarian tumors and twelve patients with benign ovarian tumors.

The results showed that there was a significant difference in the

pairing of TCRb V-J in peripheral blood between malignant and

benign patients, indicating that both malignant and benign patients

had a unique TCR/BCR immune repertoire. Further analysis

identified 75 V-J pairs with differential abundance (p<0.05,

uncorrected), including 16 highly significant pairs (p<0.01),

though these exploratory findings remain uncorrected for
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FIGURE 4

Differential analysis of TCR and BCR gene usage. (A) Box line plots demonstrating the difference in abundance of V genes between malignant and
benign groups for TCR. (B) Box line plots demonstrating the difference in abundance of J genes between malignant and benign groups for TCR. (C)
Bubble plot representing V-J paired genes for TCR, where the horizontal axis represents V genes, the vertical axis represents J genes, and each
bubble represents a V-J gene combination. The size of the bubble corresponds to the -log10 p-value, with larger bubbles indicating smaller p-
values and greater significance. Red bubbles indicate p < 0.05, and green bubbles indicate p > 0.05 (Wilcoxon test). (D) Spearman correlation
coefficients of V gene, J gene, and V-J pairing between malignant and benign for TCR. The vertical axis represents the Spearman correlation
coefficient values. (E) Box line plots demonstrating the difference in abundance of V genes between malignant and benign groups for BCR. (F) Box
line plots demonstrating the difference in abundance of J genes between malignant and benign groups for BCR. (G) Bubble plot representing V-J
paired genes for BCR, Red bubbles indicate p < 0.05, and orange bubbles indicate p > 0.05 (Wilcoxon test). (H) Spearman correlation coefficients of
V gene, J gene, and V-J pairing between malignant and benign for BCR. The vertical axis represents the Spearman correlation coefficient values.
Statistical significance is denoted as follows: ns (no significance, p > 0.05), *p < 0.05, **p < 0.01, ***p < 0.001 (Wilcoxon test).
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multiple testing due to sample size limitations and require

validation in larger cohorts (Figure 5A). Notably, TRBV11-

3_TRBJ1–2 was more abundant in malignant cases, suggesting

specific amplification. The 16 pairs of V-J genes are TRBV11-

3_TRBJ1-2, TRBV12-3_TRBJ2-5, TRBV12-3_TRBJ2-6, TRBV12-

3_TRBJ2-7, TRBV27_TRBJ1-3, TRBV28_TRBJ1-6, TRBV6-

1_TRBJ1-3, TRBV6-1_TRBJ2-5, TRBV6-1_TRBJ2-6, TRBV6-1_

TRBJ2-7, TRBV6-2_TRBJ1-4, TRBV6-2_TRBJ1-5, TRBV6-

4_TRBJ2-5, TRBV7-9_TRBJ1-1, TRBV7-9_TRBJ2-6. Based on the

16 pairs of V-J genes with significant differences as characteristics,

the PCA dimensionality reduction treatment was carried out, and

obvious clustering between patients with ovarian malignant tumors

and patients with benign ovarian tumors was observed in the PCA

diagram (Figure 5B), and it was preliminarily indicated that these

differential V-J genes can effectively distinguish between malignant

patients and benign patients, which will help identify potential

biomarkers, so as to provide new biomarkers and therapeutic

targets for the early diagnosis and treatment of ovarian tumors.

In order to establish a robust biomarker model for early

diagnosis of benign and malignant tumors of peripheral blood

and ovaries, the following steps were carried out: (1) Data

preprocessing: cleaning the V-J gene data in peripheral blood

samples, including removing outliers and missing values, and

standardizing the frequency data (mean-centering without
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scaling) of V-J genes to ensure scale consistency of different

genes. (2) Feature selection: 16 pairs of V-J genes based on

significant differences were used as input for training features. (3)

Data partitioning: The data set is divided into training set and test

set, and the samples are randomly divided into 70% of the training

data set and 30% of the test data set (i.e., 14 training samples and 6

test samples) according to the category ratio. (4) Model

construction: select machine learning algorithms Support Vector

Machine (SVM), Random Forest (RF) and Logistic Regression (LR).

The model was trained using the selected machine learning

algorithm on the training dataset, and the expression data of 16

pairs of V-J genes were used as input variables, and the sample

labels (patients with benign or malignant ovarian tumors) were

used as output variables. In the test data set, the AUC of different

models of patients with benign and malignant ovarian tumors were

logistic regression: 0.875, random forest: 0.917, and SVM: 1,

respectively (Figure 5C). The mean AUC for the three models

was 0.93. These results suggest that the use of TCRbV-J gene in

peripheral blood has a strong discriminative ability and can

effectively identify patients with benign and malignant ovarian

tumors, which is a promising biomarker for early diagnosis.

Among the 40 pairs of BCR V-J genes exhibiting differential

abundance between malignant and benign tumors patients, 11 pairs

demonstrated statistically significant differences (p < 0.01), though
FIGURE 5

TCR and BCR V-J genes as potential biomarkers for diagnosing benign and malignant groups. (A) Box line plot demonstrating the significant
abundance difference of TCR V-J genes (**p < 0.01; Wilcoxon test) between the malignant and benign groups. (B) Principal component analysis
(PCA) based on the usage of TCR V-J paired genes, with vectors representing characterized V-J genes, red dots representing malignant patients,
and green dots representing benign patients. (C) ROC curves and AUC values of the model prediction results for early diagnosis of benign and
malignant ovarian tumors using TCR V-J genes by Support Vector Machine (SVM), Random Forest (RF) and Logistic Regression (LR) models. (D) Box
line plot demonstrating the significant abundance difference of BCR V-J genes (**p < 0.01; Wilcoxon test) between the malignant and benign
groups. (E) Principal component analysis (PCA) based on the usage of BCR V-J paired genes, with vectors representing characterized V-J genes, red
dots representing malignant patients, and yellow dots representing benign patients. (F) ROC curves and AUC values of the model prediction results
for early diagnosis of benign and malignant ovarian tumors using BCR V-J genes.
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these exploratory findings remain uncorrected for multiple testing

due to sample size limitations and require validation in larger

cohorts, with IGHV3-25_IGHJ5 and IGHV3-25_IGHJ2 being the

V-J pairs more abundant in malignant tumors patients. The 11

significantly different V-J gene pairs (Figure 5D) included IGHV1-

17_IGHJ5, IGHV1-46_IGHJ2, IGHV1-46_IGHJ4, IGHV1-

46_IGHJ6, IGHV1-68_IGHJ5, IGHV3-25_IGHJ2, IGHV3-

25_IGHJ5, IGHV4-28_IGHJ3, IGHV4-34_IGHJ4, IGHV4-

34_IGHJ6, and IGHV4-59_IGHJ6. The application of Principal

Component Analysis (PCA) to the 11 pairs of V-J gene pairs in

question yielded a clear distinction between malignant and benign

cases, as illustrated in Figure 5E. Utilizing the same data processing

pipeline and machine learning models, predictive modeling was

conducted based on BCR V-J gene pairs. The area under the curve

(AUC) for distinguishing malignant from benign cases was 1.0 for

Logistic Regression, 1.0 for Random Forest, and 0.875 for SVM

(Figure 5F), with an average AUC of 0.958 across models. This

finding indicates that these differential V-J genes can effectively

distinguish between patients with benign and malignant tumors,

which is beneficial for identifying new biomarkers and therapeutic

targets for the early diagnosis and treatment of ovarian tumors.
Distinct spatial distribution patterns of TCR
and BCR between benign and malignant
tumors

TCR and BCR in peripheral blood represent two distinct types of

immune receptors. The findings above indicated that the distribution

patterns of TCR and BCR in benign and malignant tumor

populations are not entirely consistent. Therefore, we conducted a

more profound investigation to elucidate the spatial distribution with

respect to BCR and TCR between benign and malignant tumors who

are more variable. To investigate the clonal distribution of TCR and

BCR repertoires, we analyzed the proportion of clones within specific

size ranges in the pooled samples. In TCR repertoires (Figure 6A), the

rare clone group (Rare: 0 < x < 1e-05) constituted the largest

proportion of the total clonal space, followed by the small clone

group (Small: 1e-05 < x < 1e-04). In contrast, BCR repertoires

(Figure 6C) were predominantly composed of clones from the

medium clone group (Medium: 1e-05 < x < 1e-04) and the rare

clone group. When comparing malignant and benign ovarian tumor

populations, significant differences in clonal distribution were

observed. In TCR repertoires (Figure 6B), the malignant population

exhibited a higher proportion of clones in the medium clone group,

large clone group (Large: 1e-03 < x < 1e-02), and hyper-expanded

clone group (Hyper-expanded: 0.01 < x < 1) compared to the benign

population (p < 0.05). Similarly, in BCR repertoires (Figure 6D), the

malignant population showed a marked increase in expanded clones,

particularly within the large and hyper-expanded clone groups (p <

0.05). Further analysis revealed that the expanded clones inmalignant

populations primarily originated from rare clone groups. Our

analysis revealed distinct clonal distribution patterns between TCR

and BCR repertoires in malignant versus benign ovarian tumors. The

malignant tumor populations showed significantly higher
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proportions of expanded clones (medium, large and hyper-

expanded groups) compared to benign populations, with more

pronounced differences observed in TCR repertoires (p=0.00549)

than in BCR (p=0.015). Meanwhile, rare clone groups in benign

tumors were substantially more prevalent representation in

malignant tumors, particularly in TCR repertoires. These findings

demonstrate characteristic differences in immune repertoire

architectures between disease states, with TCR repertoires

exhibiting greater inter-group variation than BCR repertoires.

These findings provide valuable insights into the immune

mechanisms underlying ovarian tumor progression and may

inform the development of immune-based diagnostic and

therapeutic strategies.
Discussion

In this study, we investigated whether immune receptor

sequencing could serve as a reflection of a person’s ovarian benign

or malignant tumor status, based on autoreactivity shaping the

immune system’s collection of adaptive immune receptors. The

immune repertoires analysis was implemented in order to assess

the immune responses of 20 individuals with well-defined datasets of

two disease tumor immunological states leveraging both BCR and

TCR to achieve. Exposure to early ovarian tumor antigens may lead

to rapid expansion of cancer-associated T cells and B cells, resulting

in a detectable TCR/BCR repertoire signal in circulating leukocytes.

Faced with highly diverse sequence repertoires containing tens to

hundreds of thousands of different sequences, the analysis reveals

differences in the state of the immune repertoire of benign malignant

tumor populations and prioritizes the selection of disease-specific

sequences and V/V-j genes for predicting of ovarian tumor. By

deepening the exploration of the TCR/BCR immune repertoires,

the process of the occurrence and development of immune complexes

in the process of tumor progression from benign to malignant has

become clearer, and this change reveals important changes in the

immune response, which is conducive to the understanding of tumor

deterioration at the immune level.

The observed reduction in TCR and BCR repertoire diversity,

balance, and richness in malignant ovarian tumors aligns with

previous findings in other cancer types, suggesting a conserved

mechanism of immune evasion or exhaustion in malignant states.

The decreased diversity may reflect the clonal expansion of tumor-

specific T and B cells, which dominate the repertoire and reduce its

overall heterogeneity. This phenomenon is further supported by the

lower abundance of shared clonal CDR3 sequences in malignant

cases, indicating a more fragmented and less coordinated immune

response. The age-related decline in repertoire diversity adds another

layer of complexity, potentially reflecting immunosenescence or

cumulative antigen exposure over time. These findings underscore

the dynamic interplay between tumor evolution and immune

adaptation, highlighting the need for longitudinal studies to track

repertoire changes throughout disease progression.

The identification of differential V genes, V-J gene pairs, and

CDR3 sequences provides a foundation for developing immune-
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based biomarkers for ovarian tumors. Notably, the TCR repertoire

exhibited more pronounced changes than the BCR repertoire, with

773 differentially expressed CDR3s compared to only 21 in BCR,

suggesting that TCR may play a more central role in anti-tumor

immunity and could serve as a more sensitive indicator of

malignant transformation. The machine learning models, which

are the BCR-based and the TCR-based model, demonstrates the

potential of immune repertoire features for early tumor detection.

However, the stability and generalizability of these models require

further validation in larger, multi-center cohorts. Future studies

should also explore the functional relevance of the identified

differential sequences and their potential as therapeutic targets.

This study provides novel insights into the differences in the

TCR and BCR repertoires between benign and malignant ovarian
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tumors, highlighting a reduction in immune repertoire diversity,

balance, and richness in malignant cases. Furthermore, our machine

learning model, based on immune repertoire features,

demonstrated high predictive performance, indicating the

potential of immune-based approaches for early tumor screening.

However, this study remains exploratory, with several

limitations that warrant further investigation. The lack of a

precise numerical threshold to differentiate benign from

malignant tumors limits its immediate clinical applicability.

Additionally, the observed correlation between age and immune

repertoire diversity requires validation in a more diverse cohort

with a broader age range. While our machine learning model

achieved promising results, its stability across different models

remains a challenge, emphasizing the need for larger datasets to
FIGURE 6

Spatial distribution shifts in TCR and BCR between benign and malignant groups. (A) Bar-pair stacked plot demonstrating the spatial distribution of
TCR clones in all samples. Clones are categorized into five groups based on their frequency: Rare (0 < x < 1e-05, red), Small (1e-05 < x < 1e-04,
yellow), Medium (1e-04 < x < 1e-03, green), Large (1e-03 < x < 1e-02, light blue), and Hyper-expanded (0.01 < x < 1, blue). The horizontal axis
represents individual samples, with the first eight samples corresponding to the malignant group and the last eight to the benign group. (B) Box plot
showing the variation in clonal spatial steady-state differences between the malignant (red) and benign (blue) groups for TCR (Wilcoxon test).
(C) Bar-pair stacked plot demonstrating the spatial distribution of BCR clones in all samples. Clones are categorized into the same five frequency-
based groups as in (A). The horizontal axis represents individual samples, with the first eight samples corresponding to the malignant group and the
last eight to the benign group. (D) Box plot showing the variation in clonal spatial steady-state differences between the malignant (red) and benign
(blue) groups for BCR (Wilcoxon test).
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enhance robustness and reproducibility. Despite these challenges,

our findings reinforce the role of immune repertoire analysis in

understanding ovarian tumor progression and highlight the

potential of prospectively collected immune data in biomarker

discovery. Future research with expanded sample sizes and

refined methodologies could pave the way for immune-based

early detection strategies in ovarian cancer.
Conclusions

In this study, we conducted a comprehensive analysis of the TCR

and BCR immune repertoires in patients with benign and malignant

ovarian tumors, yielding several significant findings: (1) Patients with

malignant ovarian tumors exhibited distinct immune repertoire

characteristics, including reduced in balance, richness, and diversity

clonotype abundance in both TCR and BCR repertoires compared to

benign cases. (2) Furthermore, we observed an age-related decline in

the diversity of both TCR and BCR immune repertoires were

observed. (3) The investigation of shared clonal CDR3 sequences

indicated that malignant tumor patients exhibited diminished

abundance and elevated heterogeneity, as demonstrated by

diminished Spearman correlation coefficients based on TCR, J

genes, V-J genes, and BCR V-J genes in comparison to benign

cases. This finding underscores the increased immunological

heterogeneity in malignant ovarian tumors. (4) Through differential

gene expression analysis, we identified substantial variations between

the two groups: 6 differential V genes, 75 differential V-J genes, and

773 differentially expressed CDR3 in the TCR repertoire, along with 7

differential V genes, 40 differential V-J genes, and 21 differentially

expressed CDR3 in the BCR repertoire. (5) Leveraging these

differential features, we developed machine learning models for

early tumor screening. The TCR-based model, incorporating 16

significant V-J gene pairs (p<0.01), achieved a Mean-AUC of 0.93,

while the BCR-based model, utilizing 11 significant V-J gene pairs,

demonstrated superior performance with a Mean-AUC of 0.958.

These models show promising potential for improving early

detection rates and treatment outcomes in ovarian tumors. (6)

Comparative analysis of TCR and BCR spatial distribution in

peripheral blood demonstrated significantly greater differences in

TCR patterns between benign and malignant states, with 773

differential CDR3s identified in TCR versus only 21 in BCR. This

observation, coupled with the more prominent differential V-J gene

expression in TCR, suggests that TCR may play a more significant

role in the immune response to ovarian tumor progression. These

findings suggest that TCR could serve as a valuable biomarker for

ovarian tumor characterization and further investigation in studies.

The distinct patterns observed in TCR and BCR repertoires may

reflect fundamental differences in their respective roles in anti-

tumor immunity, with TCR potentially serving as a more sensitive

indicator of malignant transformation. This study provides valuable

insights into the immunological landscape of ovarian tumors and

establishes a foundation for the development of novel diagnostic

and prognostic tools in ovarian cancer management.
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