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young woman with multidrug-
resistant metastatic breast
cancer: a case report
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We reported a case of a 31-year-old female with therapy-resistant, refractory, and

metastatic luminal B breast cancer. Using organoids derived from the patient’s

malignant pleural effusion for drug screening, we found that the combination of

gemcitabine and cisplatin was the most sensitive, considering both IC50 and AUC

values. In clinical practice, it was observed that the patient responded well to the

selected treatment regimen, resulting in a significant reduction of pleural effusions,

a marked decrease in tumor markers (e.g., CA125), and improved performance

status (PS 2→1). The organoid model enabled the rational use of the patient’s

metabolic waste. It replicates the complexity of human tumors and facilitates

extensive screening of beneficial drugs for patient diseases, particularly those with

advanced tumors showing heterogeneity and rapid disease progression. This

method swiftly identifies the optimal therapeutic drug regimen, minimizing the

risk of drug resistance and trial costs, thereby providing maximum patient benefits
KEYWORDS

breast cancer, young women, patient-derived organoid (PDO), malignant pleural
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Introduction

Breast cancer is one of the most common malignant tumors affecting women and poses

a significant threat to their health (1). In recent years, there has been a trend toward a

younger onset of breast cancer (2). In China, most scholars believe that the age of disease

≤35 years old should be defined as young breast cancer. Young women face a high risk of

refractory and metastatic disease, even when diagnosed at an early stage (3). Compared to

middle-aged and older breast cancer patients, young breast cancer patients exhibit distinct

pathological characteristics (4). These include high histological grade, a high rate of HER-2
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overexpression, and a higher expression of the BRCA-1 gene (5).

Clinical manifestations include a greater likelihood of postoperative

recurrence, a higher rate of axillary lymph node metastasis, and a

poorer survival prognosis (6). Given that most young breast cancer

patients are at an optimal age for work and childbearing, the impact

of diagnosis, treatment, and long-term survival can be profoundly

adverse to their physical and mental health, as well as on their

families and society at large.

Organoids are cell clusters formed through the three-

dimensional culture of stem cell-like cells in vitro. They can self-

renew and self-assemble, displaying structural and functional

characteristics that resemble the source tissues. Organoids can be

maintained through long-term subculturing and exhibit stable

phenotypic and genetic traits (7). This technology has

significantly advanced in vitro tissue culture methods in recent

years. Organoids hold considerable potential for guiding treatment

in various patient groups, including early multidrug candidates,

advanced multidrug-resistant patients, and individuals with rare

tumors that are difficult to treat (8). Only a small number of samples

are required to conduct drug sensitivity tests on organoids, thereby

providing clinical guidance for medication choices, achieving

individualized precision treatment, reducing drug side effects, and

ultimately improving the quality of life for patients (9).
Case report

A 31-year-old female without familial cancer history was

diagnosed with left breast cancer (ypT4N2M0, stage IIIB Luminal

B/HER2−) after eight cycles of neoadjuvant chemotherapy and

underwent radical surgery. Adjuvant radiotherapy (left breast and

axilla) and endocrine therapy were administered. Disease-free

survival (DFS) lasted 15 months until right supraclavicular lymph

node metastasis occurred, prompting systemic chemotherapy and

endocrine therapy. Progression-free survival (PFS1) was 5 months

before progression to the right axillary lymph nodes and left chest

wall, leading to a switch in endocrine therapy and ovarian

suppression. PFS2 lasted 6 months until contralateral breast

metastasis developed. The disease exhibited repeated progression

despite multiple lines of chemotherapy (docetaxel, capecitabine,

vinorelbine, albumin-bound paclitaxel), with poor response to

endocrine therapies. Due to worsening Malignant pleural

effusions and multidrug resistance, tumor organoid drug

sensitivity testing was pursued. Malignant pleural effusions were

collected for organoid culture (Nov 2021- Feb 2022). High-

throughput drug screening identified cisplatin and gemcitabine as

effective agents. Bilateral intrapleural cisplatin infusion was

administered, followed by intravenous gemcitabine on December

10. Post-treatment CT imaging showed a significant reduction of

pleural effusions, a marked decrease in tumor markers (e.g.,

CA125), improved performance status (PS 2→1), and partial

response (PR) according to RECIST criteria(Response Evaluation

Criteria in Solid Tumors). And other metastatic sites remain stable.

Later, due to a secondary infection from the chest wall tumor, there
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was a persistent fever despite anti-infection treatments while

waiting for anti-tumor treatment opportunities. On March 26,

2022, the patient experienced sudden respiratory and cardiac

arrest, leading to death. A timeline of the case is presented

in Figure 1.
Materials and methods

Organoid culture

1000 mL of breast cancer pleural effusion was collected,

centrifuged, and washed with DPBS (Dulbecco’s Phosphate-

Buffered Saline). Red blood cells were lysed with lysis solution

(Solarbio, Beijing, China) and terminated with DPBS. Cell pellets

were resuspended in Matrigel (Corning, New York, USA) and

seeded into a 24-well plate at 40 µL (10000 cells) per well. The

concentration of Matrigel in the droplets is 55%. The plate was

incubated at 37 °C for 30 minutes to solidify the gel, then 500 µl of

MasterAimTM Breast Cancer Organoid Complete Medium

(AimingMed, Hangzhou, China) was added. Medium was

changed every 3 days, and organoids were passaged every 2

weeks. When organoids reached over 200 µm in diameter and

over 80% density, they were treated with TrypLE Express

(Invitrogen, Carlsbad, CA, USA), dissociated into single cells, and

repassaged, plated, or cryopreserved as needed.
Histological analysis and
immunohistochemistry

200mL breast cancer pleural effusion was collected, centrifuged,

and fixed with 10% neutral buffered formalin for 6-24h.

Dehydration was carried out using different concentrations of

ethanol, followed by clearing with xylene and then infiltration

with paraffin for embedding and sectioning. Organoids were fixed

with 4% paraformaldehyde overnight, then resuspended in 3%

agarose, paraffin-embedded, and sectioned (4µm). The paraffin

sections were stained with H&E for histological analysis after

deparaffinization. Immunohistochemistry analyses were

performed following a two-step method. The sections were

incubated for ER, PR, HER2, and Ki67 antibodies(Cell Signaling

Technology, Boston, USA) after antigen retrieval and blocking.

After secondary antibodies(Absin, Shanghai, China) incubation, the

staining was visualized by DAB substrate and counterstained

with hematoxylin.
Whole exome sequencing and data
analysis

The total DNA was extracted using the QIAGEN DNeasy Blood &

Tissue Kit (QIAGEN). Then, the DNA, which was fragmented with the

Covaris Focused-ultrasonicator M220 (Covaris), was used for
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sequencing library construction. Exome capture was performed using

the Human Exome 2.0 Plus (Twist Bioscience) following the vendor’s

recommended protocol. The final libraries were sequenced with

paired-end 150 bp reads on the Illumina NovaSeq 6000 Sequencing

System (Illumina) at LC-Bio Technology Co., Ltd (Hangzhou, China).

Before alignment, low-quality reads (such as those containing

sequencing adaptors or with nucleotide quality scores below 20)

were removed using fastp (10). For the alignment step, Burrows-

Wheeler Aligner (BWA) (11) was used to align reads to the

reference genome hg19. As the first post-alignment processing

step, Picard tools (http://broadinstitute.github.io/picard/) were

employed to identify and mark duplicate reads in the BAM file.

The second post-alignment step involved performing local read

realignment to correct potential errors around indels. Base quality

score recalibration was then carried out before variant calling to

reduce systematic biases. For somatic variant calling, we used

GATK’s Mutect2 tool in tumor-only mode. This mode utilizes a

pre-assembled Panel of Normals (PON), built from hundreds to

thousands of normal samples, to exclude germline variants (12, 13).
Drug screening

According to the passaging process described above, the

collected single cells were resuspended in an appropriate volume

of MasterAimTM Breast Cancer Organoid Complete Medium

(AimingMed, Hangzhou, China) containing 5% Matrigel. Using a

multichannel electronic pipette, the cell suspension was dispensed

into a pre-cooled 384-well white ultra-low attachment plate

(Corning, New York, USA) at a volume of 40 mL containing 1000

cells per well. After 48 hours, six concentrations of cisplatin,

Anlotinib, Gemcitabine combined with cisplatin, Gemcitabine,

Paclitaxel, and a DMSO control were added, with three replicates
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for each concentration. Four days later, 40 mL of CellTiter-Glo 3D

reagent (Promega, Madison, WI, USA) was added to each well. The

plate was shaken at room temperature for 30 minutes to lyse the

cells. Luminescence was measured using a multimode microplate

reader (Molecular Devices). IC50 and AUC values for each drug

were analyzed using GraphPad Prism 6.
Statistical analysis

All data analyses were conducted using GraphPad Prism 6.

Quantitative data are expressed as mean ± standard deviation (X ±

SD), and comparisons among multiple groups were performed

using one-way analysis of variance (one-way ANOVA).
Results

Establishment of an advanced recurrent
breast cancer patient-derived organoid

To establish the organoid model, we centrifuged the turbid

pleural effusion and used a red blood cell lysis buffer to remove red

blood cells from the precipitate. The treated cell precipitate was

suspended in Matrigel® to simulate the tumor extracellular matrix

(ECM) environment. Under the microscope, the newly inoculated

cells included individual cells and cell clusters (approximately 50

mm in diameter). After three days of culture at 37 °C with 5% CO2,

the organoids entered the logarithmic growth phase, increasing

rapidly in number and size. By day six, many organoids had grown,

with the largest diameter reaching about 200 mm (Figure 2A),

indicating the successful establishment of organoid cultures from

late-stage recurrent breast cancer biopsy samples.
FIGURE 1

Timeline depicting the clinical history of a patient with breast cancer. NAC, Neoadjuvant Chemotherapy; PORT, Postoperative Radiotherapy; EC-T,
Epirubicin + Cyclophosphamide sequential Taxol; ET, Hormonal Therapy; TX, docetaxel + capecitabine; DFS, Disease-free survival; PFS, Progression-free
survival; DDP, Cisplatin; GEM, Gemcitabine; IV, Intravenous injection; ITI, Intrathoracic injection. Some elements in this figure were created by FigDraw.
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FIGURE 2

Organoids morphology, pathological characterization, and genetic profiling. (A) Morphological images of organoids at different growth stages.
Scale bar = 200 mm. (B) Representative images of H&E and immunohistochemistry staining of malignant pleural effusion (MPE) and patient-derived
organoids (PDO), Scale bar = 100 mm. (C) Venn diagram showing somatic mutations in PDO and MPE. (D) Bar plots showing the frequency of
different point mutation types in PDO and the paired MPE. (E) Mutational signature profiles representing 96 nucleotide combinations in PDO and
MPE samples. (F) Heatmap comparing the COSMIC mutational signatures in PDO and MPE. (G) Waterfall chart illustrating the mutation types of
breast cancer-related genes reported from the TCGA database for PDO and MPE samples.
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The pathologic features and genetic
characteristics of breast cancer organoids
derived from pleural effusion were
consistent with the original pleural effusion

We conducted hematoxylin and eosin H&E staining on patient-

derived organoid(PDO) and tumor cell sections from parental

malignant pleural effusion(MPE) (Figure 2B), revealing that the

organoids’ phenotypic characteristics closely matched the original

pleural effusion’s histological features. The tumor cells showed

significant cellular and nuclear pleomorphism, with variable cell

sizes, enlarged nuclei, disordered arrangement, and abnormal

structure, typical of malignant cells. Immunohistochemical

staining also showed that the organoids retained key breast

cancer biomarker expression patterns consistent with the original

pleural effusion: ER, PR, and HER2, and positive for Ki-67. These

biomarkers are crucial for predicting treatment response and

prognosis. In summary, pleural effusion-derived tumor organoids

closely match the original pleural effusion in both histopathological

features and key biomarker expression, making them a high-fidelity

model for studying breast cancer behavior and evaluating therapies.

WES was conducted in PDO and MPE to assess whether the

cultured organoids retain the parental genomic features. After filtering

somatic sites using GATK’s FilterMutectCalls, we performed a

concordance analysis of the somatic mutations in both samples,

revealing an 86.1% concordance rate for shared mutations
Frontiers in Oncology 05
(Figure 2C). Additionally, we noted that the relative contributions of

point mutations (Figure 2D), mutation characteristic profiles of 96

nucleotide combinations (Figure 2E), and COSMIC mutational

signatures (Figure 2F) were well-preserved in the PDO and MPE.

Further analysis showed a significant number of concordant mutations

within breast cancer-related genes from the TCGA database across

both samples (Figure 2G). These findings underscore the remarkable

ability of pleural effusion-derived tumor organoids to maintain the

genetic architecture of primary tumors, making them highly reliable

models for breast cancer drug susceptibility testing.
Drug sensitivity test for organoid recurrent
breast cancer as a personalized treatment
tool

We performed a drug screening experiment on breast cancer

organoids. Five drug or combination therapies were tested. The

results showed that the combination of gemcitabine and cisplatin

had favorable antitumor effects in vitro. The cytotoxic response

curves and IC50 values of the organoids to each drug are shown in

Figure 3A. The IC50 values of anlotinib, cisplatin, and the

gemcitabine plus cisplatin regimen were within the tested range,

with maximum inhibition rates below 50%. According to literature

reports, there is a strong correlation between IC50 and AUC in

organoid drug sensitivity assays (14). Therefore, the AUC values
FIGURE 3

Drug sensitivity of tumor organoids. (A) Dose -response curves for tumor organoids treated with Paclitaxel, Anlotinib, Cisplatin, Gemcitabine, and
Gemcitabine + Cisplatin, along with the IC50, inhibition rate, and AUC for each drug in the table. Inhibition rate refers to the inhibition at the
maximum concentration of each drug. (B) Statistical analysis of cell viability and AUC of organoids treated with cisplatin, gemcitabine, and
gemcitabine + cisplatin. *p<0.05; ****p<0.0001. Results are shown as mean ± SD from three replicate wells for each drug.
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were also analyzed, and the cisplatin plus gemcitabine regimen had

the smallest AUC. Additionally, the effects of the combination

regimen on cell viability and the corresponding AUC values show

significant differences compared to those of the monotherapy

regimens (Figure 3B). Considering both IC50 and AUC, the

organoid drug sensitivity test indicated that the gemcitabine plus

cisplatin regimen was the most sensitive.

Based on the drug sensitivity test, we recommended the

gemcitabine and cisplatin combination therapy for the patient. After

two cycles, the patient showed significant reductions in pleural

effusions (Figure 4A), tumor cells in the effusion (Figure 4B), and

tumor markers (e.g., CA125) (Figure 4C), improved performance

status (PS 2→1), and partial response (PR) by RECIST criteria. We

collected pleural effusion for organoid culture. Microscopic

observations revealed that the cell clusters in the second culture were

smaller and fewer than the first culture at day 0. After 3 days, some

organoids grew to about 100 micrometers, but their number was still

lower than in the first culture, with many black cells observed, possibly

indicating drug-induced apoptosis or necrosis.

After four cycles, the patient was re-evaluated. Tumor marker

levels remained significantly decreased, and we recollected the pleural
Frontiers in Oncology 06
effusion for organoid culture again. The cell clusters were smaller and

fewer than in the second culture (Figure 4D). These results show that

the gemcitabine and cisplatin regimen was effective both in vitro and in

the patient initially. Using organoid models for drug screening can

provide personalized treatment for recurrent breast cancer patients,

improving outcomes and reducing unnecessary side effects.
Discussion

Compared with Western countries, China has a higher

proportion of young women with breast cancer (15). The invasive,

rapid development and poor prognosis of young female breast cancer

are related to its unique pathological features (16). Of the four

molecular subtypes of breast cancer, the aggressive ones are more

common in younger women. At the same time, Young female breast

cancer patients are often in their peak fertility period, characterized

by strong ovarian function and high estrogen levels. However, these

patients tend to have lower compliance with hormone therapy. The

elevated estrogen levels can contribute to a higher degree of tumor

malignancy, early metastasis, and poor prognosis.
FIGURE 4

Evaluation of the effectiveness of drug guided by Organoid drug sensitivity tests. (A) CT images of this patient before and after Gemcitabine and
Cisplatin treatment. (B) Cytological pathological images of thoracic pleural effusion before and after the initiation of Gemcitabine and Cisplatin
therapy. Scale bar = 500 mm. (C) Curve of CA125 level changes in peripheral blood. (D) Images of organoid growth before and after Gemcitabine
and Cisplatin treatment. Scale bar = 100 mm.
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This case involves a 31-year-old woman diagnosed with breast

cancer who had axillary lymph node metastasis at the time the

tumor was discovered. The surgery was performed in the late stages

of her illness. Postoperative pathology revealed the presence of a

vascular cancer thrombus, involvement of the papillary dermis, and

metastasis to the axillary lymph nodes. These findings indicate a

high risk of relapse. Radiotherapy, endocrine therapy, and other

classical systemic treatments were given after surgery. DFS lasts

only 15 months. Compared with older women, younger women had

less benefit from adjuvant endocrine therapy and higher resistance

to tamoxifen (17). At the same time, young patients are more likely

to develop chemotherapy resistance, which may be related to tumor

stem cell enrichment or DNA repair defects (16). The rapid

progression of the disease, along with resistance to endocrine and

chemotherapy treatments, makes follow-up treatment crucial for

patients. Additionally, the physical condition of the patients and the

severe side effects of the drugs indicate that we cannot afford to

experiment with different treatments. At this critical juncture, we

need a model that can quickly simulate the tumor status of patients

and identify suitable drug substitutions.

In this study, we successfully established tumor organoid

models derived from the malignant pleural effusion of patients.

We identified a synergistic therapeutic regimen of gemcitabine and

cisplatin through these models. The efficacy of this regimen was

further validated in clinical practice, demonstrating significant

therapeutic effects. This finding provides important insights for

the personalized treatment of advanced cancer patients.

Organoids hold significant value for clinical decision-making in

refractory tumors. Traditional chemotherapy regimens are often

selected based on evidence-based medicine guidelines, which may

lag in the context of highly heterogeneous and rapidly progressing

advanced tumors. In this study, we innovatively utilized malignant

pleural effusion, an easily accessible “metabolic waste product,” to

construct organoid models. Compared with traditional tumor tissue

biopsies, liquid samples are easier to obtain and less invasive,

especially suitable for advanced patients who cannot undergo

repeated biopsies. Moreover, malignant pleural effusion is rich in

tumor cells and components of the tumor microenvironment (such

as immune cells and fibroblasts) (18), preserving the heterogeneity

and microenvironmental characteristics of the primary tumor (19).

Traditional 2D cell lines lose tumor cell heterogeneity and tissue-of-

origin features during long-term culture, failing to simulate the primary

tumor’s 3D environment, tissue functions, and signaling pathways. In

contrast, organoids from malignant pleural effusion better simulate

in vivo drug responses due to their preserved heterogeneity and

treatment sensitivity. They can be rapidly cultured into micro-tumors

for high-throughput screening, reducing the “trial-and-error” period. In

this case, organoid culture and regimen determination took only 2–3

weeks, faster than NGS-guided targeted therapy.

In this case, we monitored both IC50 and AUC to avoid the risk of

false positives associated with single-parameter assessments. Notably,

the rapid decline in CA125 levels in the patient coincided with a

significant reduction inmalignant pleural effusion and improvement in

physical status, confirming the model’s reliability in predicting clinical

efficacy. Additionally, the successful establishment of an organoid
Frontiers in Oncology 07
model from malignant pleural effusion in a patient with triple-

negative breast cancer was also validated.

Based on the drug sensitivity results, cisplatin intrathoracic

injection combined with gemcitabine intravenous chemotherapy

was adopted in clinical practice. On the one hand, after multiple

lines of treatment, the patient had severe bone marrow suppression,

and a large amount of pleural effusion led to poor physical

condition. Monotherapy via intravenous administration was

chosen for its higher safety profile. On the other hand, cisplatin

intrathoracic perfusion chemotherapy is a local treatment that

allows the drug to directly act on the metastatic lesions, rapidly

and effectively controlling the pleural effusion while avoiding the

toxic and adverse reactions associated with systemic therapy.

Despite the promising outcomes of this study, organoids still have

significant limitations. The success rate of organoid culture is highly

dependent on the quality of the samples. The activity of tumor cells in

pleural effusion exceeds 40%, which ensures the success rate of

organoid culture. Moreover, organoids lack critical components of

the tumor microenvironment, such as neural tissue, blood vessels,

immune cells, andmicrobiota, which play important roles in studying

tumor evolution, drug resistance mechanisms, and new drug

development. In the future, co-culture systems incorporating

patient-derived immune cells should be explored to enhance

clinical relevance.
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