
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Sunitha B. Thakur,
Memorial Sloan Kettering Cancer Center,
United States

REVIEWED BY

Kei Shing Ng,
The University of Hong Kong, Hong Kong SAR,
China
Marco Anile,
Sapienza University of Rome, Italy

*CORRESPONDENCE

Hanfeng Pan

hanfengdage@qq.com

†These authors have contributed equally to
this work

RECEIVED 19 May 2025
ACCEPTED 17 September 2025

PUBLISHED 02 October 2025

CITATION

Peng X, Pi S, Zhao H, Bian H, Li W, Deng D,
Xing W, Hu H, Zhang S, Xu P and Pan H
(2025) Integration of 2D/3D deep learning
and radiomics for predicting lymphovascular
invasion in T1-stage invasive lung
adenocarcinoma: a multicenter study.
Front. Oncol. 15:1631013.
doi: 10.3389/fonc.2025.1631013

COPYRIGHT

© 2025 Peng, Pi, Zhao, Bian, Li, Deng, Xing, Hu,
Zhang, Xu and Pan. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 02 October 2025

DOI 10.3389/fonc.2025.1631013
Integration of 2D/3D
deep learning and radiomics
for predicting lymphovascular
invasion in T1-stage invasive
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Laboratory of Precise Diagnosis and Treatment of Urinary Tumors, Huzhou, China, 4Department of
Thoracic Surgery, The First People’s Hospital of Huzhou, Huzhou, China, 5Department of Radiology,
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Introduction: Accurate prediction of the lymphovascular invasion (LVI) status in

patients with T1-stage invasive lung adenocarcinoma (LUAD) is crucial for

treatment decision-making. Currently, there is a lack of highly efficient and

precise prediction models.

Methods: In this retrospective study, 334 patients with T1-stage invasive LUAD

who underwent radical surgery from four academic medical centers were

included. Conventional radiomic features, two-dimensional deep learning (2D

DL) features, and three-dimensional deep learning (3D DL) features were

extracted from the tumor regions of the patients’ CT images. Corresponding

prediction models were constructed, and these features were integrated to

develop a combined model for identifying the LVI status. The performance of

the model was evaluated by calculating the area under the receiver operating

characteristic (ROC) curve (AUC), and the net benefit of the models was

compared using decision curve analysis (DCA).

Results: The combined model demonstrated excellent performance in

distinguishing the LVI status, with its predictive ability superior to that of

individual models. The AUC values for the training set, internal validation set,

and external test set reached 0.958 (95% CI: 0.9294 - 0.9863), 0.886 (95% CI:

0.7938 - 0.9786), and 0.884 (95% CI: 0.8277 - 0.9401), respectively. DCA showed

that the net benefit provided by the combined model was higher than that of

other radiomic models.
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Conclusions: The combined model integrating radiomics, 2D DL, and 3D DL

exhibits excellent performance in predicting the LVI status of patients with T1-

stage invasive LUAD, and can provide key information for clinical treatment

decision-making.
KEYWORDS

invasive lung adenocarcinoma, deep learning, radiomics, lymphovascular invasion,
artificial intelligence
Introduction

Lung cancer is a leading cause of cancer-related deaths

worldwide (1). Non-small cell lung cancer (NSCLC) accounts for

85% to 90% of all lung cancers, with lung adenocarcinoma (LUAD)

being the most common histological subtype within NSCLC (2).

Lymphovascular invasion (LVI) encompasses both microvascular

invasion (MVI) and lymphatic vessel invasion, referring to the

invasion of microvessels and/or lymphatic vessel walls or the

presence of tumor cell clusters within their lumens, which can

only be observed microscopically (3). The presence of LVI in

malignant tumors indicates that cancer cells have migrated,

marking a critical step in tumor metastasis. LVI has been

established as a poor prognostic factor in various malignancies

and is an independent indication for postoperative chemotherapy

and radiotherapy. For lung cancer patients classified as early-stage

or pathological stage with positive LVI, lobectomy offers better

clinical outcomes. It reduces the risk of postoperative tumor

recurrence and metastasis compared to sublobar resection (4, 5).

Due to the difficulty in obtaining tumor stroma-containing

microvessels or lymphatic vessels through needle biopsy, LVI

information is generally not obtainable solely from such biopsies.

Therefore, preoperative assessment of LVI status in LUAD remains

challenging, and pathological diagnosis of postoperative specimens

is currently the only method to determine LVI status (6, 7). Due to

the delays associated with pathological diagnosis, accurate

preoperative evaluation of LVI in T1-stage LUAD is crucial for

clinical decision-making and individualized treatment for T1-stage

lung cancer patients, making it a focal point of current research

both domestically and internationally.

Some researchers suggest that specific preoperative computed

tomography(CT) findings, such as nodule composition,

consolidation to tumor ratio (C/T ratio), spiculated margins,

abnormal veins, peritumoral stromal thickening, and pleural

contact, are associated with the occurrence of LVI (8, 9). Choe

et al. (8) also noted that LVI occurs only in solid nodules or part-

solid nodules with solid components more significant than 10 mm,

with peritumoral stromal thickening and pleural contact identified

as independent predictors of LVI. However, the evaluation of

imaging features is heavily influenced by the experience of

radiologists and their understanding of different findings, leading
02
to significant subjective reliance and poor reproducibility. These

factors limit the effectiveness of traditional imaging in

preoperatively predicting LVI in lung cancer.

Radiomics, as a robust imaging biomarker, can non-invasively

assess tumor heterogeneity that is not detectable by the human eye

and can reflect intratumoral angiogenesis (10). Several studies have

applied radiomic and related combined models to predict LVI

status in NSCLC, achieving promising results (11–13). With the

rapid development of deep learning (DL), DL features have

complemented traditional radiomic features in medical imaging

(14). DL imaging features extracted based on convolutional neural

networks (CNN) are used to construct feature signatures and have

been shown to enhance model performance in various clinical tasks

(15). DL has been widely applied in NSCLC research, including lung

nodule classification, lung cancer metastasis prediction, gene

mutation prediction, airspace dissemination prediction, and

treatment efficacy assessment (16–20).

Traditional radiomics analyzes tumor texture features by

considering the entire tumor as the region of interest (ROI). In

contrast, feature extraction in DL is a critical step within DL models.

When selecting the ROI, we face a trade-off. Tumors appear across

multiple slices in CT images, allowing for the extraction of features

from a slice representing the maximum cross-sectional diameter of

the tumor (two-dimensional,2D) or from a cube encompassing the

entire tumor volume (three-dimensional,3D). Compared to 3D

ROIs, 2D ROIs are more accessible to obtain, require less time

and labor, are less complex, and have faster computational speeds.

Intuitively, 3D DL features may provide more comprehensive

information about the entire tumor. Previous studies have

employed 2D and 3D ROIs, but their performance differences

have yielded inconsistent results. It remains unclear whether the

time-consuming and labor-intensive 3D DL analysis is inherently

more valuable than 2D DL analysis, and it is uncertain whether DL

features necessarily outperform texture features. In conclusion,

currently, there is no reported study to prove which imaging

method, traditional radiomics, 2D DL, or 3D DL, is more

accurate in predicting LVI in T1-stage LUAD.

This study assesses the correlation between chest CT imaging

features and LVI status in T1-stage invasive LUAD. We will

conduct a DL radiomics study based on chest CT images,

constructing traditional radiomic, 2D DL, 3D DL, and combined
frontiersin.org
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models. We will compare the diagnostic performance of these

different models to provide the best predictive model for LVI

status in T1-stage invasive LUAD.
Materials and methods

Study design

Our study introduced four radiomic models: a traditional

radiomic model, a 2D DL model, a 3D DL model, and a

combined model of the three. The radiomic analysis was

conducted through several steps: image segmentation, feature

extraction, feature selection, feature construction, and

validation (Figure 1).
Patient characteristics

This retrospective study included T1-stage invasive LUAD

patients who underwent radical surgery at four academic medical

centers. Preoperative CT images and clinical pathological data were

collected. Inclusion criteria were: (1) maximum tumor diameter on

CT less than 3 cm; (2) CT imaging data obtained within one month

before surgery; (3) diagnosis of invasive LUAD; (4) no distant

metastasis before surgery. Exclusion criteria included: (1) patients

who received neoadjuvant therapy; (2) patients with multiple

pulmonary nodules reported on preoperative CT; (3) patients

with a history of other malignant tumors; (4) patients with

incomplete clinical data; (5) patients with pathological types

classified as other types. A total of 334 patients were included in
Frontiers in Oncology 03
this study (Figure 2). In this study, 334 patients with T1-stage

invasive LUAD from four academic medical centers were enrolled.

All these patients underwent radical surgery and had preoperative

CT images as well as clinicopathological data available. In Center 1,

there were 427 eligible patients, among whom only 97 patients had

LVI positivity, while as many as 330 patients had LVI negativity.

There was a significant imbalance in the sample sizes.

This imbalance might lead to insufficient learning of the

minority category during the model training process, which in

turn could affect the performance and generalization ability of the

model. For instance, the recognition accuracy of the minority

category in prediction was relatively low.

To address this issue, this study referred to the validated sample

allocation strategy (21). A total of 99 samples were randomly

selected from the negative group in Center 1 at a ratio of 3:7, so

as to make the ratio of LVI-positive to LVI-negative patients in the

training set approach 1:1. The reason for adopting the random

sampling method at a ratio of 3:7 for the negative group to select

cases was that it enabled us to exactly sample 99 cases, and this

number was close to that of the LVI-positive group. This effectively

balanced the proportion of the two types of samples in the training

set and avoided the learning bias caused by sample imbalance

during the model training process.

Meanwhile, a strict random selection method was employed to

exclude, to the greatest extent possible, the subjective biases that

might be introduced by human selection, ensuring that the selected

data could truly and objectively reflect the overall characteristics,

thus enhancing the representativeness and universality of the data.

Eventually, these patients were allocated reasonably: 137

patients (68 positive and 69 negative) were included in the

training set, 59 patients (29 positive and 30 negative) served as
FIGURE 1

Workflow of radiomics analysis.
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the internal validation set, and 138 patients (48 positive and 90

negative) from Centers 2, 3, and 4 constituted the external test set.

Through such a sample distribution, not only was a reasonable

sample size ensured for each dataset, but also the generalization

ability of the model was effectively improved with the aid of multi-

center external validation.
Histopathological evaluation

Each case’s pathological specimen was independently reviewed

by two experienced thoracic pathologists (with 5 and 10 years of
Frontiers in Oncology 04
diagnostic experience, respectively), blinded to the clinical

information. In cases of disagreement regarding the findings,

consensus was reached through discussion. As observed

microscopically, LVI was defined as the invasion of microvessels

and/or lymphatic vessel walls or tumor cell clusters within

their lumens.

Pathological data were collected for each patient, including

clinical pathological staging (according to the 8th AJCC TNM

staging system), histopathological grading (using the 2015 IASLC/

ATS/ERS LUAD classification, which categorizes tumors into

lepidic predominant adenocarcinoma (LPA), acinar predominant

adenocarcinoma (APA), papillary predominant adenocarcinoma
FIGURE 2

Flow diagram of the enrolment of patients. LVI, lymphovascular invasion; LVI (+), positive for LVI; LVI (-), negative for LVI.
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(PPA), micropapillary predominant adenocarcinoma (MPA), solid

predominant adenocarcinoma (SPA), and other rare patterns),

invasion of visceral pleura, STAS, lymph node metastasis, and

other relevant factors.
Clinicopathological variables

Clinical pathological data were collected for each patient,

including clinical information such as age, sex, Carcinoembryonic

Antigen (CEA), Cancer Antigen 125(CA125), tumor location,

surgical method, and the presence of emphysema. Pathological

data included pleural invasion, pathological classification, grading,

Ki-67, STAS, lymph node metastasis, and other relevant factors.
CT acquisition and interpretation

The chest scan was performed with a German Siemens

Definition AS 64-row 128-slice spiral CT. Scan from the thoracic

entrance to the diaphragm level. The subjects were placed in the

supine position and held their breath after deep inhalation.

Scanning parameters: tube voltage 120kV, tube current 120mA,

window width 1300-1500, window position: -600~-700, pitch 1.0,

frame rotation time 0.33S/360 degrees. Lung window

reconstruction was performed using the lung method with a

reconstruction thickness of 1.25mm and layer spacing of 1.25mm.

Mediastinal window reconstruction thickness and layer spacing

were 5mm.

Two experienced thoracic radiologists (with 5 and 10 years of

experience in lung nodule diagnosis, respectively) assessed

traditional imaging features. They independently reviewed the CT

images while blinded to the pathological and clinical information.

In cases of disagreement regarding the findings, consensus was

reached through discussion. The evaluated imaging features

included composition (solid, part-solid, or ground-glass),

maximum tumor diameter, lobulation, spiculation, vacuole sign,

air bronchogram sign, vascular clustering, pleural retraction, and

peritumoral ground-glass opacification.
Conventional radiomics ROI segmentation
and feature extraction

Since different CT scanners were used in this study, it is

necessary to preprocess the images before performing

segmentation and feature extraction to make the radiomics

features more robust and more suitable for further analysis. First,

in the image preprocessing step, all images were resampled to a

voxel size of 1 mm × 1 mm × 1mm to standardize the voxel spacing.

Subsequently, Z-score normalization (zero-mean normalization)

was employed to standardize the data. Two experienced

radiologists independently performed image segmentation

without knowing the patients’ pathological conditions. Radiologist

A (with five years of experience) manually delineated the ROIs layer
Frontiers in Oncology 05
by layer using the open-source software ITK-SNAP (version 3.8.0,

http://www.itksnap.org). Radiologist B (with ten years of

experience) reviewed all ROIs manually segmented by Radiologist

A and manually removed tumor regions overlapping with soft

tissue, bone, and mediastinum in the chest wall. If there is a

disagreement between Doctor A and Doctor B during the

segmentation process, Doctor C, with rich professional

experience, will be introduced for intervention. When re-

segmenting the controversial area, Doctor C will comprehensively

consider various factors such as the morphology and location of the

tumor, as well as the imaging features at different levels, so as to

ensure the accuracy of the segmentation result.

Traditional radiomic features were extracted using

PyRadiomics, a Onekey AI software suite component. These

features were categorized into three types: geometric features,

intensity features, and texture features. Geometric features were

used to describe the 3D shape characteristics of the tumor; intensity

features described the first-order statistical distribution of voxel

intensities within the tumor; and texture features reflected the

patterns of intensity or second- and higher-order spatial

distributions. The extraction of texture features utilized various

methods, including gray level co-occurrence matrix (GLCM), gray

level run length matrix (GLRLM), gray level size zone matrix

(GLSZM), gray level dependence matrix (GLDM), and

neighborhood gray-tone difference matrix (NGTDM).
DL ROI segmentation and feature
extraction

Since different CT scanners were used in this study, before

performing tumor annotation and DL analysis, it is necessary to

standardize the relevant processes and process the images to reduce

the differences caused by different devices and improve the accuracy

and reliability of the research results. To achieve this goal, the

following key steps were taken:
(1) In the tumor annotation stage, the reconstructed CT images

were imported into the ITK-SNAP software (Version 3.8.0,

http://www.itksnap.org). Two radiologists with 5 years of

experience independently carried out the annotation under the

lung window setting (average value: -450 Hounsfield Unit

(HU); width: 1500 HU). For the inconsistent situations

among observers during the annotation process, a senior

radiologist coordinated and solved them to ensure the

consistency of the annotation. In terms of the selection of

ROI, different strategies were adopted according to different

types of neural networks. The 2D CNN selected the slice with

the largest tumor area, while the 3D CNN used the bounding

box containing the entire tumor volume for annotation.

(2) In terms of image preprocessing, to eliminate the

differences in voxel length in the images, all images were

interpolated to unify the voxel spacing to (1 mm × 1 mm ×

1 mm) before being input into the network. At the same

time, the tumor images were standardized to HU values
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with the help of the DICOM header information, and a

threshold was set to prevent extreme values from affecting

the analysis results. In addition, the mean and variance of

the 3D tumor images calculated in the training set were

standardized through the Z-score method, thus promoting

the learning of the network and enhancing the adaptability

of the model to the images obtained from different CT

scanners. Furthermore, this study utilized the ResNet50

deep convolutional network architecture (3D version) for

feature extraction, effectively addressing the degradation

problem in deep networks through residual blocks.
Feature selection and model construction

Traditional radiomic feature sets, 2D DL feature sets, and 3D

DL feature sets were obtained through the feature extraction

methods above. All patients were randomly stratified by center

into various cohorts (Figure 2). Huzhou First People’s Hospital

patients were divided into training and internal validation sets at a

7:3 ratio. Additionally, all patients from Huzhou Mingzhou

Hospital, Huzhou Nanxun District Second Medical Group Linghu

Hospital, and Wuxi Xishan People’s Hospital were considered the

external test set. Before feature selection, the features in the training

set were normalized to scale different features to the same

magnitude. Subsequently, feature selection was performed in

three steps: first, all radiomic features underwent Mann-Whitney

U tests for feature selection, retaining only those with a p-value less

than 0.05. Subsequently, for highly redundant features, the

Spearman rank correlation coefficient was calculated to assess the

correlation between features; if the coefficient between any two

features exceeded 0.9, one feature was retained. Finally, the Least

Absolute Shrinkage and Selection Operator (LASSO) regression

model(a statistical method for selecting key features by shrinking

feature coefficients) was utilized to construct feature signatures on

the exploratory dataset. By adjusting the regularization weight l,
LASSO shrinks all regression coefficients towards zero, setting many

irrelevant feature coefficients to precisely zero. To identify the

optimal l, a minimum standard 10-fold cross-validation was

employed, with the final value of l resulting in the smallest cross-

validation error. Features with non-zero coefficients were retained

for regression model fitting and combined into a radiomic

signature. Subsequently, we calculated the patients’ radiomic

scores (rad scores, RS) by linearly combining the retained

features, weighted by their model coefficients. After feature

selection, traditional radiomic, 2D DL, 3D DL, and combined

feature sets were constructed.

Using Onekey AI software, Multi-Layer Perceptron (MLP)

models were constructed on the training set feature sets for

traditional radiomic, 2D DL, 3D DL, and combined models,

tested on internal and external validation sets. The architecture of

the MLP classifier includes an input layer, hidden layers, and an

output layer. In this study, the input layer receives multi-

dimensional input data from traditional radiomics features, 2D
tiers in Oncology 06
DL features, and 3D DL features. The hidden layers are composed

of multiple fully connected layers. Each fully connected layer is

followed by a Rectified Linear Unit (ReLU) activation function(a

computational method that enhances the model’s ability to learn

non-linear features), which is used to extract non-linear feature

representations. The output layer, through a fully connected layer

and a Sigmoid activation function, maps the final features to the

probability value of LVI being positive, with the value ranging from

0 to 1. The model uses the binary cross-entropy loss function to

evaluate the prediction error and updates the parameters through

the Adam optimizer to minimize the loss function. Through this

hierarchical structure and non-linear transformation, the MLP can

effectively learn complex feature relationships and is suitable for

binary classification tasks. The MLP model was consistently used

throughout this study to ensure comparability. MLPs are

advantageous for learning nonlinear relationships, suitable for

multitasking applications, structurally simple, easily adjustable,

and capable of automatic feature extraction. This model has

demonstrated outstanding performance in many practical

applications due to its efficiency and robustness.
Statistical methods

Statistical analyses were conducted using Onekey AI software

and R software version 4.0.2. Univariate and multivariate logistic

regression analyses were performed to compare clinical CT and

pathological features between LVI-positive and LVI-negative

patients, identifying independent predictors of LVI positivity.

Receiver operating characteristic (ROC) curves were plotted, and

the area under the curve (AUC), 95% confidence interval (CI),

accuracy (ACC), specificity (SPE), sensitivity (SEN), positive

predictive value (PPV), and negative predictive value (NPV) were

calculated. The performance of each model was evaluated, and

DeLong’s test was used to compare their differences. Calibration

curves were plotted to assess the model’s calibration. Decision curve

analysis (DCA) was employed to evaluate the clinical value of the

models. A p-value of <0.05 was considered statistically significant.
Ethical statement

This study was conducted by the Declaration of Helsinki and

received approval from the Ethics Committee of Huzhou First

People’s Hospital. Additionally, due to its retrospective nature,

the Institutional Review Board exempted the requirement for

prior informed consent from all participants.
Results

Baseline characteristics of the patients

This study included a total of 334 patients with clinical T1 stage

invasive lung adenocarcinoma, comprising 137 patients in the
frontiersin.org
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training set (68 LVI-positive and 69 LVI-negative), 59 patients in

the internal validation set (29 LVI-positive and 30 LVI-negative),

and 138 patients in the external testing set (48 LVI-positive and 90

LVI-negative). Patient clinical data, CT characteristics, and

pathological information were recorded. The clinical baseline

characteristics of all patients are presented in Table 1.
Clinicopathological and CT features by LVI
status

Univariate and multivariate analyses were performed on the

clinical characteristics of the training set, and the odds ratios (OR),

along with their corresponding p - values, were calculated for each

feature (Table 2). In the multivariate analysis: For pathological

grading, the OR was 0.403, with a 95% confidence interval (CI) of

0.237 - 0.685 and P = 0.005. For STAS, the OR was 2.751, with a 95%

CI of 1.223 - 6.190 and P = 0.040. Only pathological grading and STAS

were significant (P < 0.05), serving as independent predictors of LVI.
Frontiers in Oncology 07
Feature selection and radiomics signature
development

Radiomic(Rad),2D, and 3D DL features were extracted using

CT images. Following the Intraclass Correlation Coefficient (ICC)

test results, 1834 radiomic features and 2048 DL features were

retained, creating datasets for radiomic features, 2D DL features,

and 3D DL features. Each dataset underwent t-tests, Pearson

correlation analysis, and LASSO for final selection, resulting in

36, 31, and 6 optimal features, respectively (Figure 3). Subsequently,

traditional Rad models, 2D DL models, 3D DL models, and a

combined model were constructed.

We used an MLP classifier to predict the models for each

feature set. Training set: The combined model and the traditional

radiomics model showed the best performance (AUC: 0.958, 95%

CI: 0.9294-0.9863 and 0.968, 95%CI: 0.9460-0.9909, respectively),

followed by the 2D DL model (0.968, 95%CI: 0.9432-0.9933), and

the 3D DL model performed the worst (0.772, 95%CI:

0.6939-0.8509).
TABLE 1 Baseline characteristics of patients in the training cohort and test cohort.

Variable
Training set (n = 137)

P
Validation set (n = 59)

P

External test set
(n = 138) P

LVI(-) LVI (+) LVI(-) LVI (+) LVI(-) LVI (+)

Age 64.99 ± 10.21 63.79 ± 8.70 0.262 63.33 ± 9.55 66.90 ± 8.80 0.142 63.57 ± 11.71 61.34 ± 11.25 0.134

Maximum tumor diameter(mm) 1.46 ± 0.57 2.11 ± 0.76 <0.001 1.47 ± 0.65 1.97 ± 0.63 <0.001 1.34 ± 0.52 2.06 ± 0.58 <0.001

Gender 0.201 0.104 0.274

Male 27(39.13) 35(51.47) 14(46.67) 20(68.97) 38(41.76) 25(53.19)

Female 42(60.87) 33(48.53) 16(53.33) 9(31.03) 53(58.24) 22(46.81)

Lymph node metastasis <0.001 0.976 <0.001

No 68(98.55) 53(77.94) 29(96.67) 27(93.10) 91(100.00) 32(68.09)

Yes 1(1.45) 15(22.06) 1(3.33) 2(6.90) 0 15(31.91)

Emphysema 0.055 0.945 0.012

No 54(78.26) 42(61.76) 24(80.00) 22(75.86) 89(97.80) 40(85.11)

Yes 15(21.74) 26(38.24) 6(20) 7(24.14) 2(2.20) 7(14.89)

Location 0.345 0.452 0.125

RUL 26(37.68) 19(27.94) 10(33.33) 6(20.69) 23(25.27) 10(21.28)

RML 9(13.04) 5(7.35) 5(16.67) 6(20.69) 5(5.49) 5(10.64)

RLL 7(10.14) 8(11.76) 5(16.67) 2(6.09) 24(26.37) 10(21.28)

LUL 14(20.29) 23(33.82) 7(23.33) 12(41.38) 32(35.16) 12(25.53)

LLL 13(18.84) 13(19.12) 3(10.00) 3(10.34) 7(7.69) 10(21.28)

Surgical approach <0.001 0.012 <0.001

Lobectomy 48(69.57) 18(26.47) 18(60.00) 7(24.14) 70(76.92) 12(25.53)

Segmentectomy 21(30.43) 50(73.53) 12(40.00) 22(75.86) 21(23.08) 35(74.47)

Differentiation grade <0.001 0.003 <0.001

(Continued)
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TABLE 1 Continued

Variable
Training set (n = 137)

P
Validation set (n = 59)

P

External test set
(n = 138) P

LVI(-) LVI (+) LVI(-) LVI (+) LVI(-) LVI (+)

High-grade 17(24.64) 0 3(10.00) 0 15(16.48) 1(2.13)

Intermediate-grade 47(68.12) 46(67.65) 25(83.33) 17(58.62) 73(80.22) 29(61.70)

Low-grade 5(7.25) 22(32.35) 2(6.67) 12(41.38) 3(3.30) 17(36.17)

Histological type <0.001 0.116 <0.001

APA 45(65.22) 32(47.06) 19(63.33) 11(37.93) 75(82.42) 28(59.57)

PPA 0 11(16.18) 1(3.33) 4(13.79) 1(1.10) 9(19.15)

MPA 5(7.25) 4(5.88) 1(3.33) 5(17.24) 4(4.40) 3(6.38)

SPA 10(14.49) 21(30.88) 7(23.33) 9(31.03) 11(12.09) 4(8.51)

LPA 8(11.59) 0 1(3.33) 0 0 3(6.38)

STAS <0.001 <0.001 <0.001

Negative 59(85.51) 27(39.71) 30(100.00) 8(27.59) 89(97.80) 15(31.91)

Positive 10(14.49) 41(60.29) 0 21(72.41) 2(2.20) 32(68.09)

KI67 <0.001 <0.001 <0.001

<20% 67(97.10) 48(70.59) 28(93.33) 14(48.28) 86(94.51) 19(40.43)

≥20% 2(2.90) 20(29.41) 2(6.67) 15(51.72) 5(5.49) 28(59.57)

Pleural invasion <0.001 0.162 0.017

Negative 65(94.20) 48(70.59) 27(90.00) 21(72.41) 83(91.21) 35(74.47)

Positive 4(5.80) 20(29.41) 3(10.00) 8(27.59) 8(8.79) 12(25.53)

Lobulated sign <0.001 0.286 <0.001

Negative 33(47.82) 12(17.65) 11(36.67) 6(20.69) 43(47.25) 6(12.77)

Positive 36(52.17) 56(82.35) 19(63.33) 23(79.31) 48(52.75) 41(87.23)

Vacuolated sign 0.939 0.710 <0.001

Negative 39(56.52) 37(54.41) 19(63.33) 16(55.17) 45(49.45) 5(10.64)

Positive 30(43.48) 31(45.59) 11(36.67) 13(44.83) 46(50.55) 42(89.36)

Peripheral GGO 0.411 0.446 1

Negative 53(76.81) 47(69.12) 19(63.33) 22(75.86) 75(82.42) 38(80.85)

Positive 16(23.19) 21(30.88) 11(36.67) 7(24.14) 16(17.58) 9(19.15)

Vascular bundle 0.675 0.905 0.029

Negative 28(40.58) 31(45.59) 13(43.33) 14(48.28) 65(71.43) 24(51.06)

Positive 41(59.42) 37(54.41) 17(56.67) 15(51.72) 26(28.57) 23(48.94)

Spiculation 0.146 0.501 0.010

Negative 44(63.77) 34(50.00) 19(63.33) 10(34.48) 80(87.91) 32(68.09)

Positive 25(36.23) 34(50.00) 11(36.67) 19(65.52) 11(12.09) 15(31.91)

Bronchus sign 0.809 1 0.007

Negative 49(71.01) 46(67.65) 22(73.33) 21(72.41) 75(82.42) 28(59.57)

Positive 20(28.99) 22(32.35) 8(26.67) 8(27.59) 16(17.58) 19(40.43)

Pleural Indentation 0.009 0.701 0.003

(Continued)
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Internal validation set: The combined model took the lead in

performance (AUC = 0.886, 95%CI: 0.7938-0.9786), followed by the

traditional radiomics model (0.844, 95%CI: 0.7360-0.9513). The

performance of the 2D/3D DL models decreased significantly

(0.759, 95%CI: 0.6338-0.8835; 0.740, 95%CI: 0.6131-0.8674).

External test set: The combined model (0.884, 95%CI: 0.8277-

0.9401) and the traditional radiomics model (0.870, 95%CI: 0.8084-

0.9306) maintained stable performance, while the performance of the

2D DL model decreased significantly (0.613, 95%CI: 0.5186-0.7074),

suggesting its weak cross-center generalization ability (Table 3).

In the training set, the Hosmer-Lemeshow test p-values for all

models were greater than 0.05 (2D model: 0.098, 3D model: 0.751,

Rad model: 0.292, Combined_model: 0.314), indicating that these

models have a high degree of agreement between predicted

probabilities and actual outcomes. However, in the internal

validation set, the Hosmer-Lemeshow test p-values for the 2D,

3D, and Rad models were also greater than 0.05 (2D model: 0.589,

3D model: 0.870, Rad model: 0.707), suggesting good calibration

performance for these models. In contrast, the p-value for the

Combined_model was 0.024, which is less than 0.05. In the external

test set, all models showed significant prediction bias (P < 0.05),

which is consistent with the decreased performance. This confirms

the limited generalizability of the models in cross-center scenarios-

particularly the combined model, whose calibration bias was

already observed in the internal validation phase, may have

exacerbated performance fluctuations in the external test set.

Future studies will optimize the cross-center robustness of the

models through data augmentation and domain adaptation

algorithms to improve calibration performance and generalizability.

Through the analysis of DCA curves for the training set,

internal validation set, and external test set, we found that the
Frontiers in Oncology 09
Combined_model provided the highest net benefit across a wide

range of threshold probabilities (10% to 50%), indicating its high

utility in clinical decision-making. However, the performance of the

Combined_model gradually declined as the dataset changed,

particularly in the external test set, suggesting limited

generalizability. In contrast, the 2D, 3D, and Rad models

performed adequately in the training and internal validation sets

but showed poorer performance in the external test set, indicating

limited clinical applicability. The Treat all strategy performed well

at low thresholds but poorly at high thresholds, while the Treat

none strategy consistently yielded no net benefit. The combined

model has clinical value in same-center scenarios, but its cross-

center robustness needs to be prioritized for optimization. Future

efforts will focus on two aspects: on one hand, applying a balanced

sampling strategy consistent with that of the training set in the

preprocessing stage of the external test set to reduce the impact of

class imbalance on model generalization; on the other hand,

integrating data augmentation and domain adaptation techniques

to improve cross-center stability and enhance the reliability of

clinical applications.

The ROC curves, calibration curves, DCA, and DeLong test for

all signatures in the training and testing cohorts are shown

in Figure 4.

Figure 5 shows the visualization images of two deep

learning models.
Discussion

In this study, we extracted Rad features, 2D DL features, and 3D

DL features from the tumor regions based on CT images. We
TABLE 1 Continued

Variable
Training set (n = 137)

P
Validation set (n = 59)

P

External test set
(n = 138) P

LVI(-) LVI (+) LVI(-) LVI (+) LVI(-) LVI (+)

Negative 54(78.26) 38(55.88) 17(56.67) 14(48.28) 60(65.93) 18(38.30)

Positive 15(21.74) 30(44.12) 13(43.33) 15(51.72) 31(34.07) 29(61.70)

Nodule type <0.001 <0.001 <0.001

Solid 8(11.59) 31(45.59) 2(6.67) 14(48.28) 11(12.09) 30(63.83)

Part solid 45(65.22) 37(54.41) 21(70.00) 14(48.28) 63(69.23) 17(36.17)

pGGN 16(23.19) 0 7(23.33) 1(3.45) 17(18.68) 0

CEA <0.001 0.203 <0.001

Negative 64(92.75) 44(64.71) 25(83.33) 19(65.52) 81(89.01) 29(61.70)

Positive 5(7.25) 24(35.29) 5(16.67) 10(34.48) 10(10.99) 18(38.30)

CA125 1 0.986 1

Negative 65(94.20) 65(95.59) 30(100.00) 28(96.55) 87(95.60) 45(95.74)

Positive 4(5.80) 3(4.41) 0 1(3.45) 4(4.40) 2(4.26)
fron
Data were presented as mean ± SD, or n (%) unless otherwise stated. L, left lower lobe; LUL, left upper lobe; RLL, right lower lobe; RML, right middle lobe; RUL, right upper lobe; pGGN, pure
ground-glass nodule; APA, acinar predominant adenocarcinoma; PPA, Papillary predominant adenocarcinoma; MPA, Micropapillary predominant adenocarcinoma; SPA, solid predominant
adenocarcinoma; LPA, lepidic predominant adenocarcinoma; mucinous.
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utilized an MLP classifier to construct traditional radiomic models,

2D DLmodels, 3D DLmodels, and a combined model to predict the

status of LVI. The results indicated that the combined model

exhibited robust predictive performance. In the training,

validation, and external testing sets, the combined model

demonstrated the best predictive efficacy for preoperative LVI

status in invasive LUAD, with AUC values of 0.958 (95%

CI:0.9294 - 0.9863), 0.886 (95%CI: 0.7938 - 0.9786), and 0.884

(95%CI: 0.8277 - 0.9401), respectively. This study is the first to

extract multiple radiomic models for predicting LVI status.

Through a comparison of model performance, we identified the

optimal model, providing quantitative support for clinical decision-

making regarding surgical approaches and selecting patients

requiring chemotherapy postoperatively.

Currently, radiomics plays a significant role in the preoperative

assessment of lung cancer. Many researchers have applied 2D and

3D traditional radiomics to predict the status of LVI in lung cancer.

The 2D radiomics has achieved remarkable results. In the studies by

Yang, Nie et al. (11, 12), after modeling, the AUC of the training
Frontiers in Oncology 10
group reached 0.938, and that of the test group was 0.856.

Theoretically, 3D radiomics can present the tumor in three

dimensions and has significant advantages. However, in clinical

practice, it encounters problems such as complex model

construction, high computational power requirements, and

deviations in the actual effect. Its practical effectiveness still needs

to be explored. These studies provide multi-dimensional references

for the application of radiomics in tumor imaging.

This study is the first to utilize DL to predict LVI in T1-stage

invasive LUAD. Unlike previous studies, we compared traditional

radiomics’ performance with DL in predicting LVI in LUAD and

assessed the performance of 2D and 3D DL in this context.

Theoretically, DL can directly extract raw features from tumors,

potentially offering better efficacy than Rad, and 3D features may

provide greater reproducibility than 2D features. However, we

obtained a fundamentally unexpected result. After undergoing t-

tests, Pearson correlation analysis, and LASSO, traditional

radiomics, 2D DL, and 3D DL feature sets were ultimately filtered

to yield 36, 31, and 6 optimal features, respectively. Only 6 3D deep
TABLE 2 Univariable and multivariable analysis of clinical features.

Variable
Univariate analysis Multivariable analysis

OR (95%CI) P OR (95%)CI P

Gender 0.786 (0.536-1.151) 0.300

Age 1.000 (0.995-1.004) 0.848

Lymph node metastasis 15.001 (2.743-82.023) 0.009 5.797 (0.855-39.330) 0.131

Emphysema 1.733 (1.071-2.954) 0.090

Location 1.063 (0.947-1.192) 0.384

Surgical approach 2.381 (1.553-3.651) 0.001 2.119 (1.062-4.229) 0.074

Histological type 0.993 ( 0.862-1.143) 0.932

Differentiation grade 1.400 (1.101-1.781) 0.021 0.403 (0.237-0.685) 0.005

STAS 4.100 ( 2.296-7.323) 0.000 2.751 (1.223-6.190) 0.040

KI67 10.000 (2.954-33.852) 0.002 4.999 (1.230-20.308) 0.059

Pleural invasion 5.000 (2.032-12.305) 0.003 3.086 (0.991-9.612) 0.103

Maximum tumor diameter 1.184 ( 1.019-1.374) 0.063

Lobulated sign 1.462 (1.038-2.061) 0.068

Vacuolated sign 1.033 (0.678-1.575) 0.898

Peripheral GGO 1.312 ( 0.760-2.266) 0.413

Vascular bundle sign 0.902 ( 0.621-1.310) 0.651

Speculation 1.360 (0.882-2.098) 0.243

Bronchus sign 1.100 (0.662-1.828) 0.758

Pleural Indentation 2.000 (1.189-3.364) 0.028 1.156 (0.532-2.512) 0.759

Nodule type 0.850 (0.733-0.986) 0.071

CEA 4.800 (2.138-10.773) 0.001 2.660 (0.937-7.553) 0.123

CA125 0.750 (0.214-2.635) 0.706
LLL, left lower lobe; LUL, left upper lobe; RLL, right lower lobe; RML, right middle lobe; RUL, right upper lobe; pGGN, pure ground-glass nodule; APA, acinar predominant adenocarcinoma;
PPA, Papillary predominant adenocarcinoma; MPA, Micropapillary predominant adenocarcinoma; SPA, solid predominant adenocarcinoma; LPA, lepidic predominant adenocarcinoma.
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FIGURE 3

(A, D, G) represent the LASSO for radiomics, 2D DL, and 3D DL features. (B, E, H) represent the MSE for Rad, 2D DL, and 3D DL features. (C, F, I)
represent the feature weights for Rad, 2D DL, and 3D DL features.
TABLE 3 Performance of each model of the MLP classifier in predicting LVI.

Model Dataset Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

Rad

Train 0.891 0.968 0.9460 - 0.9909 0.809 0.971 0.965 0.837

Validation 0.780 0.844 0.7360 - 0.9513 0.828 0.733 0.750 0.815

External test 0.810 0.870 0.8084-0.9306 0.809 0.811 0.691 0.890

2D

Train 0.920 0.968 0.9432 - 0.9933 0.926 0.913 0.913 0.926

Validation 0.712 0.759 0.6338 - 0.8835 0.759 0.667 0.687 0.741

External test 0.577 0.613 0.5186-0.7074 0.787 0.467 0.435 0.808

3D

Train 0.708 0.772 0.6939 - 0.8509 0.574 0.841 0.780 0.667

Validation 0.678 0.740 0.6131 - 0.8674 0.828 0.533 0.632 0.762

External test 0.701 0.691 0.5930 - 0.7895 0.660 0.722 0.554 0.802

Combined

Train 0.891 0.958 0.9294 - 0.9863 0.971 0.812 0.835 0.971

Validation 0.847 0.886 0.7938 - 0.9786 0.793 0.900 0.885 0.818

External test 0.810 0.884 0.8277 - 0.9401 0.809 0.811 0.681 0.890
F
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learning features were retained after LASSO selection, which may be

attributed to the high information concentration of 3D features—

each 3D feature can integrate comprehensive information from

multiple low-dimensional features in traditional radiomics. It could

also be because 3D features learned based on three-dimensional

spatial correlations have significantly lower information overlap

between features compared to traditional radiomic features or 2D

deep learning features. In the internal validation set, the Rad model

outperformed the DL models, with the 2D model being more

effective than the 3D model.

In this study, the traditional radiomics model outperforms DL

models, with threemain reasons: In terms of feature interpretability, the

44 texture features selected for radiomics(including GLCM, GLSZM,

and LBP) are extracted via well-defined algorithms and have clear

physical meanings (for example, GLCM can reflect the complexity of

internal tumor textures, while LBP is relatively sensitive to marginal

spiculation). These features provide an intuitive basis for model

decision-making. In contrast, the features automatically learned by
Frontiers in Oncology 12
DLmodels are highly abstract; even with visualization techniques, their

meanings are difficult to clarify, thus affecting clinical acceptance.

Regarding differences in regional analysis, the 2D DL model only

focuses on the maximum cross-section of the tumor, ignoring

information from other layers. Meanwhile, the tumor-containing

cube used in the 3D DL model often includes normal lung tissue,

which interferes with feature learning. In comparison, radiomics

extracts features from the entire tumor region, integrates multi-layer

information, and precisely targets the tumor itself, thereby reducing

interference from normal tissues. Regarding data adaptability, DL

models have strict data volume and consistency requirements.

Differences in CT equipment parameters among multi-center data in

this study led to a significant decline in their performance on the

external test set. On the contrary, radiomics mitigates the impact of

equipment differences through standardized preprocessing.

Additionally, its features are designed based on statistical rules,

which grant stronger tolerance to data variations and enable more

stable cross-center generalization. Furthermore, the 2D and 3D DL
FIGURE 4

ROC curve of different models in the (A) train, (E) validation, and (I) external test sets, respectively. Calibration curve of different models in the
(B) train, (F) validation, and (J) external test sets. DCA curve of different models in the (C) train, (G) validation, and (K) external test sets. Delong test
of different models in the (D) train, (H) validation, and (l) external test sets, respectively. Rad, Rad signature; 2D, 2D DL signature; 3D, 3D DL
signature; Combined, combined 2D, 3D and Rad signature.
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models exhibit comparable performance, which is consistent with the

findings of Ma et al. (22) in head and neck tumor segmentation.

The multivariate analysis revealed that STAS (spread through

air spaces) and pathological grading are independent key predictors

of LVI (STAS: OR = 2.751, 95%CI=1.223-6.190, P = 0.040;

pathological grading: OR = 0.403, 95%CI=0.237-0.685, P = 0.005).

This finding is consistent with previous studies demonstrating close

associations of STAS and pathological differentiation with tumor

invasiveness and vascular invasion potential (23–26), further

validating the rationality and utility of our model in integrating

clinicopathological information. Specifically, as a unique airspace

dissemination pattern in lung adenocarcinoma, STAS and LVI,

though distinct invasive pathways, often coexist in highly aggressive

tumors, indicating that tumor cells possess both trans-alveolar

dissemination and vascular invasion capabilities (23, 24). Poorly

differentiated tumors are more prone to vascular invasion due to

active proliferation, reduced expression of adhesion molecules, and

related genetic mutations (27, 28), which also explains the

significant association between pathological grading and LVI.

In this study, the combinedmodel integrating Rad features with 2D

and 3D DL features can effectively predict the preoperative LVI status

in patients with T1-stage invasive LUAD, providing critical references

for clinical decision-making and demonstrating high application value.

Although differences in CT scanning parameters across centers may

lead to variations in image features, future efforts will enhance model

adaptability through cross-device data augmentation. The popularity of
Frontiers in Oncology 13
high-performance GPUs and the Onekey AI software has simplified

operations. Currently, addressing the timeliness of clinical diagnosis is

essential; it is necessary to integrate the model into existing clinical

imaging systems, develop a one-click analysis function, and provide

operational training for radiologists. This ensures that the total time

from CT image input to result output is controlled within 10 minutes,

meeting the requirements of clinical timeliness. With technological

advancements, this combined model holds broad prospects for

clinical application.
Limitations of this study

This study is a retrospective analysis. Due to its reliance on

previous clinical data, it is prone to selection bias and grouping bias

in patient screening and grouping, caused by enrollment deviations

and data differences, which affect the validity and extrapolability of

the conclusions. In subsequent research, biases can be reduced

through prospective design, strict inclusion and exclusion criteria,

and supplementation of multi-center data. The lack of follow-up

data makes it impossible to evaluate the correlation between LVI

prediction and patients’ actual outcomes, which limits the clinical

impact of the model. Further adoption of a prospective study design

combined with survival analysis will greatly enhance the

translational relevance of the research. In addition, manual

segmentation was used in this study. Although the segmentation
FIGURE 5

Gradient-weighted class activation mapping (Grad-CAM) of two DL models. (A) 2D-DL model, (B) 3D-DL model.
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procedures were carefully detailed and multiple radiologists were

involved to enhance robustness, inter-reader variability that may

still exist due to the reliance on manual segmentation could

influence the model’s generalizability. In future iterations of the

research, models will be trained on automatically segmented

regions. This study focused solely on the tumor region, neglecting

the peritumoral area; further research will address the peritumoral

region. In summary, we will refine the study protocol to enhance the

stability of the model and broaden its applicability.
Conclusion

This study combined Rad and DL models to predict the LVI

status in patients with T1-stage invasive LUAD. The combined

model demonstrated significant potential as a clinical tool due to its

robust predictive capability. It provides a more accurate prediction

of LVI status in T1-stage invasive LUAD, offering more substantial

evidence to guide surgical decision-making and the need for

postoperative chemotherapy. The model’s robust performance has

been validated through stable AUC results in the external

testing cohort.
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