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Introduction: Extensive-stage small cell lung cancer (ES-SCLC) is an aggressive
malignancy with a poor prognosis. This study aimed to identify and validate
clinical and laboratory biomarkers for predicting treatment response and overall
survival (OS) in ES-SCLC patients.

Methods: We retrospectively analyzed 101 ES-SCLC patients receiving first-line
treatment. Logistic and Cox regression analyses identified independent factors
influencing treatment efficacy and OS. Subgroup analysis was performed to
compare white blood cell (WBC) changes between chemotherapy-alone and
chemo-immunotherapy groups. Predictive models were constructed and
evaluated via cross-validation, ROC, and calibration curves. Differential
expression of key proteins (neuron-specific enolase (NSE), fibrinogen (FIB), and
gastrin-releasing peptide precursor (ProGRP)) was validated using GEO
database data.

Results: Pre-chemotherapy tumor size and post-cycle 2 FIB levels were
independent predictors of treatment efficacy. Pre-chemotherapy WBC count,
pre-chemotherapy D-dimer, and post-cycle 2 ProGRP were independent risk
factors for OS. The predictive models demonstrated strong performance.
Subgroup analysis showed no significant difference in WBC changes between
treatment regimens (mean change: -2.30 + 2.47 vs. -2.08 + 2.45, p=0.659). GEO
data confirmed the differential expression of FIB and ProGRP.

Discussion: Our findings establish robust and validated models based on readily
available clinical metrics (tumor size, WBC, D-dimer, FIB, ProGRP) to predict
outcomes in ES-SCLC, which could aid in personalizing treatment strategies. The
stability of WBC trends across therapies strengthens the prognostic value of
baseline WBC.
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1 Introduction

Small cell lung cancer (SCLC) is a highly aggressive
neuroendocrine malignancy that accounts for approximately 15%
of all lung cancer cases. SCLC is classified into limited-stage (LS-
SCLC) and extensive-stage (ES-SCLC) according to the Veterans
Administration Lung Study Group (VALSG) staging system. While
LS-SCLC patients are typically treated with concurrent
chemoradiotherapy, ES-SCLC patients, who comprise
approximately 70% of all SCLC cases, receive systemic therapy
with chemotherapy or chemotherapy combined with
immunotherapy as the standard first-line treatment.
Characterized by its rapid growth and early metastasis, ES-SCLC
often presents at an advanced stage, making it more difficult to treat
compared to non-small cell lung cancer (NSCLC) (1). Despite
initial sensitivity to chemotherapy and radiotherapy, most
patients diagnosed with ES-SCLC ultimately face a grim
prognosis due to the disease’s tendency to progress rapidly. In the
early stages, ES-SCLC often responds well to standard treatment
regimens, which typically include a combination of cisplatin or
carboplatin-based chemotherapy and radiation therapy. However,
this initial responsiveness can be misleading. A significant
proportion of these patients will encounter disease recurrence,
which is characterized by the re-emergence of cancer that is not
only more aggressive but also increasingly resistant to the same
therapeutic approaches that initially seemed effective. This
phenomenon of treatment resistance is largely attributed to the
cancer cell to undergo genetic and phenotypic changes, enabling it
to circumvent the mechanisms of action of chemotherapy and
radiotherapy. The cumulative effect of these factors contributes to
the overall poor prognosis associated with small cell lung cancer,
illustrating a challenging landscape for both patients and healthcare
providers (2). The median overall survival for ES-SCLC patients is
only 10-12 months, with a 5-year survival rate of less than 7% (3).
These stark clinical realities underscore the critical need to bridge
the translational gap between biomarker discovery and therapeutic
decision-making in ES-SCLC management.

Previous studies have indicated that various serum markers
may play a significant role in predicting the prognosis of patients
with ES-SCLC. Among these markers, neuron-specific enolase
(NSE), fibrinogen (FIB), and gastrin-releasing peptide precursor
(GRPP) have garnered particular attention due to their potential to
provide valuable insights into disease progression and patient
outcomes (4, 5). NSE is a specialized glycolytic enzyme that is
predominantly expressed in neuroendocrine cells, which are a type
of cell that produces hormones and neurotransmitters in the body.
Due to its significant role and expression in these cells, NSE has
gained prominence as a biomarker in the context of various
neuroendocrine tumors, particularly SCLC (6). Elevated levels of
NSE in patients with SCLC have consistently been linked to poor
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prognosis and treatment resistance, underscoring its importance as
a biomarker in the clinical management of this aggressive form of
cancer. Research indicates that when NSE levels are elevated, it
often reflects a more advanced stage of the disease, characterized by
increased tumor burden and more extensive metastasis (7). FIB is a
critical protein in the coagulation cascade, serving as the precursor
to fibrin, which plays a vital role in blood clot formation. However,
beyond its essential function in hemostasis, emerging research has
demonstrated that fibrinogen is also implicated in various
pathological processes, including tumor growth, angiogenesis, and
metastasis across a range of malignancies, including lung cancer (8).
Gastrin-releasing peptide precursor, also known as pro-gastrin-
releasing peptide (ProGRP), is a neuropeptide that has been
found to be specifically elevated in SCLC patients and correlates
with disease extent and prognosis (9, 10).

However, the prognostic value of these biomarkers in predicting
treatment efficacy and survival in ES-SCLC patients remains
controversial, and their clinical utility is limited by the lack of
robust predictive models. Moreover, the differential expression
patterns of these biomarkers in ES-SCLC tissues compared to
normal lung tissues have not been thoroughly investigated. This
knowledge gap presents a pivotal opportunity to develop integrative
prognostic frameworks that combine molecular biomarkers with
clinicopathological parameters, which could fundamentally
advance risk stratification in ES-SCLC.

2 Methods
2.1 Study population

A total of 101 patients diagnosed with extensive-stage small cell
lung cancer were enrolled in this study based on predefined inclusion
and exclusion criteria. The inclusion criteria were as follows: (1)
patients with histologically or cytologically confirmed ES-SCLC; (2)
extensive-stage disease defined as disease beyond the ipsilateral
hemithorax, including malignant pleural or pericardial effusion or
hematogenous metastases according to VALSG criteria; (3) patients
aged 18 years or older; (4) patients with an Eastern Cooperative
Oncology Group (ECOG) performance status of 0-2; and (5)
patients receiving first-line systemic treatment (chemotherapy alone
or chemotherapy combined with immunotherapy).

The exclusion criteria were as follows: (1) patients with a history
of other malignancies; (2) patients with severe comorbidities; (3)
patients with incomplete clinical data; (4) patients with limited-
stage disease.

The study was approved by the Institutional Review Board. This
study obtained a waiver of informed consent from the hospital’s
ethics committee. The ethics approval document/letter is provided
as Supplementary Material.
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2.2 Clinical data collection

2.2.1 Efficacy assessment

Treatment efficacy was assessed after two cycles of first-line
chemotherapy according to the Response Evaluation Criteria in
Solid Tumors (RECIST) version 1.1. Patients were classified into
two groups based on their treatment efficacy: effective (complete
response or partial response) and ineffective (stable disease or
progressive disease). The overall effective treatment rate was
calculated as the proportion of patients with effective outcomes
among the total study population.

2.2.2 Clinical characteristics collection

Baseline characteristics, including age, gender, tumor size,
metastasis status, and treatment regimens, were collected from
the medical records of ES-SCLC patients. Tumor size was
measured using computed tomography (CT) or magnetic
resonance imaging (MRI) before the initiation of chemotherapy.
Metastatic organ involvement was evaluated using imaging
techniques such as CT, MRI, or positron emission tomography
(PET) scans. Treatment regimens were recorded as either
chemotherapy alone or a combination of chemotherapy
and immunotherapy.

2.2.3 Sample size

The sample size was calculated based on the receiver operating
characteristic (ROC) curve analysis, with the area under curve
(AUC) as the primary outcome measure. Assuming an expected
AUC of 0.80 for the predictive model (clinically meaningful
discrimination), a null hypothesis AUC of 0.50 (no
discrimination), 80% statistical power (§ = 0.2) and a two-sided
significance level of oo = 0.05, the minimum required sample size
was calculated using the following formula

n = (Zo+ ZP)A 2 * AUC(1 — AUC)/(AUC - 0.5)A 2

The final sample size of 100 patients was enrolled. This sample
size provided 75% power to detect an AUC >0.75.

2.2.4 Laboratory examination collection

Prior to the initiation of first-line chemotherapy and following
the completion of two treatment cycles, a panel of laboratory
indicators was assessed to evaluate potential changes associated
with treatment. This panel included neuron-specific enolase (NSE),
fibrinogen (FIB), gastrin-releasing peptide precursor (Pro-GRP),
white blood cell (WBC) count, and D-dimer levels.

Venous blood samples were collected from patients at the
specified time points. Complete blood counts, including WBC,
were obtained using a BC6900 hematology analyzer (Shenzhen
Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China) with
reagents from the same manufacturer. Fibrinogen and D-dimer
levels were quantified using a STA-R-MAX coagulation analyzer
(Diagnostica Stago, Asniéres-sur-Seine, France) with reagents from
Diagnostica Stago. NSE levels were determined using an
electrochemiluminescence immunoassay on a Roche cobas 8000
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e801 analyzer (Roche Diagnostics GmbH, Mannheim, Germany)
with Elesys NSE reagents (Roche Diagnostics GmbH). Pro-GRP
levels were determined using commercially available ELISA Kkits
(Fujirebio, Cat. No. E-4340) and measured with an ELISA
instrument (BioTek ELx800). All assays were performed
according to the manufacturers’ instructions.

2.3 Gene expression omnibus database
acquisition and analysis

To validate the differential expression levels of NSE, FIB, and
gastrin-releasing peptide precursor in SCLC patients, the research
team utilized the GEO database. The SCLC patient dataset
(GSE149507) was obtained from the GEO database, which
included gene expression data from both normal lung tissues and
SCLC tissues. The raw data were processed and normalized using
the robust multi-array average (RMA) method. The expression
levels of NSE, FIB, and gastrin-releasing peptide precursor were
compared between normal tissues and SCLC tissues using the
Student’s t-test or Mann-Whitney U test, depending on the data
distribution. A P-value of less than 0.05 was considered
statistically significant.

2.4 Statistical analysis

All statistical analyses were performed using R software (version
4.0.3) and appropriate packages. A P-value of less than 0.05 was
considered statistically significant, except where otherwise specified.
Continuous variables were expressed as mean * standard deviation
or median (interquartile range), while categorical variables were
presented as frequencies and percentages. The chi-square test or
Fisher’s exact test was used to compare categorical variables
between groups, while the Student’s t-test or Mann-Whitney U
test was employed for continuous variables. To address potential
confounding effects of treatment regimen on laboratory parameters,
subgroup analyses were performed comparing WBC changes
between patients receiving chemotherapy alone versus
chemotherapy plus immunotherapy. The comparison was
conducted using independent t-tests for absolute WBC changes
and Wilcoxon signed-rank tests for paired comparisons within
treatment arms.

Univariate and multivariate logistic regression analyses were
performed to identify independent factors influencing treatment
efficacy. Variables with a P-value of less than 0.1 in the univariate
analysis were included in the multivariate analysis. A predictive
model for treatment efficacy was established based on the results of
the multivariate logistic regression analysis. The model’s
performance was evaluated using internal cross-validation, and
the area under the receiver operating characteristic (ROC) curve
was calculated. A clinical calibration curve was plotted to assess the
agreement between the predicted and actual values, and a clinical
decision curve analysis was conducted to evaluate the model’s net
clinical benefit.
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Univariate and multivariate Cox regression analyses were
performed to identify independent risk factors influencing overall
survival (OS). Variables with a P-value of less than 0.1 in the
univariate analysis were included in the multivariate analysis. A
predictive model for OS was established based on the results of the
multivariate Cox regression analysis. The model’s performance was
assessed using time-dependent ROC curves and a calibration curve
for 1-year survival.

3 Results

3.1 Logistic regression analysis and
predictive model establishment for
treatment efficacy in SCLC patients

3.1.1 Comparative analysis of baseline
characteristics in SCLC patients

A total of 101 patients diagnosed with ES-SCLC were enrolled in
this study based on the inclusion and exclusion criteria. All patients

TABLE 1 Univariate analysis results of treatment efficacy in SCLC patients.

10.3389/fonc.2025.1631490

had extensive-stage disease at diagnosis and received appropriate
first-line systemic therapy. Among them, 59 patients received
chemotherapy as the first-line treatment, while 42 patients received
a combination of chemotherapy and immunotherapy. The detailed
treatment regimens were provided in Supplementary Table 1. Efficacy
assessment revealed that 52 patients had ineffective treatment
outcomes, and 49 patients had effective outcomes. The overall
effective treatment rate was 48.5% (49/101)(Table 1).

To evaluate whether treatment regimen influenced WBC
dynamics, we performed a comprehensive subgroup analysis. The
results showed that the mean WBC change was -2.30 + 2.47 x 10o/L
in the chemotherapy alone group and -2.08 + 2.45 x 10¢/L in the
chemotherapy plus immunotherapy group (p=0.659, independent t-
test), indicating no significant difference in WBC changes between
treatment regimens (Supplementary Figure 1, Supplementary Table 2).

Baseline characteristics such as age, gender, tumor size,
metastasis status, and treatment regimens were collected from
SCLC patients. Additionally, changes in various indicators before
chemotherapy were recorded. Patients were grouped according to
their treatment efficacy after two cycles, and the indicators were

ch . Inec:;f:gat‘i)ve Effective Group p.overall Adjusted_P
aracteristic

N=49 N=52
Gender: 0.319 0.959
Female 15 (14.9%) 5 (10.2%) 10 (19.2%)
Male 86 (85.1%) 44 (89.8%) 42 (80.8%)
Age 62.6 £ 9.77 61.8 + 10.1 63.4 + 9.46 0.400 1.000
First-lineRegimen: 1.000 1.000
Chemotherapy 59 (58.4%) 29 (59.2%) 30 (57.7%)
Chemotherapy+Immunotherapy 42 (41.6%) 20 (40.8%) 22 (42.3%)
Pre-chemotherapyWBC 6.63 [2.46;14.9] 6.81 [2.46;12.3] 6.49 [3.41514.9] 0.540 1.000
Pre-chemotherapyPLT 231 [73.0;519] 227 [73.0;404] 235 [101;519] 0.967 1.000
Pre-chemotherapyLym 1.24 [0.03;3.93] 1.41 [0.03;3.93] 1.19 [0.42;2.81] 0.518 1.000
Pre-chemotherapyFIB 4.34 [1.03;10.9] 4.52 [1.03;10.9] 4.14 [2.48;8.22] 0.195 1.000
Pre-chemotherapyD-dimer 192 [14.0;6190] 192 [14.0;6190] 196 [31.0;3178] 0.253 1.000
Pre-chemotherapyNSE 45.3 [7.99;525] 33.5 [10.1;370] 53.2 [7.99;525] 0.016 1.000
Pre-chemotherapyProGRP 858 [33.5;:25000] 1240 [33.5;15872] 825 [44.0,25000] 0.638 1.000
Pre-chemotherapyTumorSize 12.1 [1.50;37.0] 10.0 [1.50;37.0] 14.6 [4.50;34.9] 0.001 0.007
Pre-
chemotherapyMetastaticOrgans: 0907 1.000
1 17 (16.8%) 9 (18.4%) 8 (15.4%)
2 65 (64.4%) 31 (63.3%) 34 (65.4%)
3 12 (11.9%) 5 (10.2%) 7 (13.5%)
4 7 (6.93%) 4 (8.16%) 3 (5.77%)

WBC, whitebloodcell; PLT, platelet; Lym, lymphocyte; FIB, fibrinogen; NSE, neuron-specificenolase; ProGRP, pro-gastrin-releasingpeptide.
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TABLE 2 Changes in laboratory tests.

10.3389/fonc.2025.1631490

Characteristic [ALL] Ineffective Group Effective Group p.overall Adjusted_P
N=101 N=49 N=52

Pre- 6.63 [2.46;14.9] 6.81 [2.46;12.3] 6.49 [3.41;14.9] 0.540 1.000
chemotherapyWBC

Pre-chemotherapyPLT 231 [73.0;519] 227 [73.0;404] 235 [101;519] 0.967 1.000
Pre-chemotherapyLym 1.24 [0.03;3.93] 1.41 [0.03;3.93] 1.19 [0.42;2.81] 0.518 1.000
Pre-chemotherapyFIB 4.34 [1.03;109] 4.52 [1.03;10.9] 4.14 [2.48;8.22] 0.195 1.000
Pre-

chemotherapyD-dimer 192 [14.0;6190] 192 [14.0;6190] 196 [31.0;3178] 0.253 1.000
Pre-chemotherapyNSE 453 [7.99;525] 33.5 [10.1;370] 53.2 [7.99;525) 0.016 1.000
f;;otherapypm GRP 858 [33.5;25000] 1240 [33.5;15872] 825 [44.0;25000] 0.638 1.000
Post-2-cycleWBC 4.75 [2.19;10.7] 4.76 [2.19;9.07] 4.63 [2.48;10.7] 0.883 1.000
Post-2-cyclePLT 212 [86.0;579] 215 [86.0;503] 207 [91.0;579] 0.629 1.000
Post-2-cycleLym 1.26 [0.14;3.83] 1.30 [0.14;3.83] 1.25 [0.38;2.80] 0.997 1.000
Post-2-cycleFIB 3.32 [1.095.82] 3.70 [1.09;5.82] 3.10 [2.02;4.06] <0.001 0.001
Post-2-cycleD-dimer 183 [21.0;3549] 178 [21.0;2250] 194 [37.0;3549] 0.447 1.000
Post-2-cycleNSE 20.0 [1.00;81.9] 22.6 [1.00;72.6] 19.4 [5.49;81.9] 0.401 1.000
Post-2-cycleProGRP 113 [23.3;14155] 403 [31.2;12950] 75.8 [23.3;14155) 0.026 1.000
WBCchange 231 +246 236 +2.23 227 +2.67 0.858 1.000
PLTchange 323 +95.1 24.1 +97.8 40.1 + 92.9 0.401 1.000
Lymchange 0.04 + 0.42 0.07 + 0.46 0.01 +0.39 0.485 1.000
FIBchange 0.78 [-1.00:6.73] 0.66 [-1.006.73] 0.80 [-0.16:4.52] 0.065 1.000
D-dimerchange 9.00 [-2084.00;6049] 20.0 [-2084.00;6049] 7.50 [-936.00;3134] 0.833 1.000
NSEchange 227 [-32.31;497] 13.2 [-32.31;338] 34.8 [-16.44;497] 0.007 1.000
ProGRPchange 584 [-5398.00;24946] 196 [-5398.00;10737) 678 [-3000.00;24946] 0.123 1.000

WBC, white blood cell; PLT, platelet; Lym, lymphocyte; FIB, fibrinogen; NSE, neuron-specificenolase; ProGRP, pro-gastrin-releasing peptide.

TABLE 3 Multivariate analysis results of treatment efficacy in
SCLC patients.

. Pr
Variables S.E.  WaldZ
>1z])
Intercept 3.1705 1.3442 2.36 0.018 23.81
Pre-
. 0.1329 = 0.0451 2.95 0.003 0.80
chemotherapyTumorSize

Pre-chemotherapyNSE 0.0047 = 0.0223 0.21 0.063 1.04
Post-2-cycleFIB -1.5093  0.4669 -3.23 0.019 0.42
Post-2-cycleProGRP -0.0001  0.0001 -1.02 0.072 1.00
NSEchange -0.0012  0.0231 -0.05 0.198 1.03

NSE, neuron-specificenolase; FIB, fibrinogen; ProGRP, pro-gastrin-releasing peptide; Coef,
coefficient; S.E., standard error; OR, odds ratio.

compared between groups. The results showed statistically

significant differences in pre-chemotherapy NSE levels and tumor
size (P<0.05) (Table 1).

Frontiers in Oncology

3.2 Trends in blood cell counts during
treatment in SCLC patients

Laboratory examination indicators before chemotherapy and
after two cycles were compared between the two groups. The
changes in these indicators from pre-treatment to post-treatment
were also calculated. The results demonstrated that pre-
chemotherapy NSE, post-cycle 2 FIB, post-cycle 2 gastrin-
releasing peptide precursor, and NSE change values exhibited
statistically significant differences between the two groups
(P<0.05) (Table 2).

3.3 Multivariate logistic regression analysis
of treatment efficacy in SCLC patients

Tumor size before chemotherapy, pre-chemotherapy NSE,

post-cycle 2 FIB, post-cycle 2 gastrin-releasing peptide precursor,
and NSE change values were included in the multivariate logistic
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regression analysis. The results, as shown below, indicated that
post-cycle 2 FIB and pre-chemotherapy tumor size were
independent factors influencing the treatment efficacy in SCLC
patients (P<0.05) (Table 3, Figure 1).

3.4 Establishment and validation of a
predictive model for treatment efficacy
after two cycles of chemotherapy in SCLC
patients

Based on the results of the multivariate logistic regression analysis,
a predictive model was established using pre-chemotherapy tumor size
and post-cycle 2 FIB as risk factors. Nomogram was plotted to illustrate
the model (Figure 2A). Internal cross-validation was performed, and
the area under the ROC curve was calculated to be 0.816 (Figure 2B).
The clinical calibration (Figure 2C) curve demonstrated good
agreement between the predicted and actual values. The clinical
influence curve analysis (Figure 2D) showed that the model had a
favorable net clinical benefit.

3.5 Cox regression analysis and predictive
model establishment for treatment efficacy
in SCLC patients

3.5.1 Univariate Cox regression analysis

A total of 101 SCLC patients were included in this study. Long-
term follow-up results showed that 87 subjects died, while 14 were still
alive at the last follow-up. The median overall survival (OS) of SCLC

10.3389/fonc.2025.1631490

patients was calculated to be 13 months (95% CI: 10.5-15.4 months)
(Figure 3A).Subgroup analysis based on the first-line treatment
regimen showed no significant difference in OS between
chemotherapy and chemotherapy combined with immunotherapy
(Figure 3B). Univariate Cox regression analysis was performed based
on OS status, time variables, and various data for each patient. The
results demonstrated significant differences in pre-chemotherapy
tumor size, pre-chemotherapy WBC, pre-chemotherapy NSE, pre-
chemotherapy gastrin-releasing peptide precursor, pre-treatment FIB,
post-cycle 2 D-dimer, post-cycle 2 gastrin-releasing peptide precursor,
NSE change value, and WBC change value (P<0.05) (Table 4).

3.5.2 Multivariate Cox regression analysis
Multivariate Cox regression analysis was conducted based on pre-
chemotherapy tumor size, pre-chemotherapy WBC, pre-chemotherapy
NSE, pre-chemotherapy gastrin-releasing peptide precursor, pre-
treatment FIB, post-cycle 2 D-dimer, post-cycle 2 gastrin-releasing
peptide precursor, NSE change value, and WBC change value. The
results indicated that pre-chemotherapy WBC, pre-chemotherapy D-
dimer, and post-cycle 2 gastrin-releasing peptide precursor were
independent risk factors influencing OS (P<0.05) (Table 5).

3.5.2.1 Establishment of a predictive model based on
multivariate Cox regression analysis

A predictive model was established based on pre-chemotherapy
WBC, pre-chemotherapy D-dimer, and post-cycle 2 gastrin-
releasing peptide precursor, as shown in the figure below
(Figure 4A). Internal validation was performed by plotting time-
dependent ROC curves, which demonstrated that the model had
good predictive value for 1-year, 2.5-year, and 3-year survival rates

Variable N Odds ratio p
Tumor_Size 101 HiH E 0.80 (0.68, 0.92) 0.003
Pre_Chemo_NSE 101 :- 1.04 (1.00, 1.09) 0.063
Post_2_Cycle_FIB 101 | ——@— : | 0.42(0.19,0.82) 0.019
Post_2_Cycle_GRP 101 * 1.00 (1.00, 1.00) 0.072
NSE_changes 101 W | 1.03(0.99,1.07) 0.198
02 oa o5 08 1
FIGURE 1
Forest plot of the multivariate regression analysis.
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FIGURE 2
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TABLE 4 COX analysis results of treatment efficacy in SCLC patients.

10.3389/fonc.2025.1631490

Variables Coef S.E. Wald Z Pr(>|Z|) HR
Gender=Male 0.1488 0.3286 0.45 0.650 1.16
First-
line=Chemo-+Immuno -0.1722 0.2363 -0.73 0.466 0.84
Pre-chemo Tumor Size 0.0644 0.0175 3.69 <0.001 1.06
Pre-chemo WBC 0.1399 0.0476 2.94 0.003 1.15
Pre-chemo PLT 0.0021 0.0013 1.59 0.112 1.00
Pre-chemo Lym -0.0585 0.2073 -0.28 0.777 0.94
Pre-chemo NSE 0.0063 0.0014 4.4 <0.0001 1.00
Pre-chemo ProGRP 0.0001 0 24 0.016 1.00
Pre-chemo FIB 0.2468 0.0861 2.87 0.004 1.27
Pre-chemo D-dimer 0.0002 0.0001 2.4 0.016 1.00
Post-2-cycle Lym 0.1776 0.2153 0.83 0.409 1.19
Post-2-cycle FIB 0.2527 0.1382 1.83 0.067 1.28
Post-2-cycle D-dimer 0.0006 0.0002 24 0.016 1.00
Post-2-cycle NSE 0.0118 0.0077 1.53 0.125 1.01
Post-2-cycle ProGRP 0.0001 0 3.47 <0.001 1.00
FIB change 0.1893 0.098 1.93 0.053 1.20
D-dimer change 0.0002 0.0001 1.55 0.120 1.00
NSE change 0.0064 0.0015 4.33 <0.0001 1.00
ProGRP change 0 0 0.97 0.334 1.00
WBC change 0.101 0.0457 2.23 0.025 1.10
PLT change 0.0015 0.0014 1 0.315 1.00
Lym change -0.3615 0.2732 -1.32 0.185 0.69

WBC, white blood cell; PLT, platelet; Lym, lymphocyte; FIB, fibrinogen; NSE, neuron-specific enolase; ProGRP, pro-gastrin-releasing peptide; Coef, coefficient; S.E., standard error; HR,

hazard ratio.

TABLE 5 Multivariate COX analysis results of treatment efficacy in SCLC patients.

Variables Coef S.E. Wald Z Pr(>|Z|) HR
Pre-chemo Tumor Size 0.0321 0.0205 1.56 0.118 1.032
Pre-chemo WBC 0.1415 0.0769 1.84 0.035 1.15
Pre-chemo NSE 0.0009 0.0088 0.11 0914 1.00
Pre-chemo ProGRP 0 0 -0.34 0.730 0.99
Pre-chemo FIB 0.0616 0.1051 0.59 0.557 1.06
Pre-chemo D-dimer 0.0003 0.0001 1.84 0.046 1.00
Post-2-cycle D-dimer 0.0003 0.0003 1.14 0.253 1.00
Post-2-cycle ProGRP 0.0001 0.0001 2.06 0.039 1.00
NSE change 0.0036 0.0095 0.37 0.708 1.00
WBC change -0.0214 0.0697 -0.31 0.759 0.97

WBC, white blood cell; FIB, fibrinogen; NSE, neuron-specific enolase; ProGRP, pro-gastrin-releasing peptide; Coef, coefficient; S.E., standard error; HR, hazard ratio.
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FIGURE 4

Establishment and validation of a predictive model based on logistic regression (A) nomogram based on COX regression, (B) Time-ROC curve,

(C) Calibration curve.

(Figure 4B). A calibration curve for 1-year survival was also plotted,
showing good agreement between the predicted and actual
values (Figure 4C).

3.6 Differential expression analysis of NSE,
FIB, and gastrin-releasing peptide
precursor in SCLC patients

Previous clinical studies have preliminarily identified neuron-
specific enolase (NSE), fibrinogen (FIB), and gastrin-releasing
peptide precursor as key protein molecules that influence the
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treatment efficacy and prognosis of small cell lung cancer (SCLC)
patients. Based on these findings, the research team conducted an
external validation of the differential expression levels of NSE, FIB,
and gastrin-releasing peptide precursor using the Gene Expression
Omnibus (GEO) database. The SCLC patient dataset (GSE149507)
was obtained from the GEO database, and the expression levels of
NSE, FIB, and gastrin-releasing peptide precursor were compared
between normal tissues and SCLC tissues. The results showed that
both FIB and gastrin-releasing peptide precursor exhibited
significant differential expression in SCLC tissues compared to
normal tissues(Figure 5). GO and KEGGenrichment analyses
were performed based on the DEGs (Figure 6).
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expression comparisons between the SCLC and control groups.

To further investigate the mechanisms by which NSE, FIB, and
ProGRP mediate SCLC, differentially expressed genes (DEGs) in SCLC
were identified. LASSO regression analysis (Figures 7A, B) and random
forest analysis (Figure 7C) were performed. The intersection of these
analyses yielded two core target genes. Correlation analysis revealed
that these two core target genes (ZWINT and PLA2GI1B) were
significantly correlated with FIB and ProGRP (Figure 7D).

4 Discussion

Extensive-stage Small cell lung cancer (ES-SCLC) is a highly
aggressive malignancy characterized by rapid progression, early
metastasis, and poor prognosis (1). Despite initial sensitivity to
chemotherapy, most ES-SCLC patients experience relapse and
develop drug resistance, leading to treatment failure and limited
survival. Therefore, identifying reliable predictive biomarkers and
establishing prognostic models are crucial for optimizing treatment
strategies and improving patient outcomes in ES-SCLC.

In this study, we conducted a comprehensive analysis of clinical
data and laboratory indicators to investigate their potential as
predictive and prognostic factors in patients diagnosed with ES-
SCLC. All patients enrolled in our study had extensive-stage disease
and received standard first-line treatment according to current
guidelines. Our research aimed to understand how various clinical
and laboratory parameters could influence treatment outcomes and
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overall survival in this challenging cohort of patients. Through our
analysis, we identified several key findings that illuminated the
relationship between specific biomarkers and patient prognosis.
Notably, we found that the size of the tumor prior to the initiation
of chemotherapy was a significant predictive factor for treatment
efficacy. This suggests that larger tumors may be associated with
poorer responses to chemotherapy, thereby impacting the overall
effectiveness of treatment strategies employed for ES-SCLC.
Furthermore, our investigation into laboratory indicators revealed
that levels of FIB measured post-cycle 2 of chemotherapy functioned
as an independent factor affecting treatment efficacy. Elevated
fibrinogen levels may indicate a hypercoagulable state or systemic
inflammation, both of which could potentially influence the
effectiveness of chemotherapeutic agents. In addition, we also
examined parameters linked to OS in SCLC patients. Our results
indicated that the pre-chemotherapy WBC count was an independent
risk factor for overall survival. Higher WBC counts may reflect an
underlying inflammatory response or tumor burden, which could
negatively impact patient outcomes. Moreover, our analysis
highlighted pre-chemotherapy D-dimer levels and post-cycle 2 levels
of gastrin-releasing peptide precursor as additional independent risk
factors for OS and found that pre-chemotherapy D-dimer, and post-
cycle 2 gastrin-releasing peptide precursor were independent risk
factors for OS. Emerging evidence from lung adenocarcinoma
studies (11) demonstrates that thrombin, the catalytic product of
fibrinogen, can cleave epidermal growth factor receptor (EGFR) to
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activate AKT/mTOR signaling pathways, providing a direct molecular
mechanism linking coagulation activation to chemotherapy resistance.
This mechanism may explain our observation of FIB’s predictive value,
suggesting thrombin-mediated pathways as potential therapeutic
targets in ES-SCLC.

Tumor size has been previously reported as a prognostic factor
in ES-SCLC. A study by demonstrated that tumor size >5 cm was
associated with worse OS in SCLC patients (12). Similarly, our
results indicated that larger pre-chemotherapy tumor size was an
independent predictor of poor treatment efficacy. This finding
suggests that tumor burden plays a critical role in determining
treatment response and highlights the importance of early diagnosis
and timely intervention in ES-SCLC.

Fibrinogen, an acute-phase protein, has been implicated in cancer
progression and metastasis (13). Elevated FIB levels have been

Frontiers in Oncology

associated with poor prognosis in various malignancies, including
lung cancer (14). In our study, higher post-cycle 2 FIB levels were
identified as an independent factor for ineffective treatment outcomes.
This observation is consistent with previous reports and underscores
the potential of FIB as a predictive biomarker in ES-SCLC. The
groundbreaking discovery that thrombin (activated from fibrinogen)
mediates chemotherapy resistance through EGFR cleavage (11)
provides mechanistic support for our findings. This coagulation-
tumor interaction paradigm suggests that real-time monitoring of
coagulation parameters could guide anti-resistance therapies. The
underlying mechanisms linking FIB to treatment resistance may
involve its role in promoting tumor cell survival, angiogenesis, and
epithelial-mesenchymal transition (15, 16).

White blood cell count, a marker of systemic inflammation, has
been associated with poor prognosis in several cancer types (17). In
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and GRP.

SCLC, elevated WBC count has been reported as an adverse
prognostic factor (18). Our findings corroborate these
observations, as higher pre-chemotherapy WBC count was
identified as an independent risk factor for reduced OS. The
prognostic value of WBC count may be attributed to its reflection
of the tumor-promoting inflammatory microenvironment and its
association with increased tumor burden (19).

D-dimer, a fibrin degradation product, has been recognized as a
prognostic marker in various malignancies, including lung cancer (20).
Elevated D-dimer levels have been linked to increased risk of
thromboembolism and worse survival outcomes (21, 22). Recent
mechanistic insights (11) reveal that coagulation system activation is
not merely a bystander phenomenon but actively contributes to tumor
progression through EGFR signaling modulation. This biological
framework strengthens the clinical significance of our D-dimer
findings, positioning coagulation markers as both prognostic
indicators and potential therapeutic nodes. In our study, higher pre-
chemotherapy D-dimer levels were found to be an independent
predictor of shorter OS in ES-SCLC patients. This finding highlights
the importance of monitoring coagulation parameters and considering
thromboprophylaxis in high-risk ES-SCLC patients.

Gastrin-releasing peptide precursor, a neuropeptide involved in
cell proliferation and survival, has been implicated in the
pathogenesis of SCLC (23). Elevated levels of gastrin-releasing
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peptide precursor have been associated with tumor progression
and poor prognosis in SCLC (24). Our results showed that higher
post-cycle 2 gastrin-releasing peptide precursor levels were an
independent risk factor for reduced OS. This finding suggests that
monitoring gastrin-releasing peptide precursor levels during
treatment may provide valuable prognostic information and guide
therapeutic decision-making in ES-SCLC.

To validate the differential expression of neuron-specific enolase
(NSE), FIB, and gastrin-releasing peptide precursor in ES-SCLC, we
analyzed data from the Gene Expression Omnibus (GEO) database.
The results confirmed the significant upregulation of FIB and gastrin-
releasing peptide precursor in ES-SCLC tissues compared to normal
tissues. These findings support the potential utility of these molecules as
diagnostic and prognostic biomarkers in ES-SCLC.

Based on the identified independent predictors, we established
predictive models for treatment efficacy and OS in ES-SCLC patients.
The model for treatment efficacy, incorporating pre-chemotherapy
tumor size and post-cycle 2 FIB levels, demonstrated good predictive
performance, with an area under the ROC curve of 0.8163. The model
for OS, based on pre-chemotherapy WBC count, pre-chemotherapy D-
dimer, and post-cycle 2 gastrin-releasing peptide precursor, exhibited
satisfactory predictive value for 1-year, 2.5-year, and 3-year survival
rates. These models exemplify the emerging “Clinlabomics” approach
(25), where systematic integration of laboratory parameters with
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machine learning generates clinically actionable predictive tools. The
success of our multivariable models underscores the importance of
analyzing laboratory indicators as interconnected biological networks
rather than isolated values. These models may serve as valuable tools
for risk stratification and personalized treatment planning in ES-
SCLC patients.

However, our study has several limitations. First, the sample
size was relatively small, and the findings need to be validated in
larger prospective cohorts. Second, the mechanisms underlying the
prognostic significance of the identified biomarkers require further
investigation. Third, the integration of molecular profiling data,
such as genomic and transcriptomic information, may provide
additional insights into the biological processes driving treatment
response and prognosis in ES-SCLC. A further limitation lies in the
absence of external validation. While the predictive model
underwent internal cross-validation, it was not validated using an
independent external dataset.

5 Conclusion

In conclusion, our study identified pre-chemotherapy tumor
size and post-cycle 2 FIB levels as independent predictors of
treatment efficacy, and pre-chemotherapy WBC count, pre-
chemotherapy D-dimer, and post-cycle 2 gastrin-releasing peptide
precursor as independent risk factors for OS in ES-SCLC patients
receiving first-line systemic therapy. The established predictive models
showed promising performance and may assist in risk stratification and
treatment decision-making. Furthermore, the differential expression of
FIB and gastrin-releasing peptide precursor in ES-SCLC tissues was
validated using GEO data. These findings contribute to a better
understanding of the factors influencing treatment outcomes and
prognosis in ES-SCLC and highlight potential biomarkers for future
research and clinical application. However, further validation and
mechanistic studies are warranted to fully elucidate the role of these
biomarkers in ES-SCLC management.
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