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A predictive model and
mechanistic study of treatment
effectiveness in patients
newly diagnosed with small
cell lung cancer
Tianyun Wang, Qiuyang Lu, Diexiao Luo, Chunfang Tao,
Jiaqin Liu, Hongbo Zou, Qichao Xie and Rui Kong*

Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University,
Chongqing, China
Introduction: Extensive-stage small cell lung cancer (ES-SCLC) is an aggressive

malignancy with a poor prognosis. This study aimed to identify and validate

clinical and laboratory biomarkers for predicting treatment response and overall

survival (OS) in ES-SCLC patients.

Methods: We retrospectively analyzed 101 ES-SCLC patients receiving first-line

treatment. Logistic and Cox regression analyses identified independent factors

influencing treatment efficacy and OS. Subgroup analysis was performed to

compare white blood cell (WBC) changes between chemotherapy-alone and

chemo-immunotherapy groups. Predictive models were constructed and

evaluated via cross-validation, ROC, and calibration curves. Differential

expression of key proteins (neuron-specific enolase (NSE), fibrinogen (FIB), and

gastrin-releasing peptide precursor (ProGRP)) was validated using GEO

database data.

Results: Pre-chemotherapy tumor size and post-cycle 2 FIB levels were

independent predictors of treatment efficacy. Pre-chemotherapy WBC count,

pre-chemotherapy D-dimer, and post-cycle 2 ProGRP were independent risk

factors for OS. The predictive models demonstrated strong performance.

Subgroup analysis showed no significant difference in WBC changes between

treatment regimens (mean change: -2.30 ± 2.47 vs. -2.08 ± 2.45, p=0.659). GEO

data confirmed the differential expression of FIB and ProGRP.

Discussion: Our findings establish robust and validated models based on readily

available clinical metrics (tumor size, WBC, D-dimer, FIB, ProGRP) to predict

outcomes in ES-SCLC, which could aid in personalizing treatment strategies. The

stability of WBC trends across therapies strengthens the prognostic value of

baseline WBC.
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1 Introduction

Small cell lung cancer (SCLC) is a highly aggressive

neuroendocrine malignancy that accounts for approximately 15%

of all lung cancer cases. SCLC is classified into limited-stage (LS-

SCLC) and extensive-stage (ES-SCLC) according to the Veterans

Administration Lung Study Group (VALSG) staging system. While

LS-SCLC patients are typically treated with concurrent

chemoradiotherapy, ES-SCLC patients , who comprise

approximately 70% of all SCLC cases, receive systemic therapy

with chemotherapy or chemotherapy combined with

immunotherapy as the standard first- l ine treatment .

Characterized by its rapid growth and early metastasis, ES-SCLC

often presents at an advanced stage, making it more difficult to treat

compared to non-small cell lung cancer (NSCLC) (1). Despite

initial sensitivity to chemotherapy and radiotherapy, most

patients diagnosed with ES-SCLC ultimately face a grim

prognosis due to the disease’s tendency to progress rapidly. In the

early stages, ES-SCLC often responds well to standard treatment

regimens, which typically include a combination of cisplatin or

carboplatin-based chemotherapy and radiation therapy. However,

this initial responsiveness can be misleading. A significant

proportion of these patients will encounter disease recurrence,

which is characterized by the re-emergence of cancer that is not

only more aggressive but also increasingly resistant to the same

therapeutic approaches that initially seemed effective. This

phenomenon of treatment resistance is largely attributed to the

cancer cell to undergo genetic and phenotypic changes, enabling it

to circumvent the mechanisms of action of chemotherapy and

radiotherapy. The cumulative effect of these factors contributes to

the overall poor prognosis associated with small cell lung cancer,

illustrating a challenging landscape for both patients and healthcare

providers (2). The median overall survival for ES-SCLC patients is

only 10–12 months, with a 5-year survival rate of less than 7% (3).

These stark clinical realities underscore the critical need to bridge

the translational gap between biomarker discovery and therapeutic

decision-making in ES-SCLC management.

Previous studies have indicated that various serum markers

may play a significant role in predicting the prognosis of patients

with ES-SCLC. Among these markers, neuron-specific enolase

(NSE), fibrinogen (FIB), and gastrin-releasing peptide precursor

(GRPP) have garnered particular attention due to their potential to

provide valuable insights into disease progression and patient

outcomes (4, 5). NSE is a specialized glycolytic enzyme that is

predominantly expressed in neuroendocrine cells, which are a type

of cell that produces hormones and neurotransmitters in the body.

Due to its significant role and expression in these cells, NSE has

gained prominence as a biomarker in the context of various

neuroendocrine tumors, particularly SCLC (6). Elevated levels of

NSE in patients with SCLC have consistently been linked to poor
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prognosis and treatment resistance, underscoring its importance as

a biomarker in the clinical management of this aggressive form of

cancer. Research indicates that when NSE levels are elevated, it

often reflects a more advanced stage of the disease, characterized by

increased tumor burden and more extensive metastasis (7). FIB is a

critical protein in the coagulation cascade, serving as the precursor

to fibrin, which plays a vital role in blood clot formation. However,

beyond its essential function in hemostasis, emerging research has

demonstrated that fibrinogen is also implicated in various

pathological processes, including tumor growth, angiogenesis, and

metastasis across a range of malignancies, including lung cancer (8).

Gastrin-releasing peptide precursor, also known as pro-gastrin-

releasing peptide (ProGRP), is a neuropeptide that has been

found to be specifically elevated in SCLC patients and correlates

with disease extent and prognosis (9, 10).

However, the prognostic value of these biomarkers in predicting

treatment efficacy and survival in ES-SCLC patients remains

controversial, and their clinical utility is limited by the lack of

robust predictive models. Moreover, the differential expression

patterns of these biomarkers in ES-SCLC tissues compared to

normal lung tissues have not been thoroughly investigated. This

knowledge gap presents a pivotal opportunity to develop integrative

prognostic frameworks that combine molecular biomarkers with

clinicopathological parameters, which could fundamentally

advance risk stratification in ES-SCLC.
2 Methods

2.1 Study population

A total of 101 patients diagnosed with extensive-stage small cell

lung cancer were enrolled in this study based on predefined inclusion

and exclusion criteria. The inclusion criteria were as follows: (1)

patients with histologically or cytologically confirmed ES-SCLC; (2)

extensive-stage disease defined as disease beyond the ipsilateral

hemithorax, including malignant pleural or pericardial effusion or

hematogenous metastases according to VALSG criteria; (3) patients

aged 18 years or older; (4) patients with an Eastern Cooperative

Oncology Group (ECOG) performance status of 0-2; and (5)

patients receiving first-line systemic treatment (chemotherapy alone

or chemotherapy combined with immunotherapy).

The exclusion criteria were as follows: (1) patients with a history

of other malignancies; (2) patients with severe comorbidities; (3)

patients with incomplete clinical data; (4) patients with limited-

stage disease.

The study was approved by the Institutional Review Board. This

study obtained a waiver of informed consent from the hospital’s

ethics committee. The ethics approval document/letter is provided

as Supplementary Material.
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2.2 Clinical data collection

2.2.1 Efficacy assessment
Treatment efficacy was assessed after two cycles of first-line

chemotherapy according to the Response Evaluation Criteria in

Solid Tumors (RECIST) version 1.1. Patients were classified into

two groups based on their treatment efficacy: effective (complete

response or partial response) and ineffective (stable disease or

progressive disease). The overall effective treatment rate was

calculated as the proportion of patients with effective outcomes

among the total study population.

2.2.2 Clinical characteristics collection
Baseline characteristics, including age, gender, tumor size,

metastasis status, and treatment regimens, were collected from

the medical records of ES-SCLC patients. Tumor size was

measured using computed tomography (CT) or magnetic

resonance imaging (MRI) before the initiation of chemotherapy.

Metastatic organ involvement was evaluated using imaging

techniques such as CT, MRI, or positron emission tomography

(PET) scans. Treatment regimens were recorded as either

chemotherapy alone or a combination of chemotherapy

and immunotherapy.
2.2.3 Sample size
The sample size was calculated based on the receiver operating

characteristic (ROC) curve analysis, with the area under curve

(AUC) as the primary outcome measure. Assuming an expected

AUC of 0.80 for the predictive model (clinically meaningful

discr iminat ion) , a nul l hypothesis AUC of 0.50 (no

discrimination), 80% statistical power (b = 0.2) and a two-sided

significance level of a = 0.05, the minimum required sample size

was calculated using the following formula

n = (Za + Zb)^ 2 * AUC(1 − AUC)=(AUC − 0:5)^ 2

The final sample size of 100 patients was enrolled. This sample

size provided 75% power to detect an AUC ≥0.75.

2.2.4 Laboratory examination collection
Prior to the initiation of first-line chemotherapy and following

the completion of two treatment cycles, a panel of laboratory

indicators was assessed to evaluate potential changes associated

with treatment. This panel included neuron-specific enolase (NSE),

fibrinogen (FIB), gastrin-releasing peptide precursor (Pro-GRP),

white blood cell (WBC) count, and D-dimer levels.

Venous blood samples were collected from patients at the

specified time points. Complete blood counts, including WBC,

were obtained using a BC6900 hematology analyzer (Shenzhen

Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China) with

reagents from the same manufacturer. Fibrinogen and D-dimer

levels were quantified using a STA-R-MAX coagulation analyzer

(Diagnostica Stago, Asnières-sur-Seine, France) with reagents from

Diagnostica Stago. NSE levels were determined using an

electrochemiluminescence immunoassay on a Roche cobas 8000
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e801 analyzer (Roche Diagnostics GmbH, Mannheim, Germany)

with Elesys NSE reagents (Roche Diagnostics GmbH). Pro-GRP

levels were determined using commercially available ELISA kits

(Fujirebio, Cat. No. E-4340) and measured with an ELISA

instrument (BioTek ELx800). All assays were performed

according to the manufacturers’ instructions.
2.3 Gene expression omnibus database
acquisition and analysis

To validate the differential expression levels of NSE, FIB, and

gastrin-releasing peptide precursor in SCLC patients, the research

team utilized the GEO database. The SCLC patient dataset

(GSE149507) was obtained from the GEO database, which

included gene expression data from both normal lung tissues and

SCLC tissues. The raw data were processed and normalized using

the robust multi-array average (RMA) method. The expression

levels of NSE, FIB, and gastrin-releasing peptide precursor were

compared between normal tissues and SCLC tissues using the

Student’s t-test or Mann-Whitney U test, depending on the data

distribution. A P-value of less than 0.05 was considered

statistically significant.
2.4 Statistical analysis

All statistical analyses were performed using R software (version

4.0.3) and appropriate packages. A P-value of less than 0.05 was

considered statistically significant, except where otherwise specified.

Continuous variables were expressed as mean ± standard deviation

or median (interquartile range), while categorical variables were

presented as frequencies and percentages. The chi-square test or

Fisher’s exact test was used to compare categorical variables

between groups, while the Student’s t-test or Mann-Whitney U

test was employed for continuous variables. To address potential

confounding effects of treatment regimen on laboratory parameters,

subgroup analyses were performed comparing WBC changes

between patients receiving chemotherapy alone versus

chemotherapy plus immunotherapy. The comparison was

conducted using independent t-tests for absolute WBC changes

and Wilcoxon signed-rank tests for paired comparisons within

treatment arms.

Univariate and multivariate logistic regression analyses were

performed to identify independent factors influencing treatment

efficacy. Variables with a P-value of less than 0.1 in the univariate

analysis were included in the multivariate analysis. A predictive

model for treatment efficacy was established based on the results of

the multivariate logistic regression analysis. The model’s

performance was evaluated using internal cross-validation, and

the area under the receiver operating characteristic (ROC) curve

was calculated. A clinical calibration curve was plotted to assess the

agreement between the predicted and actual values, and a clinical

decision curve analysis was conducted to evaluate the model’s net

clinical benefit.
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Univariate and multivariate Cox regression analyses were

performed to identify independent risk factors influencing overall

survival (OS). Variables with a P-value of less than 0.1 in the

univariate analysis were included in the multivariate analysis. A

predictive model for OS was established based on the results of the

multivariate Cox regression analysis. The model’s performance was

assessed using time-dependent ROC curves and a calibration curve

for 1-year survival.
3 Results

3.1 Logistic regression analysis and
predictive model establishment for
treatment efficacy in SCLC patients

3.1.1 Comparative analysis of baseline
characteristics in SCLC patients

A total of 101 patients diagnosed with ES-SCLC were enrolled in

this study based on the inclusion and exclusion criteria. All patients
Frontiers in Oncology 04
had extensive-stage disease at diagnosis and received appropriate

first-line systemic therapy. Among them, 59 patients received

chemotherapy as the first-line treatment, while 42 patients received

a combination of chemotherapy and immunotherapy. The detailed

treatment regimens were provided in Supplementary Table 1. Efficacy

assessment revealed that 52 patients had ineffective treatment

outcomes, and 49 patients had effective outcomes. The overall

effective treatment rate was 48.5% (49/101)(Table 1).

To evaluate whether treatment regimen influenced WBC

dynamics, we performed a comprehensive subgroup analysis. The

results showed that the mean WBC change was -2.30 ± 2.47 × 109/L

in the chemotherapy alone group and -2.08 ± 2.45 × 109/L in the

chemotherapy plus immunotherapy group (p=0.659, independent t-

test), indicating no significant difference in WBC changes between

treatment regimens (Supplementary Figure 1, Supplementary Table 2).

Baseline characteristics such as age, gender, tumor size,

metastasis status, and treatment regimens were collected from

SCLC patients. Additionally, changes in various indicators before

chemotherapy were recorded. Patients were grouped according to

their treatment efficacy after two cycles, and the indicators were
TABLE 1 Univariate analysis results of treatment efficacy in SCLC patients.

Characteristic
[ALL]

Ineffective
Group

Effective Group p.overall Adjusted_P

N=101 N=49 N=52

Gender: 0.319 0.959

Female 15 (14.9%) 5 (10.2%) 10 (19.2%)

Male 86 (85.1%) 44 (89.8%) 42 (80.8%)

Age 62.6 ± 9.77 61.8 ± 10.1 63.4 ± 9.46 0.400 1.000

First-lineRegimen: 1.000 1.000

Chemotherapy 59 (58.4%) 29 (59.2%) 30 (57.7%)

Chemotherapy+Immunotherapy 42 (41.6%) 20 (40.8%) 22 (42.3%)

Pre-chemotherapyWBC 6.63 [2.46;14.9] 6.81 [2.46;12.3] 6.49 [3.41;14.9] 0.540 1.000

Pre-chemotherapyPLT 231 [73.0;519] 227 [73.0;404] 235 [101;519] 0.967 1.000

Pre-chemotherapyLym 1.24 [0.03;3.93] 1.41 [0.03;3.93] 1.19 [0.42;2.81] 0.518 1.000

Pre-chemotherapyFIB 4.34 [1.03;10.9] 4.52 [1.03;10.9] 4.14 [2.48;8.22] 0.195 1.000

Pre-chemotherapyD-dimer 192 [14.0;6190] 192 [14.0;6190] 196 [31.0;3178] 0.253 1.000

Pre-chemotherapyNSE 45.3 [7.99;525] 33.5 [10.1;370] 53.2 [7.99;525] 0.016 1.000

Pre-chemotherapyProGRP 858 [33.5;25000] 1240 [33.5;15872] 825 [44.0;25000] 0.638 1.000

Pre-chemotherapyTumorSize 12.1 [1.50;37.0] 10.0 [1.50;37.0] 14.6 [4.50;34.9] 0.001 0.007

Pre-
chemotherapyMetastaticOrgans:

0.907 1.000

1 17 (16.8%) 9 (18.4%) 8 (15.4%)

2 65 (64.4%) 31 (63.3%) 34 (65.4%)

3 12 (11.9%) 5 (10.2%) 7 (13.5%)

4 7 (6.93%) 4 (8.16%) 3 (5.77%)
WBC, whitebloodcell; PLT, platelet; Lym, lymphocyte; FIB, fibrinogen; NSE, neuron-specificenolase; ProGRP, pro-gastrin-releasingpeptide.
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compared between groups. The results showed statistically

significant differences in pre-chemotherapy NSE levels and tumor

size (P<0.05) (Table 1).
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3.2 Trends in blood cell counts during
treatment in SCLC patients

Laboratory examination indicators before chemotherapy and

after two cycles were compared between the two groups. The

changes in these indicators from pre-treatment to post-treatment

were also calculated. The results demonstrated that pre-

chemotherapy NSE, post-cycle 2 FIB, post-cycle 2 gastrin-

releasing peptide precursor, and NSE change values exhibited

statistically significant differences between the two groups

(P<0.05) (Table 2).
3.3 Multivariate logistic regression analysis
of treatment efficacy in SCLC patients

Tumor size before chemotherapy, pre-chemotherapy NSE,

post-cycle 2 FIB, post-cycle 2 gastrin-releasing peptide precursor,

and NSE change values were included in the multivariate logistic
TABLE 2 Changes in laboratory tests.

Characteristic [ALL] Ineffective Group Effective Group p.overall Adjusted_P

N=101 N=49 N=52

Pre-
chemotherapyWBC

6.63 [2.46;14.9] 6.81 [2.46;12.3] 6.49 [3.41;14.9] 0.540 1.000

Pre-chemotherapyPLT 231 [73.0;519] 227 [73.0;404] 235 [101;519] 0.967 1.000

Pre-chemotherapyLym 1.24 [0.03;3.93] 1.41 [0.03;3.93] 1.19 [0.42;2.81] 0.518 1.000

Pre-chemotherapyFIB 4.34 [1.03;10.9] 4.52 [1.03;10.9] 4.14 [2.48;8.22] 0.195 1.000

Pre-
chemotherapyD-dimer

192 [14.0;6190] 192 [14.0;6190] 196 [31.0;3178] 0.253 1.000

Pre-chemotherapyNSE 45.3 [7.99;525] 33.5 [10.1;370] 53.2 [7.99;525] 0.016 1.000

Pre-
chemotherapyProGRP

858 [33.5;25000] 1240 [33.5;15872] 825 [44.0;25000] 0.638 1.000

Post-2-cycleWBC 4.75 [2.19;10.7] 4.76 [2.19;9.07] 4.63 [2.48;10.7] 0.883 1.000

Post-2-cyclePLT 212 [86.0;579] 215 [86.0;503] 207 [91.0;579] 0.629 1.000

Post-2-cycleLym 1.26 [0.14;3.83] 1.30 [0.14;3.83] 1.25 [0.38;2.80] 0.997 1.000

Post-2-cycleFIB 3.32 [1.09;5.82] 3.70 [1.09;5.82] 3.10 [2.02;4.06] <0.001 0.001

Post-2-cycleD-dimer 183 [21.0;3549] 178 [21.0;2250] 194 [37.0;3549] 0.447 1.000

Post-2-cycleNSE 20.0 [1.00;81.9] 22.6 [1.00;72.6] 19.4 [5.49;81.9] 0.401 1.000

Post-2-cycleProGRP 113 [23.3;14155] 403 [31.2;12950] 75.8 [23.3;14155] 0.026 1.000

WBCchange 2.31 ± 2.46 2.36 ± 2.23 2.27 ± 2.67 0.858 1.000

PLTchange 32.3 ± 95.1 24.1 ± 97.8 40.1 ± 92.9 0.401 1.000

Lymchange 0.04 ± 0.42 0.07 ± 0.46 0.01 ± 0.39 0.485 1.000

FIBchange 0.78 [-1.00;6.73] 0.66 [-1.00;6.73] 0.80 [-0.16;4.52] 0.065 1.000

D-dimerchange 9.00 [-2084.00;6049] 20.0 [-2084.00;6049] 7.50 [-936.00;3134] 0.833 1.000

NSEchange 22.7 [-32.31;497] 13.2 [-32.31;338] 34.8 [-16.44;497] 0.007 1.000

ProGRPchange 584 [-5398.00;24946] 196 [-5398.00;10737] 678 [-3000.00;24946] 0.123 1.000
WBC, white blood cell; PLT, platelet; Lym, lymphocyte; FIB, fibrinogen; NSE, neuron-specificenolase; ProGRP, pro-gastrin-releasing peptide.
TABLE 3 Multivariate analysis results of treatment efficacy in
SCLC patients.

Variables Coef S.E. WaldZ
Pr

(>|Z|)
OR

Intercept 3.1705 1.3442 2.36 0.018 23.81

Pre-
chemotherapyTumorSize

0.1329 0.0451 2.95 0.003 0.80

Pre-chemotherapyNSE 0.0047 0.0223 0.21 0.063 1.04

Post-2-cycleFIB -1.5093 0.4669 -3.23 0.019 0.42

Post-2-cycleProGRP -0.0001 0.0001 -1.02 0.072 1.00

NSEchange -0.0012 0.0231 -0.05 0.198 1.03
NSE, neuron-specificenolase; FIB, fibrinogen; ProGRP, pro-gastrin-releasing peptide; Coef,
coefficient; S.E., standard error; OR, odds ratio.
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regression analysis. The results, as shown below, indicated that

post-cycle 2 FIB and pre-chemotherapy tumor size were

independent factors influencing the treatment efficacy in SCLC

patients (P<0.05) (Table 3, Figure 1).
3.4 Establishment and validation of a
predictive model for treatment efficacy
after two cycles of chemotherapy in SCLC
patients

Based on the results of the multivariate logistic regression analysis,

a predictive model was established using pre-chemotherapy tumor size

and post-cycle 2 FIB as risk factors. Nomogramwas plotted to illustrate

the model (Figure 2A). Internal cross-validation was performed, and

the area under the ROC curve was calculated to be 0.816 (Figure 2B).

The clinical calibration (Figure 2C) curve demonstrated good

agreement between the predicted and actual values. The clinical

influence curve analysis (Figure 2D) showed that the model had a

favorable net clinical benefit.
3.5 Cox regression analysis and predictive
model establishment for treatment efficacy
in SCLC patients

3.5.1 Univariate Cox regression analysis
A total of 101 SCLC patients were included in this study. Long-

term follow-up results showed that 87 subjects died, while 14 were still

alive at the last follow-up. The median overall survival (OS) of SCLC
Frontiers in Oncology 06
patients was calculated to be 13 months (95% CI: 10.5-15.4 months)

(Figure 3A).Subgroup analysis based on the first-line treatment

regimen showed no significant difference in OS between

chemotherapy and chemotherapy combined with immunotherapy

(Figure 3B). Univariate Cox regression analysis was performed based

on OS status, time variables, and various data for each patient. The

results demonstrated significant differences in pre-chemotherapy

tumor size, pre-chemotherapy WBC, pre-chemotherapy NSE, pre-

chemotherapy gastrin-releasing peptide precursor, pre-treatment FIB,

post-cycle 2 D-dimer, post-cycle 2 gastrin-releasing peptide precursor,

NSE change value, and WBC change value (P<0.05) (Table 4).

3.5.2 Multivariate Cox regression analysis
Multivariate Cox regression analysis was conducted based on pre-

chemotherapy tumor size, pre-chemotherapyWBC, pre-chemotherapy

NSE, pre-chemotherapy gastrin-releasing peptide precursor, pre-

treatment FIB, post-cycle 2 D-dimer, post-cycle 2 gastrin-releasing

peptide precursor, NSE change value, and WBC change value. The

results indicated that pre-chemotherapy WBC, pre-chemotherapy D-

dimer, and post-cycle 2 gastrin-releasing peptide precursor were

independent risk factors influencing OS (P<0.05) (Table 5).

3.5.2.1 Establishment of a predictive model based on
multivariate Cox regression analysis

A predictive model was established based on pre-chemotherapy

WBC, pre-chemotherapy D-dimer, and post-cycle 2 gastrin-

releasing peptide precursor, as shown in the figure below

(Figure 4A). Internal validation was performed by plotting time-

dependent ROC curves, which demonstrated that the model had

good predictive value for 1-year, 2.5-year, and 3-year survival rates
FIGURE 1

Forest plot of the multivariate regression analysis.
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FIGURE 2

Establishment and validation of a predictive model based on logistic regression (A) nomogram based on logistic regression, (B) ROC curve; (C)Calibration
curve, (D) Clinical influence curve.
FIGURE 3

Survival curve analysis of SCLC patients (A) Kaplan-Meier analysis of all patients; (B) Subgroup Kaplan-Meier analysis by first-line treatment regimen.
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TABLE 4 COX analysis results of treatment efficacy in SCLC patients.

Variables Coef S.E. Wald Z Pr(>|Z|) HR

Gender=Male 0.1488 0.3286 0.45 0.650 1.16

First-
line=Chemo+Immuno

-0.1722 0.2363 -0.73 0.466 0.84

Pre-chemo Tumor Size 0.0644 0.0175 3.69 <0.001 1.06

Pre-chemo WBC 0.1399 0.0476 2.94 0.003 1.15

Pre-chemo PLT 0.0021 0.0013 1.59 0.112 1.00

Pre-chemo Lym -0.0585 0.2073 -0.28 0.777 0.94

Pre-chemo NSE 0.0063 0.0014 4.4 <0.0001 1.00

Pre-chemo ProGRP 0.0001 0 2.4 0.016 1.00

Pre-chemo FIB 0.2468 0.0861 2.87 0.004 1.27

Pre-chemo D-dimer 0.0002 0.0001 2.4 0.016 1.00

Post-2-cycle Lym 0.1776 0.2153 0.83 0.409 1.19

Post-2-cycle FIB 0.2527 0.1382 1.83 0.067 1.28

Post-2-cycle D-dimer 0.0006 0.0002 2.4 0.016 1.00

Post-2-cycle NSE 0.0118 0.0077 1.53 0.125 1.01

Post-2-cycle ProGRP 0.0001 0 3.47 <0.001 1.00

FIB change 0.1893 0.098 1.93 0.053 1.20

D-dimer change 0.0002 0.0001 1.55 0.120 1.00

NSE change 0.0064 0.0015 4.33 <0.0001 1.00

ProGRP change 0 0 0.97 0.334 1.00

WBC change 0.101 0.0457 2.23 0.025 1.10

PLT change 0.0015 0.0014 1 0.315 1.00

Lym change -0.3615 0.2732 -1.32 0.185 0.69
F
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WBC, white blood cell; PLT, platelet; Lym, lymphocyte; FIB, fibrinogen; NSE, neuron-specific enolase; ProGRP, pro-gastrin-releasing peptide; Coef, coefficient; S.E., standard error; HR,
hazard ratio.
TABLE 5 Multivariate COX analysis results of treatment efficacy in SCLC patients.

Variables Coef S.E. Wald Z Pr(>|Z|) HR

Pre-chemo Tumor Size 0.0321 0.0205 1.56 0.118 1.032

Pre-chemo WBC 0.1415 0.0769 1.84 0.035 1.15

Pre-chemo NSE 0.0009 0.0088 0.11 0.914 1.00

Pre-chemo ProGRP 0 0 -0.34 0.730 0.99

Pre-chemo FIB 0.0616 0.1051 0.59 0.557 1.06

Pre-chemo D-dimer 0.0003 0.0001 1.84 0.046 1.00

Post-2-cycle D-dimer 0.0003 0.0003 1.14 0.253 1.00

Post-2-cycle ProGRP 0.0001 0.0001 2.06 0.039 1.00

NSE change 0.0036 0.0095 0.37 0.708 1.00

WBC change -0.0214 0.0697 -0.31 0.759 0.97
WBC, white blood cell; FIB, fibrinogen; NSE, neuron-specific enolase; ProGRP, pro-gastrin-releasing peptide; Coef, coefficient; S.E., standard error; HR, hazard ratio.
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(Figure 4B). A calibration curve for 1-year survival was also plotted,

showing good agreement between the predicted and actual

values (Figure 4C).
3.6 Differential expression analysis of NSE,
FIB, and gastrin-releasing peptide
precursor in SCLC patients

Previous clinical studies have preliminarily identified neuron-

specific enolase (NSE), fibrinogen (FIB), and gastrin-releasing

peptide precursor as key protein molecules that influence the
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treatment efficacy and prognosis of small cell lung cancer (SCLC)

patients. Based on these findings, the research team conducted an

external validation of the differential expression levels of NSE, FIB,

and gastrin-releasing peptide precursor using the Gene Expression

Omnibus (GEO) database. The SCLC patient dataset (GSE149507)

was obtained from the GEO database, and the expression levels of

NSE, FIB, and gastrin-releasing peptide precursor were compared

between normal tissues and SCLC tissues. The results showed that

both FIB and gastrin-releasing peptide precursor exhibited

significant differential expression in SCLC tissues compared to

normal tissues(Figure 5). GO and KEGGenrichment analyses

were performed based on the DEGs (Figure 6).
FIGURE 4

Establishment and validation of a predictive model based on logistic regression (A) nomogram based on COX regression, (B) Time-ROC curve,
(C) Calibration curve.
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To further investigate the mechanisms by which NSE, FIB, and

ProGRPmediate SCLC, differentially expressed genes (DEGs) in SCLC

were identified. LASSO regression analysis (Figures 7A, B) and random

forest analysis (Figure 7C) were performed. The intersection of these

analyses yielded two core target genes. Correlation analysis revealed

that these two core target genes (ZWINT and PLA2G1B) were

significantly correlated with FIB and ProGRP (Figure 7D).
4 Discussion

Extensive-stage Small cell lung cancer (ES-SCLC) is a highly

aggressive malignancy characterized by rapid progression, early

metastasis, and poor prognosis (1). Despite initial sensitivity to

chemotherapy, most ES-SCLC patients experience relapse and

develop drug resistance, leading to treatment failure and limited

survival. Therefore, identifying reliable predictive biomarkers and

establishing prognostic models are crucial for optimizing treatment

strategies and improving patient outcomes in ES-SCLC.

In this study, we conducted a comprehensive analysis of clinical

data and laboratory indicators to investigate their potential as

predictive and prognostic factors in patients diagnosed with ES-

SCLC. All patients enrolled in our study had extensive-stage disease

and received standard first-line treatment according to current

guidelines. Our research aimed to understand how various clinical

and laboratory parameters could influence treatment outcomes and
Frontiers in Oncology 10
overall survival in this challenging cohort of patients. Through our

analysis, we identified several key findings that illuminated the

relationship between specific biomarkers and patient prognosis.

Notably, we found that the size of the tumor prior to the initiation

of chemotherapy was a significant predictive factor for treatment

efficacy. This suggests that larger tumors may be associated with

poorer responses to chemotherapy, thereby impacting the overall

effectiveness of treatment strategies employed for ES-SCLC.

Furthermore, our investigation into laboratory indicators revealed

that levels of FIB measured post-cycle 2 of chemotherapy functioned

as an independent factor affecting treatment efficacy. Elevated

fibrinogen levels may indicate a hypercoagulable state or systemic

inflammation, both of which could potentially influence the

effectiveness of chemotherapeutic agents. In addition, we also

examined parameters linked to OS in SCLC patients. Our results

indicated that the pre-chemotherapy WBC count was an independent

risk factor for overall survival. Higher WBC counts may reflect an

underlying inflammatory response or tumor burden, which could

negatively impact patient outcomes. Moreover, our analysis

highlighted pre-chemotherapy D-dimer levels and post-cycle 2 levels

of gastrin-releasing peptide precursor as additional independent risk

factors for OS and found that pre-chemotherapy D-dimer, and post-

cycle 2 gastrin-releasing peptide precursor were independent risk

factors for OS. Emerging evidence from lung adenocarcinoma

studies (11) demonstrates that thrombin, the catalytic product of

fibrinogen, can cleave epidermal growth factor receptor (EGFR) to
FIGURE 5

Differential expression analysis of NSE, FIB, and gastrin-releasing peptide precursor in SCLC patients. (A) Box plot displaying the batch-normalized
gene expression distribution of the GSE149507 dataset; (B) volcano plot of DEGs; (C) heat map of DEGs; (D) FGA, (E) NSMCE1, and (F) GRP
expression comparisons between the SCLC and control groups.
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activate AKT/mTOR signaling pathways, providing a direct molecular

mechanism linking coagulation activation to chemotherapy resistance.

This mechanismmay explain our observation of FIB’s predictive value,

suggesting thrombin-mediated pathways as potential therapeutic

targets in ES-SCLC.

Tumor size has been previously reported as a prognostic factor

in ES-SCLC. A study by demonstrated that tumor size >5 cm was

associated with worse OS in SCLC patients (12). Similarly, our

results indicated that larger pre-chemotherapy tumor size was an

independent predictor of poor treatment efficacy. This finding

suggests that tumor burden plays a critical role in determining

treatment response and highlights the importance of early diagnosis

and timely intervention in ES-SCLC.

Fibrinogen, an acute-phase protein, has been implicated in cancer

progression and metastasis (13). Elevated FIB levels have been
Frontiers in Oncology 11
associated with poor prognosis in various malignancies, including

lung cancer (14). In our study, higher post-cycle 2 FIB levels were

identified as an independent factor for ineffective treatment outcomes.

This observation is consistent with previous reports and underscores

the potential of FIB as a predictive biomarker in ES-SCLC. The

groundbreaking discovery that thrombin (activated from fibrinogen)

mediates chemotherapy resistance through EGFR cleavage (11)

provides mechanistic support for our findings. This coagulation-

tumor interaction paradigm suggests that real-time monitoring of

coagulation parameters could guide anti-resistance therapies. The

underlying mechanisms linking FIB to treatment resistance may

involve its role in promoting tumor cell survival, angiogenesis, and

epithelial-mesenchymal transition (15, 16).

White blood cell count, a marker of systemic inflammation, has

been associated with poor prognosis in several cancer types (17). In
FIGURE 6

Enrichment analysis of DEGs (A) KEGG enrichment based on up-regulated DEGs; (B) GO enrichment based on up-regulated DEGs; (C) KEGG
enrichment based on down-regulated DEGs; (D) GO enrichment based on down-regulated DEGs.
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SCLC, elevated WBC count has been reported as an adverse

prognostic factor (18). Our findings corroborate these

observations, as higher pre-chemotherapy WBC count was

identified as an independent risk factor for reduced OS. The

prognostic value of WBC count may be attributed to its reflection

of the tumor-promoting inflammatory microenvironment and its

association with increased tumor burden (19).

D-dimer, a fibrin degradation product, has been recognized as a

prognostic marker in various malignancies, including lung cancer (20).

Elevated D-dimer levels have been linked to increased risk of

thromboembolism and worse survival outcomes (21, 22). Recent

mechanistic insights (11) reveal that coagulation system activation is

not merely a bystander phenomenon but actively contributes to tumor

progression through EGFR signaling modulation. This biological

framework strengthens the clinical significance of our D-dimer

findings, positioning coagulation markers as both prognostic

indicators and potential therapeutic nodes. In our study, higher pre-

chemotherapy D-dimer levels were found to be an independent

predictor of shorter OS in ES-SCLC patients. This finding highlights

the importance of monitoring coagulation parameters and considering

thromboprophylaxis in high-risk ES-SCLC patients.

Gastrin-releasing peptide precursor, a neuropeptide involved in

cell proliferation and survival, has been implicated in the

pathogenesis of SCLC (23). Elevated levels of gastrin-releasing
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peptide precursor have been associated with tumor progression

and poor prognosis in SCLC (24). Our results showed that higher

post-cycle 2 gastrin-releasing peptide precursor levels were an

independent risk factor for reduced OS. This finding suggests that

monitoring gastrin-releasing peptide precursor levels during

treatment may provide valuable prognostic information and guide

therapeutic decision-making in ES-SCLC.

To validate the differential expression of neuron-specific enolase

(NSE), FIB, and gastrin-releasing peptide precursor in ES-SCLC, we

analyzed data from the Gene Expression Omnibus (GEO) database.

The results confirmed the significant upregulation of FIB and gastrin-

releasing peptide precursor in ES-SCLC tissues compared to normal

tissues. These findings support the potential utility of thesemolecules as

diagnostic and prognostic biomarkers in ES-SCLC.

Based on the identified independent predictors, we established

predictive models for treatment efficacy and OS in ES-SCLC patients.

The model for treatment efficacy, incorporating pre-chemotherapy

tumor size and post-cycle 2 FIB levels, demonstrated good predictive

performance, with an area under the ROC curve of 0.8163. The model

for OS, based on pre-chemotherapyWBC count, pre-chemotherapy D-

dimer, and post-cycle 2 gastrin-releasing peptide precursor, exhibited

satisfactory predictive value for 1-year, 2.5-year, and 3-year survival

rates. These models exemplify the emerging “Clinlabomics” approach

(25), where systematic integration of laboratory parameters with
FIGURE 7

Exploration of potential mechanisms of hub targets in SCLC (A, B) LASSO regression for screening core targets; (C) Identification of core targets
using random forest; (D) Venn diagram for determining shared core targets; (E) Correlation analysis between shared core targets and FGA, NSMCE1,
and GRP.
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machine learning generates clinically actionable predictive tools. The

success of our multivariable models underscores the importance of

analyzing laboratory indicators as interconnected biological networks

rather than isolated values. These models may serve as valuable tools

for risk stratification and personalized treatment planning in ES-

SCLC patients.

However, our study has several limitations. First, the sample

size was relatively small, and the findings need to be validated in

larger prospective cohorts. Second, the mechanisms underlying the

prognostic significance of the identified biomarkers require further

investigation. Third, the integration of molecular profiling data,

such as genomic and transcriptomic information, may provide

additional insights into the biological processes driving treatment

response and prognosis in ES-SCLC. A further limitation lies in the

absence of external validation. While the predictive model

underwent internal cross-validation, it was not validated using an

independent external dataset.
5 Conclusion

In conclusion, our study identified pre-chemotherapy tumor

size and post-cycle 2 FIB levels as independent predictors of

treatment efficacy, and pre-chemotherapy WBC count, pre-

chemotherapy D-dimer, and post-cycle 2 gastrin-releasing peptide

precursor as independent risk factors for OS in ES-SCLC patients

receiving first-line systemic therapy. The established predictive models

showed promising performance andmay assist in risk stratification and

treatment decision-making. Furthermore, the differential expression of

FIB and gastrin-releasing peptide precursor in ES-SCLC tissues was

validated using GEO data. These findings contribute to a better

understanding of the factors influencing treatment outcomes and

prognosis in ES-SCLC and highlight potential biomarkers for future

research and clinical application. However, further validation and

mechanistic studies are warranted to fully elucidate the role of these

biomarkers in ES-SCLC management.
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