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Introduction: Accurate prediction of the lymphovascular invasion (LVI) status in
patients with T1-stage invasive lung adenocarcinoma (LUAD) is crucial for
treatment decision-making. Currently, there is a lack of highly efficient and
precise prediction models.

Methods: In this retrospective study, 334 patients with T1-stage invasive LUAD
who underwent radical surgery from four academic medical centers were
included. Conventional radiomic features, two-dimensional deep learning (2D
DL) features, and three-dimensional deep learning (3D DL) features were
extracted from the tumor regions of the patients’ CT images. Corresponding
prediction models were constructed, and these features were integrated to
develop a combined model for identifying the LVI status. The performance of
the model was evaluated by calculating the area under the receiver operating
characteristic (ROC) curve (AUC), and the net benefit of the models was
compared using decision curve analysis (DCA).

Results: The combined model demonstrated excellent performance in
distinguishing the LVI status, with its predictive ability superior to that of
individual models. The AUC values for the training set, internal validation set,
and external test set reached 0.958 (95% CI: 0.9294 - 0.9863), 0.886 (95% CI:
0.7938 - 0.9786), and 0.884 (95% Cl: 0.8277 - 0.9401), respectively. DCA showed
that the net benefit provided by the combined model was higher than that of
other radiomic models.
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Conclusions: The combined model integrating radiomics, 2D DL, and 3D DL
exhibits excellent performance in predicting the LVI status of patients with T1-
stage invasive LUAD, and can provide key information for clinical treatment

decision-making.

invasive lung adenocarcinoma, deep learning, radiomics, lymphovascular invasion,

artificial intelligence

Introduction

Lung cancer is a leading cause of cancer-related deaths
worldwide (1). Non-small cell lung cancer (NSCLC) accounts for
85% to 90% of all lung cancers, with lung adenocarcinoma (LUAD)
being the most common histological subtype within NSCLC (2).
Lymphovascular invasion (LVI) encompasses both microvascular
invasion (MVI) and lymphatic vessel invasion, referring to the
invasion of microvessels and/or lymphatic vessel walls or the
presence of tumor cell clusters within their lumens, which can
only be observed microscopically (3). The presence of LVI in
malignant tumors indicates that cancer cells have migrated,
marking a critical step in tumor metastasis. LVI has been
established as a poor prognostic factor in various malignancies
and is an independent indication for postoperative chemotherapy
and radiotherapy. For lung cancer patients classified as early-stage
or pathological stage with positive LVI, lobectomy offers better
clinical outcomes. It reduces the risk of postoperative tumor
recurrence and metastasis compared to sublobar resection (4, 5).
Due to the difficulty in obtaining tumor stroma-containing
microvessels or lymphatic vessels through needle biopsy, LVI
information is generally not obtainable solely from such biopsies.
Therefore, preoperative assessment of LVI status in LUAD remains
challenging, and pathological diagnosis of postoperative specimens
is currently the only method to determine LVI status (6, 7). Due to
the delays associated with pathological diagnosis, accurate
preoperative evaluation of LVI in T1-stage LUAD is crucial for
clinical decision-making and individualized treatment for T1-stage
lung cancer patients, making it a focal point of current research
both domestically and internationally.

Some researchers suggest that specific preoperative computed
tomography(CT) findings, such as nodule composition,
consolidation to tumor ratio (C/T ratio), spiculated margins,
abnormal veins, peritumoral stromal thickening, and pleural
contact, are associated with the occurrence of LVI (8, 9). Choe
et al. (8) also noted that LVI occurs only in solid nodules or part-
solid nodules with solid components more significant than 10 mm,
with peritumoral stromal thickening and pleural contact identified
as independent predictors of LVI. However, the evaluation of
imaging features is heavily influenced by the experience of
radiologists and their understanding of different findings, leading
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to significant subjective reliance and poor reproducibility. These
factors limit the effectiveness of traditional imaging in
preoperatively predicting LVI in lung cancer.

Radiomics, as a robust imaging biomarker, can non-invasively
assess tumor heterogeneity that is not detectable by the human eye
and can reflect intratumoral angiogenesis (10). Several studies have
applied radiomic and related combined models to predict LVI
status in NSCLC, achieving promising results (11-13). With the
rapid development of deep learning (DL), DL features have
complemented traditional radiomic features in medical imaging
(14). DL imaging features extracted based on convolutional neural
networks (CNN) are used to construct feature signatures and have
been shown to enhance model performance in various clinical tasks
(15). DL has been widely applied in NSCLC research, including lung
nodule classification, lung cancer metastasis prediction, gene
mutation prediction, airspace dissemination prediction, and
treatment efficacy assessment (16-20).

Traditional radiomics analyzes tumor texture features by
considering the entire tumor as the region of interest (ROI). In
contrast, feature extraction in DL is a critical step within DL models.
When selecting the ROI, we face a trade-off. Tumors appear across
multiple slices in CT images, allowing for the extraction of features
from a slice representing the maximum cross-sectional diameter of
the tumor (two-dimensional,2D) or from a cube encompassing the
entire tumor volume (three-dimensional,3D). Compared to 3D
ROIs, 2D ROIs are more accessible to obtain, require less time
and labor, are less complex, and have faster computational speeds.
Intuitively, 3D DL features may provide more comprehensive
information about the entire tumor. Previous studies have
employed 2D and 3D ROIs, but their performance differences
have yielded inconsistent results. It remains unclear whether the
time-consuming and labor-intensive 3D DL analysis is inherently
more valuable than 2D DL analysis, and it is uncertain whether DL
features necessarily outperform texture features. In conclusion,
currently, there is no reported study to prove which imaging
method, traditional radiomics, 2D DL, or 3D DL, is more
accurate in predicting LVT in T1-stage LUAD.

This study assesses the correlation between chest CT imaging
features and LVI status in T1-stage invasive LUAD. We will
conduct a DL radiomics study based on chest CT images,
constructing traditional radiomic, 2D DL, 3D DL, and combined
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models. We will compare the diagnostic performance of these
different models to provide the best predictive model for LVI
status in T1-stage invasive LUAD.

Materials and methods
Study design

Our study introduced four radiomic models: a traditional
radiomic model, a 2D DL model, a 3D DL model, and a
combined model of the three. The radiomic analysis was
conducted through several steps: image segmentation, feature
extraction, feature selection, feature construction, and
validation (Figure 1).

Patient characteristics

This retrospective study included T1-stage invasive LUAD
patients who underwent radical surgery at four academic medical
centers. Preoperative CT images and clinical pathological data were
collected. Inclusion criteria were: (1) maximum tumor diameter on
CT less than 3 cm; (2) CT imaging data obtained within one month
before surgery; (3) diagnosis of invasive LUAD; (4) no distant
metastasis before surgery. Exclusion criteria included: (1) patients
who received neoadjuvant therapy; (2) patients with multiple
pulmonary nodules reported on preoperative CT; (3) patients
with a history of other malignant tumors; (4) patients with
incomplete clinical data; (5) patients with pathological types
classified as other types. A total of 334 patients were included in

Tumor segmentation Feature extraction
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this study (Figure 2). In this study, 334 patients with T1-stage
invasive LUAD from four academic medical centers were enrolled.
All these patients underwent radical surgery and had preoperative
CT images as well as clinicopathological data available. In Center 1,
there were 427 eligible patients, among whom only 97 patients had
LVI positivity, while as many as 330 patients had LVI negativity.
There was a significant imbalance in the sample sizes.

This imbalance might lead to insufficient learning of the
minority category during the model training process, which in
turn could affect the performance and generalization ability of the
model. For instance, the recognition accuracy of the minority
category in prediction was relatively low.

To address this issue, this study referred to the validated sample
allocation strategy (21). A total of 99 samples were randomly
selected from the negative group in Center 1 at a ratio of 3:7, so
as to make the ratio of LVI-positive to LVI-negative patients in the
training set approach 1:1. The reason for adopting the random
sampling method at a ratio of 3:7 for the negative group to select
cases was that it enabled us to exactly sample 99 cases, and this
number was close to that of the LVI-positive group. This effectively
balanced the proportion of the two types of samples in the training
set and avoided the learning bias caused by sample imbalance
during the model training process.

Meanwhile, a strict random selection method was employed to
exclude, to the greatest extent possible, the subjective biases that
might be introduced by human selection, ensuring that the selected
data could truly and objectively reflect the overall characteristics,
thus enhancing the representativeness and universality of the data.

Eventually, these patients were allocated reasonably: 137
patients (68 positive and 69 negative) were included in the
training set, 59 patients (29 positive and 30 negative) served as

Feature selection Model design
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FIGURE 1
Workflow of radiomics analysis.
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the internal validation set, and 138 patients (48 positive and 90
negative) from Centers 2, 3, and 4 constituted the external test set.
Through such a sample distribution, not only was a reasonable
sample size ensured for each dataset, but also the generalization
ability of the model was effectively improved with the aid of multi-
center external validation.

Histopathological evaluation

Each case’s pathological specimen was independently reviewed
by two experienced thoracic pathologists (with 5 and 10 years of
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Flow diagram of the enrolment of patients. LVI, lymphovascular invasion; LVI (+), positive for LVI; LVI (-), negative for LVI.

diagnostic experience, respectively), blinded to the clinical
information. In cases of disagreement regarding the findings,
consensus was reached through discussion. As observed
microscopically, LVI was defined as the invasion of microvessels
and/or lymphatic vessel walls or tumor cell clusters within
their lumens.

Pathological data were collected for each patient, including
clinical pathological staging (according to the 8th AJCC TNM
staging system), histopathological grading (using the 2015 IASLC/
ATS/ERS LUAD classification, which categorizes tumors into
lepidic predominant adenocarcinoma (LPA), acinar predominant
adenocarcinoma (APA), papillary predominant adenocarcinoma
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(PPA), micropapillary predominant adenocarcinoma (MPA), solid
predominant adenocarcinoma (SPA), and other rare patterns),
invasion of visceral pleura, STAS, lymph node metastasis, and
other relevant factors.

Clinicopathological variables

Clinical pathological data were collected for each patient,
including clinical information such as age, sex, Carcinoembryonic
Antigen (CEA), Cancer Antigen 125(CA125), tumor location,
surgical method, and the presence of emphysema. Pathological
data included pleural invasion, pathological classification, grading,
Ki-67, STAS, lymph node metastasis, and other relevant factors.

CT acquisition and interpretation

The chest scan was performed with a German Siemens
Definition AS 64-row 128-slice spiral CT. Scan from the thoracic
entrance to the diaphragm level. The subjects were placed in the
supine position and held their breath after deep inhalation.
Scanning parameters: tube voltage 120kV, tube current 120mA,
window width 1300-1500, window position: -600~-700, pitch 1.0,
frame rotation time 0.33S/360 degrees. Lung window
reconstruction was performed using the lung method with a
reconstruction thickness of 1.25mm and layer spacing of 1.25mm.
Mediastinal window reconstruction thickness and layer spacing
were S5mm.

Two experienced thoracic radiologists (with 5 and 10 years of
experience in lung nodule diagnosis, respectively) assessed
traditional imaging features. They independently reviewed the CT
images while blinded to the pathological and clinical information.
In cases of disagreement regarding the findings, consensus was
reached through discussion. The evaluated imaging features
included composition (solid, part-solid, or ground-glass),
maximum tumor diameter, lobulation, spiculation, vacuole sign,
air bronchogram sign, vascular clustering, pleural retraction, and
peritumoral ground-glass opacification.

Conventional radiomics ROl segmentation
and feature extraction

Since different CT scanners were used in this study, it is
necessary to preprocess the images before performing
segmentation and feature extraction to make the radiomics
features more robust and more suitable for further analysis. First,
in the image preprocessing step, all images were resampled to a
voxel size of 1 mm x 1 mm x 1 mm to standardize the voxel spacing.
Subsequently, Z-score normalization (zero-mean normalization)
was employed to standardize the data. Two experienced
radiologists independently performed image segmentation
without knowing the patients’” pathological conditions. Radiologist
A (with five years of experience) manually delineated the ROIs layer
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by layer using the open-source software ITK-SNAP (version 3.8.0,
http://www.itksnap.org). Radiologist B (with ten years of
experience) reviewed all ROIs manually segmented by Radiologist
A and manually removed tumor regions overlapping with soft
tissue, bone, and mediastinum in the chest wall. If there is a
disagreement between Doctor A and Doctor B during the
segmentation process, Doctor C, with rich professional
experience, will be introduced for intervention. When re-
segmenting the controversial area, Doctor C will comprehensively
consider various factors such as the morphology and location of the
tumor, as well as the imaging features at different levels, so as to
ensure the accuracy of the segmentation result.

Traditional radiomic features were extracted using
PyRadiomics, a Onekey Al software suite component. These
features were categorized into three types: geometric features,
intensity features, and texture features. Geometric features were
used to describe the 3D shape characteristics of the tumor; intensity
features described the first-order statistical distribution of voxel
intensities within the tumor; and texture features reflected the
patterns of intensity or second- and higher-order spatial
distributions. The extraction of texture features utilized various
methods, including gray level co-occurrence matrix (GLCM), gray
level run length matrix (GLRLM), gray level size zone matrix
(GLSZM), gray level dependence matrix (GLDM), and
neighborhood gray-tone difference matrix (NGTDM).

DL ROI segmentation and feature
extraction

Since different CT scanners were used in this study, before
performing tumor annotation and DL analysis, it is necessary to
standardize the relevant processes and process the images to reduce
the differences caused by different devices and improve the accuracy
and reliability of the research results. To achieve this goal, the
following key steps were taken:

(1) In the tumor annotation stage, the reconstructed CT images
were imported into the ITK-SNAP software (Version 3.8.0,
http://www.itksnap.org). Two radiologists with 5 years of

experience independently carried out the annotation under the

lung window setting (average value: -450 Hounsfield Unit

(HU); width: 1500 HU). For the inconsistent situations

among observers during the annotation process, a senior

radiologist coordinated and solved them to ensure the
consistency of the annotation. In terms of the selection of

ROI, different strategies were adopted according to different

types of neural networks. The 2D CNN selected the slice with

the largest tumor area, while the 3D CNN used the bounding
box containing the entire tumor volume for annotation.

(2) In terms of image preprocessing, to eliminate the
differences in voxel length in the images, all images were
interpolated to unify the voxel spacing to (1 mm x 1 mm x
1 mm) before being input into the network. At the same
time, the tumor images were standardized to HU values
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with the help of the DICOM header information, and a
threshold was set to prevent extreme values from affecting
the analysis results. In addition, the mean and variance of
the 3D tumor images calculated in the training set were
standardized through the Z-score method, thus promoting
the learning of the network and enhancing the adaptability
of the model to the images obtained from different CT
scanners. Furthermore, this study utilized the ResNet50
deep convolutional network architecture (3D version) for
feature extraction, effectively addressing the degradation
problem in deep networks through residual blocks.

Feature selection and model construction

Traditional radiomic feature sets, 2D DL feature sets, and 3D
DL feature sets were obtained through the feature extraction
methods above. All patients were randomly stratified by center
into various cohorts (Figure 2). Huzhou First People’s Hospital
patients were divided into training and internal validation sets at a
7:3 ratio. Additionally, all patients from Huzhou Mingzhou
Hospital, Huzhou Nanxun District Second Medical Group Linghu
Hospital, and Wuxi Xishan People’s Hospital were considered the
external test set. Before feature selection, the features in the training
set were normalized to scale different features to the same
magnitude. Subsequently, feature selection was performed in
three steps: first, all radiomic features underwent Mann-Whitney
U tests for feature selection, retaining only those with a p-value less
than 0.05. Subsequently, for highly redundant features, the
Spearman rank correlation coefficient was calculated to assess the
correlation between features; if the coefficient between any two
features exceeded 0.9, one feature was retained. Finally, the Least
Absolute Shrinkage and Selection Operator (LASSO) regression
model(a statistical method for selecting key features by shrinking
feature coefficients) was utilized to construct feature signatures on
the exploratory dataset. By adjusting the regularization weight A,
LASSO shrinks all regression coefficients towards zero, setting many
irrelevant feature coefficients to precisely zero. To identify the
optimal A, a minimum standard 10-fold cross-validation was
employed, with the final value of A resulting in the smallest cross-
validation error. Features with non-zero coefficients were retained
for regression model fitting and combined into a radiomic
signature. Subsequently, we calculated the patients’ radiomic
scores (rad scores, RS) by linearly combining the retained
features, weighted by their model coefficients. After feature
selection, traditional radiomic, 2D DL, 3D DL, and combined
feature sets were constructed.

Using Onekey AI software, Multi-Layer Perceptron (MLP)
models were constructed on the training set feature sets for
traditional radiomic, 2D DL, 3D DL, and combined models,
tested on internal and external validation sets. The architecture of
the MLP classifier includes an input layer, hidden layers, and an
output layer. In this study, the input layer receives multi-
dimensional input data from traditional radiomics features, 2D
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DL features, and 3D DL features. The hidden layers are composed
of multiple fully connected layers. Each fully connected layer is
followed by a Rectified Linear Unit (ReLU) activation function(a
computational method that enhances the model’s ability to learn
non-linear features), which is used to extract non-linear feature
representations. The output layer, through a fully connected layer
and a Sigmoid activation function, maps the final features to the
probability value of LVI being positive, with the value ranging from
0 to 1. The model uses the binary cross-entropy loss function to
evaluate the prediction error and updates the parameters through
the Adam optimizer to minimize the loss function. Through this
hierarchical structure and non-linear transformation, the MLP can
effectively learn complex feature relationships and is suitable for
binary classification tasks. The MLP model was consistently used
throughout this study to ensure comparability. MLPs are
advantageous for learning nonlinear relationships, suitable for
multitasking applications, structurally simple, easily adjustable,
and capable of automatic feature extraction. This model has
demonstrated outstanding performance in many practical
applications due to its efficiency and robustness.

Statistical methods

Statistical analyses were conducted using Onekey Al software
and R software version 4.0.2. Univariate and multivariate logistic
regression analyses were performed to compare clinical CT and
pathological features between LVI-positive and LVI-negative
patients, identifying independent predictors of LVI positivity.
Receiver operating characteristic (ROC) curves were plotted, and
the area under the curve (AUC), 95% confidence interval (CI),
accuracy (ACC), specificity (SPE), sensitivity (SEN), positive
predictive value (PPV), and negative predictive value (NPV) were
calculated. The performance of each model was evaluated, and
DeLong’s test was used to compare their differences. Calibration
curves were plotted to assess the model’s calibration. Decision curve
analysis (DCA) was employed to evaluate the clinical value of the
models. A p-value of <0.05 was considered statistically significant.

Ethical statement

This study was conducted by the Declaration of Helsinki and
received approval from the Ethics Committee of Huzhou First
People’s Hospital. Additionally, due to its retrospective nature,

the Institutional Review Board exempted the requirement for

prior informed consent from all participants.

Results
Baseline characteristics of the patients

This study included a total of 334 patients with clinical T1 stage
invasive lung adenocarcinoma, comprising 137 patients in the
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training set (68 LVI-positive and 69 LVI-negative), 59 patients in
the internal validation set (29 LVI-positive and 30 LVI-negative),
and 138 patients in the external testing set (48 LVI-positive and 90
LVI-negative). Patient clinical data, CT characteristics, and
pathological information were recorded. The clinical baseline
characteristics of all patients are presented in Table 1.

Clinicopathological and CT features by LVI
status

Univariate and multivariate analyses were performed on the
clinical characteristics of the training set, and the odds ratios (OR),
along with their corresponding p - values, were calculated for each
feature (Table 2). In the multivariate analysis: For pathological
grading, the OR was 0.403, with a 95% confidence interval (CI) of
0.237 - 0.685 and P = 0.005. For STAS, the OR was 2.751, with a 95%
CI of 1.223 - 6.190 and P = 0.040. Only pathological grading and STAS
were significant (P < 0.05), serving as independent predictors of LVL

10.3389/fonc.2025.1631013

Feature selection and radiomics signature
development

Radiomic(Rad),2D, and 3D DL features were extracted using
CT images. Following the Intraclass Correlation Coefficient (ICC)
test results, 1834 radiomic features and 2048 DL features were
retained, creating datasets for radiomic features, 2D DL features,
and 3D DL features. Each dataset underwent t-tests, Pearson
correlation analysis, and LASSO for final selection, resulting in
36, 31, and 6 optimal features, respectively (Figure 3). Subsequently,
traditional Rad models, 2D DL models, 3D DL models, and a
combined model were constructed.

We used an MLP classifier to predict the models for each
feature set. Training set: The combined model and the traditional
radiomics model showed the best performance (AUC: 0.958, 95%
CI: 0.9294-0.9863 and 0.968, 95%CIL: 0.9460-0.9909, respectively),
followed by the 2D DL model (0.968, 95%CI: 0.9432-0.9933), and
the 3D DL model performed the worst (0.772, 95%CI:
0.6939-0.8509).

TABLE 1 Baseline characteristics of patients in the training cohort and test cohort.

Training set (n = 137) Va
P

Variable
LVI(-) LVI (+)

External test set

lidation set (n = 59) (n = 138)

LVI(-) LVI (+) LVI(-) LVI (+)

Age 64.99 + 10.21 63.79 + 8.70 0.262 63.33 + 9.55 66.90 + 8.80 0.142 63.57 + 11.71 = 61.34 £ 11.25 0.134
Maximum tumor diameter(mm) 1.46 + 0.57 2.11 £0.76 <0.001 1.47 £ 0.65 1.97 £ 0.63 <0.001 1.34 £ 0.52 2.06 + 0.58 <0.001
Gender 0.201 0.104 0.274

Male 27(39.13) 35(51.47) 14(46.67) 20(68.97) 38(41.76) 25(53.19)

Female 42(60.87) 33(48.53) 16(53.33) 9(31.03) 53(58.24) 22(46.81)
Lymph node metastasis <0.001 0.976 <0.001

No 68(98.55) 53(77.94) 29(96.67) 27(93.10) 91(100.00) 32(68.09)

Yes 1(1.45) 15(22.06) 1(3.33) 2(6.90) 0 15(31.91)
Emphysema 0.055 0.945 0.012

No 54(78.26) 42(61.76) 24(80.00) 22(75.86) 89(97.80) 40(85.11)

Yes 15(21.74) 26(38.24) 6(20) 7(24.14) 2(2.20) 7(14.89)
Location 0.345 0.452 0.125

RUL 26(37.68) 19(27.94) 10(33.33) 6(20.69) 23(25.27) 10(21.28)

RML 9(13.04) 5(7.35) 5(16.67) 6(20.69) 5(5.49) 5(10.64)

RLL 7(10.14) 8(11.76) 5(16.67) 2(6.09) 24(26.37) 10(21.28)

LUL 14(20.29) 23(33.82) 7(23.33) 12(41.38) 32(35.16) 12(25.53)

LLL 13(18.84) 13(19.12) 3(10.00) 3(10.34) 7(7.69) 10(21.28)
Surgical approach <0.001 0.012 <0.001

Lobectomy 48(69.57) 18(26.47) 18(60.00) 7(24.14) 70(76.92) 12(25.53)

Segmentectomy 21(30.43) 50(73.53) 12(40.00) 22(75.86) 21(23.08) 35(74.47)
Differentiation grade <0.001 0.003 <0.001

(Continued)
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TABLE 1 Continued

External test set

Training set (n = 137) Validation set (n = 59) _
Variable P WS
LVI(-) LVI (+) LVI(-) LVI (+) LVI(-) LVI (+)
High-grade 17(24.64) 0 3(10.00) 0 15(16.48) 1(2.13)
Intermediate-grade 47(68.12) 46(67.65) 25(83.33) 17(58.62) 73(80.22) 29(61.70)
Low-grade 5(7.25) 22(32.35) 2(6.67) 12(41.38) 3(3.30) 17(36.17)
Histological type <0.001 0.116 <0.001
APA 45(65.22) 32(47.06) 19(63.33) 11(37.93) 75(82.42) 28(59.57)
PPA 0 11(16.18) 1(3.33) 4(13.79) 1(1.10) 9(19.15)
MPA 5(7.25) 4(5.88) 1(3.33) 5(17.24) 4(4.40) 3(6.38)
SPA 10(14.49) 21(30.88) 7(23.33) 9(31.03) 11(12.09) 4(8.51)
LPA 8(11.59) 0 1(3.33) 0 0 3(6.38)
STAS <0.001 <0.001 <0.001
Negative 59(85.51) 27(39.71) 30(100.00) 8(27.59) 89(97.80) 15(31.91)
Positive 10(14.49) 41(60.29) 0 21(72.41) 2(2.20) 32(68.09)
Kl67 <0.001 <0.001 <0.001
<20% 67(97.10) 48(70.59) 28(93.33) 14(48.28) 86(94.51) 19(40.43)
>20% 2(2.90) 20(29.41) 2(6.67) 15(51.72) 5(5.49) 28(59.57)
Pleural invasion <0.001 0.162 0.017
Negative 65(94.20) 48(70.59) 27(90.00) 21(72.41) 83(91.21) 35(74.47)
Positive 4(5.80) 20(29.41) 3(10.00) 8(27.59) 8(8.79) 12(25.53)
Lobulated sign <0.001 0.286 <0.001
Negative 33(47.82) 12(17.65) 11(36.67) 6(20.69) 43(47.25) 6(12.77)
Positive 36(52.17) 56(82.35) 19(63.33) 23(79.31) 48(52.75) 41(87.23)
Vacuolated sign 0.939 0.710 <0.001
Negative 39(56.52) 37(54.41) 19(63.33) 16(55.17) 45(49.45) 5(10.64)
Positive 30(43.48) 31(45.59) 11(36.67) 13(44.83) 46(50.55) 42(89.36)
Peripheral GGO 0.411 0.446 1
Negative 53(76.81) 47(69.12) 19(63.33) 22(75.86) 75(82.42) 38(80.85)
Positive 16(23.19) 21(30.88) 11(36.67) 7(24.14) 16(17.58) 9(19.15)
Vascular bundle 0.675 0.905 0.029
Negative 28(40.58) 31(45.59) 13(43.33) 14(48.28) 65(71.43) 24(51.06)
Positive 41(59.42) 37(54.41) 17(56.67) 15(51.72) 26(28.57) 23(48.94)
Spiculation 0.146 0.501 0.010
Negative 44(63.77) 34(50.00) 19(63.33) 10(34.48) 80(87.91) 32(68.09)
Positive 25(36.23) 34(50.00) 11(36.67) 19(65.52) 11(12.09) 15(31.91)
Bronchus sign 0.809 1 0.007
Negative 49(71.01) 46(67.65) 22(73.33) 21(72.41) 75(82.42) 28(59.57)
Positive 20(28.99) 22(32.35) 8(26.67) 8(27.59) 16(17.58) 19(40.43)
Pleural Indentation 0.009 0.701 0.003

(Continued)
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TABLE 1 Continued

Training set (n = 137)

Validation set (n = 59)

10.3389/fonc.2025.1631013

External test set

. (n = 138)
Variable
LVI(-) LVI (+) LVI(-) LVI (+) LVI(-) LVI (+)
Negative 54(78.26) 38(55.88) 17(56.67) 14(48.28) 60(65.93) 18(38.30)
Positive 15(21.74) 30(44.12) 13(43.33) 15(51.72) 31(34.07) 29(61.70)
Nodule type <0.001 <0.001 <0.001
Solid 8(11.59) 31(45.59) 2(6.67) 14(48.28) 11(12.09) 30(63.83)
Part solid 45(65.22) 37(54.41) 21(70.00) 14(48.28) 63(69.23) 17(36.17)
pGGN 16(23.19) 0 7(23.33) 1(3.45) 17(18.68) 0
CEA <0.001 0.203 <0.001
Negative 64(92.75) 44(64.71) 25(83.33) 19(65.52) 81(89.01) 29(61.70)
Positive 5(7.25) 24(35.29) 5(16.67) 10(34.48) 10(10.99) 18(38.30)
CAI125 1 0.986 1
Negative 65(94.20) 65(95.59) 30(100.00) 28(96.55) 87(95.60) 45(95.74)
Positive 4(5.80) 3(4.41) 0 1(3.45) 4(4.40) 2(4.26)

Data were presented as mean + SD, or n (%) unless otherwise stated. L, left lower lobe; LUL, left upper lobe; RLL, right lower lobe; RML, right middle lobe; RUL, right upper lobe; pGGN, pure
ground-glass nodule; APA, acinar predominant adenocarcinoma; PPA, Papillary predominant adenocarcinoma; MPA, Micropapillary predominant adenocarcinoma; SPA, solid predominant

adenocarcinoma; LPA, lepidic predominant adenocarcinoma; mucinous.

Internal validation set: The combined model took the lead in
performance (AUC = 0.886, 95%CI: 0.7938-0.9786), followed by the
traditional radiomics model (0.844, 95%CI: 0.7360-0.9513). The
performance of the 2D/3D DL models decreased significantly
(0.759, 95%CI: 0.6338-0.8835; 0.740, 95%CI: 0.6131-0.8674).

External test set: The combined model (0.884, 95%CI: 0.8277-
0.9401) and the traditional radiomics model (0.870, 95%CI: 0.8084-
0.9306) maintained stable performance, while the performance of the
2D DL model decreased significantly (0.613, 95%CI: 0.5186-0.7074),
suggesting its weak cross-center generalization ability (Table 3).

In the training set, the Hosmer-Lemeshow test p-values for all
models were greater than 0.05 (2D model: 0.098, 3D model: 0.751,
Rad model: 0.292, Combined_model: 0.314), indicating that these
models have a high degree of agreement between predicted
probabilities and actual outcomes. However, in the internal
validation set, the Hosmer-Lemeshow test p-values for the 2D,
3D, and Rad models were also greater than 0.05 (2D model: 0.589,
3D model: 0.870, Rad model: 0.707), suggesting good calibration
performance for these models. In contrast, the p-value for the
Combined_model was 0.024, which is less than 0.05. In the external
test set, all models showed significant prediction bias (P < 0.05),
which is consistent with the decreased performance. This confirms
the limited generalizability of the models in cross-center scenarios-
particularly the combined model, whose calibration bias was
already observed in the internal validation phase, may have
exacerbated performance fluctuations in the external test set.
Future studies will optimize the cross-center robustness of the
models through data augmentation and domain adaptation
algorithms to improve calibration performance and generalizability.

Through the analysis of DCA curves for the training set,
internal validation set, and external test set, we found that the
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Combined_model provided the highest net benefit across a wide
range of threshold probabilities (10% to 50%), indicating its high
utility in clinical decision-making. However, the performance of the
Combined_model gradually declined as the dataset changed,
particularly in the external test set, suggesting limited
generalizability. In contrast, the 2D, 3D, and Rad models
performed adequately in the training and internal validation sets
but showed poorer performance in the external test set, indicating
limited clinical applicability. The Treat all strategy performed well
at low thresholds but poorly at high thresholds, while the Treat
none strategy consistently yielded no net benefit. The combined
model has clinical value in same-center scenarios, but its cross-
center robustness needs to be prioritized for optimization. Future
efforts will focus on two aspects: on one hand, applying a balanced
sampling strategy consistent with that of the training set in the
preprocessing stage of the external test set to reduce the impact of
class imbalance on model generalization; on the other hand,
integrating data augmentation and domain adaptation techniques
to improve cross-center stability and enhance the reliability of
clinical applications.

The ROC curves, calibration curves, DCA, and DeLong test for
all signatures in the training and testing cohorts are shown
in Figure 4.

Figure 5 shows the visualization images of two deep
learning models.

Discussion

In this study, we extracted Rad features, 2D DL features, and 3D
DL features from the tumor regions based on CT images. We
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TABLE 2 Univariable and multivariable analysis of clinical features.

Univariate analysis

Multivariable analysis

Variable
OR (95%Cl) OR (95%)Cl
Gender 0.786 (0.536-1.151) 0.300
Age 1.000 (0.995-1.004) 0.848
Lymph node metastasis 15.001 (2.743-82.023) 0.009 5.797 (0.855-39.330) 0.131
Emphysema 1.733 (1.071-2.954) 0.090
Location 1.063 (0.947-1.192) 0.384
Surgical approach 2.381 (1.553-3.651) 0.001 2.119 (1.062-4.229) 0.074
Histological type 0.993 ( 0.862-1.143) 0.932
Differentiation grade 1.400 (1.101-1.781) 0.021 0.403 (0.237-0.685) 0.005
STAS 4.100 ( 2.296-7.323) 0.000 2.751 (1.223-6.190) 0.040
KI67 10.000 (2.954-33.852) 0.002 4.999 (1.230-20.308) 0.059
Pleural invasion 5.000 (2.032-12.305) 0.003 3.086 (0.991-9.612) 0.103
Maximum tumor diameter 1.184 ( 1.019-1.374) 0.063
Lobulated sign 1.462 (1.038-2.061) 0.068
Vacuolated sign 1.033 (0.678-1.575) 0.898
Peripheral GGO 1.312 ( 0.760-2.266) 0.413
Vascular bundle sign 0.902 ( 0.621-1.310) 0.651
Speculation 1.360 (0.882-2.098) 0.243
Bronchus sign 1.100 (0.662-1.828) 0.758
Pleural Indentation 2.000 (1.189-3.364) 0.028 1.156 (0.532-2.512) 0.759
Nodule type 0.850 (0.733-0.986) 0.071
CEA 4.800 (2.138-10.773) 0.001 2.660 (0.937-7.553) 0.123
CA125 0.750 (0.214-2.635) 0.706

LLL, left lower lobe; LUL, left upper lobe; RLL, right lower lobe; RML, right middle lobe; RUL, right upper lobe; pGGN, pure ground-glass nodule; APA, acinar predominant adenocarcinoma;
PPA, Papillary predominant adenocarcinoma; MPA, Micropapillary predominant adenocarcinoma; SPA, solid predominant adenocarcinoma; LPA, lepidic predominant adenocarcinoma.

utilized an MLP classifier to construct traditional radiomic models,
2D DL models, 3D DL models, and a combined model to predict the
status of LVL. The results indicated that the combined model
exhibited robust predictive performance. In the training,
validation, and external testing sets, the combined model
demonstrated the best predictive efficacy for preoperative LVI
status in invasive LUAD, with AUC values of 0.958 (95%
CI:0.9294 - 0.9863), 0.886 (95%CI: 0.7938 - 0.9786), and 0.884
(95%CI: 0.8277 - 0.9401), respectively. This study is the first to
extract multiple radiomic models for predicting LVI status.
Through a comparison of model performance, we identified the
optimal model, providing quantitative support for clinical decision-
making regarding surgical approaches and selecting patients
requiring chemotherapy postoperatively.

Currently, radiomics plays a significant role in the preoperative
assessment of lung cancer. Many researchers have applied 2D and
3D traditional radiomics to predict the status of LVI in lung cancer.
The 2D radiomics has achieved remarkable results. In the studies by
Yang, Nie et al. (11, 12), after modeling, the AUC of the training
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group reached 0.938, and that of the test group was 0.856.
Theoretically, 3D radiomics can present the tumor in three
dimensions and has significant advantages. However, in clinical
practice, it encounters problems such as complex model
construction, high computational power requirements, and
deviations in the actual effect. Its practical effectiveness still needs
to be explored. These studies provide multi-dimensional references
for the application of radiomics in tumor imaging.

This study is the first to utilize DL to predict LVI in T1-stage
invasive LUAD. Unlike previous studies, we compared traditional
radiomics’ performance with DL in predicting LVI in LUAD and
assessed the performance of 2D and 3D DL in this context.
Theoretically, DL can directly extract raw features from tumors,
potentially offering better efficacy than Rad, and 3D features may
provide greater reproducibility than 2D features. However, we
obtained a fundamentally unexpected result. After undergoing t-
tests, Pearson correlation analysis, and LASSO, traditional
radiomics, 2D DL, and 3D DL feature sets were ultimately filtered
to yield 36, 31, and 6 optimal features, respectively. Only 6 3D deep
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(A, D, G) represent the LASSO for radiomics, 2D DL, and 3D DL features. (B, E, H) represent the MSE for Rad, 2D DL, and 3D DL features. (C, F, 1)
represent the feature weights for Rad, 2D DL, and 3D DL features.

TABLE 3 Performance of each model of the MLP classifier in predicting LVI.

Model Dataset Accuracy AUC 95% CI Sensitivity = Specificity PPV NPV
Train 0.891 0.968 0.9460 - 0.9909 0809 0971 0.965 0.837
Rad Validation 0.780 0.844 07360 - 09513 0.828 0.733 0.750 0815
External test 0.810 0.870 0.8084-0.9306 0.809 0811 0.691 0.890
Train 0.920 0.968 09432 -09933 0926 0913 0913 0.926
2D Validation 0712 0.759 0.6338 - 0.8835 0759 0.667 0.687 0.741
External test 0577 0613 0.5186-0.7074 0.787 0.467 0.435 0.808
Train 0.708 0.772 0.6939 - 0.8509 | 0574 0.841 0.780 0.667
3D Validation 0.678 0.740 06131 - 08674  0.828 0.533 0.632 0.762
External test 0.701 0.691 05930 - 0.7895  0.660 0.722 0.554 0.802
Train 0.891 0.958 09294 - 09863 0971 0812 0.835 0.971
Combined | Validation 0.847 0.886 07938 - 09786 0793 0.900 0.885 0.818
External test 0.810 0.884 0.8277 - 09401  0.809 0.811 0.681 0.890
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signature; Combined, combined 2D, 3D and Rad signature.

learning features were retained after LASSO selection, which may be
attributed to the high information concentration of 3D features—
each 3D feature can integrate comprehensive information from
multiple low-dimensional features in traditional radiomics. It could
also be because 3D features learned based on three-dimensional
spatial correlations have significantly lower information overlap
between features compared to traditional radiomic features or 2D
deep learning features. In the internal validation set, the Rad model
outperformed the DL models, with the 2D model being more
effective than the 3D model.

In this study, the traditional radiomics model outperforms DL
models, with three main reasons: In terms of feature interpretability, the
44 texture features selected for radiomics(including GLCM, GLSZM,
and LBP) are extracted via well-defined algorithms and have clear
physical meanings (for example, GLCM can reflect the complexity of
internal tumor textures, while LBP is relatively sensitive to marginal
spiculation). These features provide an intuitive basis for model
decision-making. In contrast, the features automatically learned by
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DL models are highly abstract; even with visualization techniques, their
meanings are difficult to clarify, thus affecting clinical acceptance.
Regarding differences in regional analysis, the 2D DL model only
focuses on the maximum cross-section of the tumor, ignoring
information from other layers. Meanwhile, the tumor-containing
cube used in the 3D DL model often includes normal lung tissue,
which interferes with feature learning. In comparison, radiomics
extracts features from the entire tumor region, integrates multi-layer
information, and precisely targets the tumor itself, thereby reducing
interference from normal tissues. Regarding data adaptability, DL
models have strict data volume and consistency requirements.
Differences in CT equipment parameters among multi-center data in
this study led to a significant decline in their performance on the
external test set. On the contrary, radiomics mitigates the impact of
equipment differences through standardized preprocessing.
Additionally, its features are designed based on statistical rules,
which grant stronger tolerance to data variations and enable more
stable cross-center generalization. Furthermore, the 2D and 3D DL
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FIGURE 5

Gradient-weighted class activation mapping (Grad-CAM) of two DL models.

models exhibit comparable performance, which is consistent with the
findings of Ma et al. (22) in head and neck tumor segmentation.

The multivariate analysis revealed that STAS (spread through
air spaces) and pathological grading are independent key predictors
of LVI (STAS: OR = 2.751, 95%CI=1.223-6.190, P = 0.040;
pathological grading: OR = 0.403, 95%CI=0.237-0.685, P = 0.005).
This finding is consistent with previous studies demonstrating close
associations of STAS and pathological differentiation with tumor
invasiveness and vascular invasion potential (23-26), further
validating the rationality and utility of our model in integrating
clinicopathological information. Specifically, as a unique airspace
dissemination pattern in lung adenocarcinoma, STAS and LVI,
though distinct invasive pathways, often coexist in highly aggressive
tumors, indicating that tumor cells possess both trans-alveolar
dissemination and vascular invasion capabilities (23, 24). Poorly
differentiated tumors are more prone to vascular invasion due to
active proliferation, reduced expression of adhesion molecules, and
related genetic mutations (27, 28), which also explains the
significant association between pathological grading and LVI.

In this study, the combined model integrating Rad features with 2D
and 3D DL features can effectively predict the preoperative LVI status
in patients with T1-stage invasive LUAD, providing critical references
for clinical decision-making and demonstrating high application value.
Although differences in CT scanning parameters across centers may
lead to variations in image features, future efforts will enhance model
adaptability through cross-device data augmentation. The popularity of

Frontiers in Oncology

(A) 2D-DL model, (B) 3D-DL model.

high-performance GPUs and the Onekey Al software has simplified
operations. Currently, addressing the timeliness of clinical diagnosis is
essential; it is necessary to integrate the model into existing clinical
imaging systems, develop a one-click analysis function, and provide
operational training for radiologists. This ensures that the total time
from CT image input to result output is controlled within 10 minutes,
meeting the requirements of clinical timeliness. With technological
advancements, this combined model holds broad prospects for
clinical application.

Limitations of this study

This study is a retrospective analysis. Due to its reliance on
previous clinical data, it is prone to selection bias and grouping bias
in patient screening and grouping, caused by enrollment deviations
and data differences, which affect the validity and extrapolability of
the conclusions. In subsequent research, biases can be reduced
through prospective design, strict inclusion and exclusion criteria,
and supplementation of multi-center data. The lack of follow-up
data makes it impossible to evaluate the correlation between LVI
prediction and patients’ actual outcomes, which limits the clinical
impact of the model. Further adoption of a prospective study design
combined with survival analysis will greatly enhance the
translational relevance of the research. In addition, manual
segmentation was used in this study. Although the segmentation
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procedures were carefully detailed and multiple radiologists were
involved to enhance robustness, inter-reader variability that may
still exist due to the reliance on manual segmentation could
influence the model’s generalizability. In future iterations of the
research, models will be trained on automatically segmented
regions. This study focused solely on the tumor region, neglecting
the peritumoral area; further research will address the peritumoral
region. In summary, we will refine the study protocol to enhance the
stability of the model and broaden its applicability.

Conclusion

This study combined Rad and DL models to predict the LVI
status in patients with T1-stage invasive LUAD. The combined
model demonstrated significant potential as a clinical tool due to its
robust predictive capability. It provides a more accurate prediction
of LVI status in T1-stage invasive LUAD, offering more substantial
evidence to guide surgical decision-making and the need for
postoperative chemotherapy. The model’s robust performance has
been validated through stable AUC results in the external
testing cohort.
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