
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Evangelos Drosos,
Southmead Hospital, United Kingdom

REVIEWED BY

Aleksandrs Krigers,
Innsbruck Medical University, Austria
Jürgen Schlegel,
Technical University of Munich, Germany

*CORRESPONDENCE

Eric C. Holland

eholland@fredhutch.org

RECEIVED 19 May 2025
ACCEPTED 11 August 2025

PUBLISHED 27 August 2025

CITATION

Parrish AG and Holland EC (2025)
Seq-ing answers: exploring meningioma
biology utilizing bulk RNA-seq-
based reference landscapes.
Front. Oncol. 15:1631573.
doi: 10.3389/fonc.2025.1631573

COPYRIGHT

© 2025 Parrish and Holland. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Mini Review

PUBLISHED 27 August 2025

DOI 10.3389/fonc.2025.1631573
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utilizing bulk RNA-seq-based
reference landscapes
Abigail G. Parrish and Eric C. Holland*

Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
Meningiomas are the most common primary brain tumors, accounting for 40% of

all central nervous system neoplasms. While usually benign, these tumors can vary

in aggressiveness. Traditional classification and grading systems, which primarily rely

on histopathological features, are not always reliable in capturing tumor behavior

and predicting patient outcomes. In contrast, modern systems—based on factors

such as copy number alterations, DNA methylation, and gene expression—offer a

more accurate framework for identifying distinct biological signatures and

aggressive subtypes, as well as for predicting recurrence. Transcriptomic profiling

using bulk whole-genome RNA sequencing (RNA-seq), which provides insights into

alternative splicing, gene expression, fusion events, non-coding RNAs, and pathway

activity, further enhances our understanding ofmeningioma tumorigenesis, enables

the projection of new samples onto dimension-reduced reference landscapes, and

helps accurately predict recurrence. As bulk RNA-seq becomes more accessible, it

holds great potential for refining prognostic tools, informing personalized treatment

approaches, and ultimately improving outcomes for meningioma patients.
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1 Introduction

1.1 Overview

With an incidence of 9.51 per 100,000 people, meningiomas are the most common

primary central nervous system (CNS) tumor, comprising around 40% of all CNS tumors

and approximately 55% of all non-malignant tumors (1). The incidence of meningiomas

increases with age, with the median age at diagnosis being 67 years (1). These tumors

develop in the meninges, the three layers of tissue beneath the skull that cover and protect

the brain, and are thought to arise from the arachnoid cap cells in the middle meningeal

layer, the arachnoid mater. Although most meningiomas are benign and slow-growing,

often remaining undetected for years, a small subset has aggressive underlying biology,

frequently recur, and can eventually be fatal.
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1.2 Classification and grading systems
based on histopathology

Meningiomas can present with a wide range of clinical

manifestations, influenced by various factors. As our

understanding of these tumors has advanced over time, their

classification and grading systems have evolved to better reflect

the insights we have gained. The term “meningioma” itself was

coined by neurosurgeon and pathologist Harvey Cushing more

than a century ago to describe tumors occurring along the neuraxis,

replacing the term “dural endothelioma” (2). Over the next decade,

Cushing, in collaboration with neuropathologist Louise Eisenhardt,

published a monograph, providing a detailed classification, regional

behavior, life history, and surgical outcomes of meningiomas, laying

a foundation for the modern understanding and treatment of these

tumors (3).

Building on this foundation, Australian neurosurgeon Donald

Simpson introduced the Simpson grading scale in 1957, a system

designed to use the extent of surgical resection completeness as a

predictor of meningioma recurrence (4). Grades range from grades

I through V, with grade I indicating macroscopic complete tumor

resection with removal of affected dura and bone, and grade V

indicating simple decompression with or without biopsy. While this

grading scale primarily focused on the macroscopic extent of

surgical resection, it did not account for the histopathological

features of the tumors.

To address these limitations, the World Health Organization

(WHO) established a new classification system in 1979, offering a

more comprehensive framework based on microscopic analysis of

tumor cells. Specifically, this system was primarily based on

histological criteria such as mitotic rate and brain invasion, and

categorized meningiomas into several subtypes based on

histopathological architecture (i.e. meningothelial, fibrous,

transitional, psammomatous, angiomatous, hemangioblastic,

hemangiopericytotic, and papillary subtypes), along with an

additional, more aggressive subtype known as anaplastic (5).
1.3 Advancements in molecular and
genetic technology

Although the WHO classification system offered a more

nuanced understanding of meningioma heterogeneity, aiding in

prognosis and treatment planning, it did not fully address the

molecular and genetic drivers underlying tumorigenesis. While

the WHO classification system was being developed and

implemented, chromosome 22q loss was identified as a

recurrent genetic alteration in meningiomas (6). In the following

decades, the inactivation of the NF2 tumor suppressor gene

on chromosome 22, which acts as a master upstream regulator

of the Hippo signaling pathway, was recognized as the most

common genetic alteration in meningioma oncogenesis and as

the genetic alteration responsible for the familial syndrome,
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neurofibromatosis type 2 (NF2). Loss of NF2 function allows

YAP1 to remain active, translocating into the nucleus, binding to

TEAD transcription factors, and driving cell survival, growth,

and proliferation.

By the late 1990s and early 2000s, advances in genetic

technology revealed additional genetic subtypes in NF2 wild-type

meningiomas. Notable among these were mutations in genes such

as TRAF7, AKT1, KLF4, PIK3CA, and SMO, which were identified

between 2013 and 2016 (7–9). While mutations in AKT1, KLF4,

and PIK3CA are generally mutually exclusive, they frequently co-

occur with TRAF7 mutations (10). Taken together, the

identification of a greater number of candidate mutations in

meningiomas can be largely attributed to advancements in whole-

genome and whole-exome sequencing.
1.4 Incorporating advancements into the
WHO grading system

As our understanding of the biology of meningiomas has

evolved, several molecular characteristics have become

increasingly important in their classification and grading.

Currently, the fifth edition of the 2021 WHO Classification of

Tumors of the Central Nervous System (CNS5) stratifies

meningiomas into three grades across several histopathologic

subtypes: nine variants in WHO CNS5 grade 1, three in grade 2

(atypical, choroid, and clear cell), and two in grade 3 (papillary

and rhabdoid) (5). CNS5 also incorporates high-risk molecular

markers, including SMARCE1 in the clear cell subtype, BAP1 in the

papillary and rhabdoid subtypes, and TERT promoter mutations

and homozygous deletions of CDKN2A/B in grade 3 tumors

(11, 12).

Brain invasion is now a standalone diagnostic criterion for

atypical grade 2 meningiomas, regardless of other histological

features. While tumor location is not a diagnostic criterion, high-

grade meningiomas are more common in convexity and non-skull

base areas, which often harbor chromosome 22q deletions and/or

NF2 mutations. In contrast, skull base tumors are associated with

mutations independent of NF2 (13–16). While certain molecular

markers, brain invasion, and tumor location may define distinct and

aggressive subclasses of meningiomas, their molecular and

clinical roles are still poorly understood and warrant further

investigation (17).

In response to these gaps in knowledge, the Consortium to

Inform Molecular and Practical Approaches to CNS Tumor

Taxonomy (cIMPACT-NOW) formed a working group to

explore emerging molecular criteria. Their guidance has clarified

when molecular testing should supplement morphological

diagnosis and known genetic aberrations, and has been a major

contribution to CNS tumor diagnostics (18).

Nevertheless, meningioma biology is nuanced, and although

histopathology and genetic abnormalities provide valuable insights,

they cannot fully account for the factors driving aggressive clinical
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behavior and unfavorable outcomes in certain patients. This

disconnect has fueled growing interest in identifying molecular

predictors of aggressiveness and redefining classification and

grading systems accordingly.
1.5 Moving beyond traditional classification
and grading systems

In recent years, several new grading systems based on copy

number alterations, DNA methylation, and gene expression have

been proposed, which offer more accurate prognostic tools. For

instance, in 2019, a group from Baylor used RNA sequencing

(RNA-seq) and whole-exome sequencing to identify three distinct

molecular groups that correlated more closely with tumor recurrence

than the 2016 WHO grading system: Group A (mutations in TRAF7,

AKT1, and KLF4), Group B (loss of chromosome 22q), and Group C

(loss of repressive DREAM complex function) (19). In 2021,

researchers from the University of Toronto integrated DNA

somatic copy number alterations, point mutations, DNA

methylation, and messenger RNA abundance to identify four

molecular subgroups: MG1 (immunogenic), MG2 (benign NF2

wild-type), MG3 (hypermetabolic), and MG4 (proliferative) (20).

The following year, researchers from the University of California, San

Francisco (UCSF) used DNA methylation profiling to identify three

DNA methylation groups: merlin-intact, immune-enriched, and

hypermitotic (21, 22). Around the same timeframe, the same UCSF

lab published a 34-gene expression biomarker that is prognostic for

clinical outcomes (23). While these molecular classification systems

were more effective at identifying aggressive high-risk meningiomas

than traditional histological classification systems, there is still a need

for more comprehensive tools.
1.6 Application of artificial intelligence in
meningioma research

Beyond molecular and genetics-based classification systems,

recent advances in artificial intelligence (AI), particularly in machine

learning, have significantly transformed how pathologists and

radiologists classify meningiomas. These technologies offer a more

detailed, objective understanding of tumor characteristics by

integrating image-based data with clinical and molecular

information, moving far beyond traditional visual assessments. One

such innovation is radiomics, a subfield of AI that extracts quantitative

features from medical imaging modalities such as CT, MRI, and PET

scans. Radiomic models have shown promising results, with some

studies reporting diagnostic accuracies as high as 93% when

distinguishing grade 1 meningiomas from higher-grade (grades 2-3)

tumors using structural MRI (24). However, tumor grade alone does

not always predict clinical behavior, as some grade 1 tumors recur as

rapidly as grade 3 tumors, while certain tumors classified as high-

grade may follow a more indolent course. This highlights the
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limitations of relying solely on radiology and WHO grading to

predict tumor aggressiveness and patient outcomes.

Building on this, emerging work in radiogenomics, which links

radiomic features to molecular markers, genetic mutations, and

chromosomal aberrations, has further enhanced our ability to

preoperatively stratify meningiomas. For instance, meningiomas

identified as high-risk based on imaging features have been

significantly associated with molecular indicators of aggressive

tumor biology, such as increased somatic mutation burden,

altered DNA methylation patterns, and elevated expression of

pro-mitotic transcription factors like FOXM1 (25). However,

despite these correlations, some tumors that appear benign based

on radiomic profiles may still behave aggressively, underscoring a

critical insight: biological signatures often offer a more accurate

prediction of patient outcomes than imaging, molecular, and

genetic features.

AI is a very effective and powerful tool at answering

specific questions, such as identifying tumor incidences or grade-

gene associations, but currently, it cannot explore and discern

complex data and reliably predict patient outcomes. To address

this, we need more advanced tools that go beyond existing

classification systems—tools capable of uncovering hidden

patterns and clustering tumors based on shared biological

signatures rather than grade or appearance. Only then can we

develop a more accurate, predictive framework for understanding

and managing tumor progression.
1.7 Utilizing bulk RNA-seq data to generate
reference landscapes

While both traditional and modern classification systems,

enhanced by advances in AI, provide valuable insights into tumor

biology, they still fall short in fully capturing how specific biological

signatures influence clinical outcomes. The aggressive nature of

some tumors likely reflects their underlying biological

characteristics, which are closely linked to gene expression

patterns. Beyond simply measuring gene expression levels, RNA-

seq captures additional complexities, such as allele-specific

expression, alternative splicing, and fusion events, which can aid

our understanding and identification of biomarkers, tumor

heterogeneity and evolution, drug resistance, and so on. These

molecular details reveal specific signatures associated with

recurrence and treatment response—factors that may not be

apparent through morphological assessments alone.

Since bulk RNA-seq is not limited by the number of cells, it can

handle larger sample sizes and is suitable for studies requiring high

throughput. Additionally, since it pools RNA from many cells, bulk

RNA-seq can detect low-abundance transcripts more easily,

providing a comprehensive overview of gene expression across

sample populations.

By integrat ing mult iple publ ic ly avai lable human

meningioma RNA-seq datasets that include 1298 tumors, the
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largest clinically annotated meningioma RNA-seq database and

reference landscape has been created using uniform manifold

approximation and projection (UMAP), complete with an

interactive tool for further exploring tumor biology and

signatures (Figure 1) (26). This comprehensive resource not

only deepens our understanding of different meningioma

subtypes and genetic signatures, but also enables a more precise

approach to predicting their behavior.
2 Body

2.1 Reference landscape identifies regional
associated biology

RNA sequencing is effective at detecting copy number

alterations. Coloring the map for tumors with known

chromosome 22q loss revealed distinct clustering of chromosome

22 and NF2 expression status. The UMAP analysis also identified

several subtypes with particularly poor outcomes, with the most

aggressive tumors enriched on one end of the NF2 mutant region,

corroborating the well-established phenomenon that aggressive

tumors frequently harbor NF2 mutations. These tumors exhibit

high proliferation rates and upregulation of genes associated with

embryonic limb development (26). Additionally, it has been shown

that aggressive NF2 mutant meningiomas downregulate oncogenic

YAP1 signaling. This downregulation occurs, at least in part,

through the upregulation of YAP1 antagonist VGLL4 and the

upstream regulator FAT4 (27).

Consistent with previous findings, malignant meningiomas

often display one or more focal chromosomal deletions, with

additional genetic mutations linked to accelerated growth and

higher tumor grades. In 1998, Ishino and colleagues discovered

a high incidence of partial deletion of chromosome 1p in atypical

and anaplastic meningiomas (28). This deletion helps

distinguish the more aggressive NF2 mutant meningiomas

from their benign counterparts. Specific chromosomal

mutations, including those on 1p, 6q, 10q, and 14q, have been

implicated in meningioma malignancy and recurrence risk, while

chromosome 9p loss and CDKN2A is also associated with malignant

tumors and poorer prognosis (29–31). Notably, the aggressive region

of the UMAP reveals losses on chromosomes 1p, 6q, 10q, and 14q,

with most CDKN2A-null samples clustering in this area. Tumors

with high levels of aneuploidy strongly correlated with shorter

recurrence times compared to patients without these copy number

alterations (26).
2.2 Investigating the role of copy number
alterations in aggressive NF2 mutant
meningiomas

It is well-established that the initiating events in other

brain and central nervous system cancers often involve
Frontiers in Oncology 05
chromosomal nondisjunction, with tumor suppressors

typically driving these arm-level genomic changes, such as the

case of PTEN on chromosome 10q in glioblastoma (32).

Similarly, it is both plausible and reasonable to consider that

allelic losses on these chromosomes in meningiomas may also

be driven by the loss of tumor suppressors, warranting further

investigation. One promising approach is to analyze these

chromosomal regions gene-by-gene, examining the correlations

between chromosomal alterations, gene expression, and

patient outcomes.
2.3 Mouse models of NF2 mutant-like
meningiomas

While several cell line and patient-derived xenograft (PDX)

mouse models of meningioma exist, reliable genetically engineered

mouse models (GEMMs) that induce de novo meningioma

formation have only recently been developed (33). Using the

RCAS/tv-a system (RCAS = Replication-Competent Avian

sarcoma-leukosis virus long terminal repeat with a Splice

acceptor, tv-a = tumor virus receptor A), which helps facilitate a

somatic gene transfer in transgenic mice, researchers have

demonstrated that the exogenous expression of constitutively

active YAP1 is sufficient to induce NF2 mutant-like meningiomas

in mice (34). By identifying strong oncogenic drivers in

meningiomas, researchers can leverage the RCAS/tv-a system and

other GEMMs to establish causality. More specifically, the RCAS/

tv-a system allows for the short hairpin RNA-mediated knockdown

or conditional knockout of specific tumor suppressor genes located

on these chromosomes of interest, enabling the study of tumor

suppressor losses and their effects on tumor latency, biology, and

treatment response.
3 Discussion

3.1 Gaining novel insights from bulk RNA-
seq-based reference landscapes

Historically, classification and grading systems in fields like

histopathology were shaped by the tools and knowledge available at

the time, with early methods relying heavily on observable

characteristics. As technology has advanced, we have gained

powerful tools that allow us to delve deeper into the underlying

biology of diseases, enhancing our ability to understand and

accurately predict patient outcomes. One such tool is dimension-

reduced reference landscapes, which are invaluable for visualizing

complex biological data. By condensing high-dimensional data,

such as gene expression and clinical metadata, into a more

manageable, lower-dimensional space, algorithms like UMAP

enable researchers to identify patterns, clusters, relationships, and

potential prognostic factors within vast datasets. This visualization

helps uncover subtle differences between tumor subtypes, revealing
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variations in aggressiveness, treatment response, and overall

survival. By integrating UMAP with existing classification

systems, researchers can not only refine current models but also

gain novel insights that could lead to a better understanding of

diseases and more personalized treatment approaches.
3.2 Accessibility and limitations of bulk
RNA-seq

Advances in technology, such as the ability to effectively extract

high-quality RNA from formalin-fixed paraffin-embedded (FFPE)

samples and improved multiplexing, have made RNA-seq more

accessible and an invaluable tool for both research and clinical

applications. Assuming an optimal batch size and a fully dedicated

team, the entire workflow—including sectioning, RNA isolation,

library preparation, sequencing, and bioinformatic analysis (with a

validated pipeline in place)—can be completed within 7 to 10 days

at a cost of a few hundred dollars per sample. This price has steadily

declined over time, and this trend is projected to continue.

While cost-effective and high-throughput, bulk RNA-seq

averages gene expression across a sample, failing to capture the

diversity of individual cell types and their specific contributions.

Further, bulk RNA-seq cannot differentiate between individual

cells, making it difficult to detect rare cell populations and more

subtle changes in gene expression over time, and lacks spatial context,

preventing the identification of a cell’s location within the sample.

Alternatively, while more expensive, single-cell RNA-seq (scRNA-

seq) allows for the investigation of gene expression at the individual

cell level, making it possible to study cellular heterogeneity and

discover rare cell types and states that might be masked by bulk

RNA-seq. Similarly to bulk RNA-seq data, scRNA-seq data can also

be mapped onto reference landscapes for analytical purposes.
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3.3 The clinical impact of bulk RNA-seq-
based reference landscapes

As bulk RNA-seq data becomes increasingly available, it offers

powerful potential to identify biological signatures that predict

outcomes and guide personalized therapies. Expanding RNA-seq

databases will be instrumental in advancing precision medicine and

optimizing care across disease and tumor types.

One of the most powerful applications of bulk RNA-seq is

mapping patients onto interactive reference maps that integrate

gene expression and clinical data. For instance, consider the case of

Mrs. Smith, a hypothetical patient who is diagnosed with a WHO

grade 1 meningioma and undergoes surgical resection. Initially, her

prognosis appears favorable. However, within a year, the tumor

recurs, once again classified as a grade 1 tumor. In the past, this

recurrence would leave clinicians grappling with uncertainty: was

the tumor not fully resected, or is this a sign of inherently more

aggressive underlying biology?

With RNA-seq-based reference landscapes, we no longer have

to rely solely on guesswork. By positioning Mrs. Smith’s molecular

profile within this map, clinicians can compare her case to those of

similar tumors, her “nearest neighbors” (Figure 2). These

comparisons can uncover patterns in tumor behavior, reveal the

likelihood of recurrence, and even suggest specific therapeutic

interventions, moving us closer to establishing RNA-seq as a

routine tool in clinical decision-making.
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FIGURE 2

Schematic illustrating the proposed clinical workflow for integrating new patients onto the meningioma bulk RNA-seq-based reference landscape.
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