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Preoperative prognostic
assessment using intratumoral
and peritumoral adipose
tissue radiomics derived
from contrast-enhanced
CT in cT3–4 gastric cancer
Chao Lu, Donggang Pan, Xiuhong Shan*, Rao Dai, Bowen Liu,
Zhixuan Wang and Xiaoxiao Wang

Department of Medical Imaging, Jiangsu University Affiliated People’s Hospital (Zhenjiang First
People’s Hospital), Zhenjiang, Jiangsu, China
Purpose: Exploring the value of contrast-enhanced computed tomography

(CECT) based radiomics features from intratumoral and peritumoral adipose

tissue (PAT) in predicting early recurrence (ER)after gastrectomy in patients with

cT3–4 gastric cancer (GC).

Materials and methods: This retrospective study involved patients with cT3–4

GC who underwent preoperative CECT. The radiomics features of tumor and

PAT were separately extracted from the CT venous phase images using the

Pyradiomics package. The radiomic score (radscore) was computed for each

patient by integrating LASSO regression-selected radiomic features, weighted

according to their respective coefficients. The GC location, longest diameter,

maximum thickness, cT stage and cN stage determined by preoperative CT were

also evaluated. Univariate and bivariate analyses using the Cox regression model

were performed to evaluate factors affecting ER. The Kaplan-Meier method was

used for the analysis of ER-free survival.

Results: A total of 184 consecutive cT3–4GC patients were enrolled in this study.

Bivariate Cox regression analyses demonstrated that radscore and cT stage

emerged as independent predictors of ER in all parameters. Radscore-based

stratification showed a marked difference in the ER rates between high-risk

patients (radscore ≥ -0.66) and low-risk patients (65.9% vs. 3.2%; log-rank

p<0.001). Similarly, cT4 stage patients had markedly higher ER rates than cT3

stage patients (53.5% vs. 22.1%; log-rank p<0.001).

Conclusion: The integrated radscore combining intratumoral and PAT features

emerged as an independent prognostic predictor for ER in cT3–4 GC, offering

quantitative biomarkers to optimize neoadjuvant therapy selection and

postoperative surveillance intensity.
KEYWORDS
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Introduction

Gastric cancer (GC) ranks among the most prevalent

malignancies globally, with the 5th and 5rd highest incidence and

mortality rates among malignant tumours in the world, respectively

(1). The majority (60-70%) of GC-related deaths are due to

recurrence, which often occurs within the first 2 years after

gastrectomy (2), which is called early recurrence (ER). Early

prediction of the prognosis of gastric cancer and the development

of individualised treatment plans can improve the prognosis of

gastric cancer.

The clinical TNM staging system (cTNM) plays a pivotal role in

therapeutic planning and risk stratification for gastric cancer. CT

serves as the primary imaging modality for evaluating tumor

invasiveness (T-stage) and lymph node metastasis (N-stage).

While CT-based assessment of serosal infiltration and nodal

involvement demonstrates strong prognostic value (3, 4), its

clinical utility is constrained by substantial inter-observer

variability, particularly in differentiating T3 (subserosal invasion)

from T4 (serosal penetration) lesions. This diagnostic challenge

arises because both stages frequently present radiologically as

tumors involving the full gastric wall thickness (5).Growing

evidence highlights marked prognostic variability among gastric

cancer patients with identical cT and cN stages, even in the absence

of distant metastases (6). This evidence gap highlights the need

to identify additional independent imaging biomarkers to

improve risk stratification frameworks to facilitate precision

treatment approaches.

Radiomics, which extracts and analyzes high-dimensional

quantitative features from medical images, has shown promise in

predicting GC prognosis (7). Previous studies have shown that PAT

information can accurately assess plasma membrane invasion and

reliably predict response to neoadjuvant chemotherapy (8, 9). This

is a caution that peritumoural adipose tissue contains important

biological information that we have overlooked. Thus, We

hypothesised that a combination of tumour and PAT radiomics

might demonstrate prognostic significance in GC. This study aims

to assess the feasibility of these radiomic features derived

from contrast-enhanced CT (CECT) for preoperative ER risk

stratification in cT3–4 GC patients.
Materials and methods

Patient characteristics

This retrospective study was approved by the Institutional

Review Board of our hospital. The inclusion criteria were as

follows: (1) a pathological diagnosis of GC confirmed through

surgical examination; (2) patients who had contrast-enhanced

stomach CT images obtained within 7 days prior to surgery; (3)

receiving postoperative adjuvant chemotherapy. Exclusion criteria

included: (1) cT1–2 stage,invasion of adjacent organs(cT4b) or

distant metastasis (M1 stage) occurred before surgery; (2) poor

quality of CT images and little visceral fat, which affected the
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observation and outlining of peritumour area of ROI; (3)

combined with primary malignant tumours in other sites within 2

years; (4) received neoadjuvant chemoradiotherapy or targeted drug

therapy before surgery; (5) recurrence of gastric cancer within 1

month after surgery; and (6) death due to other diseases. Finally, a

total of 184 cT3–4 GC patients treated between January 2018 and

December 2022 were enrolled.

Clinical data, including age and sex, were obtained from the

electronic medical records. The cT stage and cN stage were

determined by preoperative CT images based on the criteria

outlined in the American Joint Committee on Cancer (8th

Edition) guidelines for gastric cancer diagnosis (5). The longest

diameter and maximum thickness of the gastric cancer were

measured on enhanced venous image CT images.The analysis of

CT images was performed by two radiologists with 5 and 10 years of

experience in GC imaging. In instances where disagreements arose

between the two readers, a third radiologist with 30 years of

expertise in the field was consulted to review the images and

provide a final decision.

All participants were monitored postoperatively, with

assessments conducted every three months during the initial year

and every six months thereafter. Tumor recurrence was identified

through confirmed cases of local or peritoneal recurrence, distant

metastasis, or death linked to GC. The presence of recurrence or

metastasis was verified using CT, MRI, PET, endoscopic

examinations, and laboratory analyses. Based on the follow-up

results, all enrolled patients were categorized into two groups: the

ER group and the no recurrence group.
CT examination

All participants maintained a minimum 4-hour fast and

received 20 mg of anisodamine via intramuscular administration

10 minutes prior to contrast-enhanced CT imaging to suppress

gastrointestinal motility.Patients fasted and consumed 800–1000 ml

of water before CT scanning to dilate the stomach. Scans

were performed using a 64-slice CT scanner (SOMATON

sensation 64, SIEMENS Healthcare, Germany) or 256-slice CT

scanner (Brilliance iCT, ROYAL PHILIPS, Netherlands).

Parameters included: tube voltage, 120 kVp; tube current, 220–

250 mA; detector collimation, 128×0.625 mm or 32×0.6 mm;

reconstruction thickness, 5 mm. Scopolamine hydrochloride was

administered to reduce gastrointestinal motility artifacts. Contrast

agent (ioversol, 320 mg/ml) was injected at 3.0 ml/s, with

arterial and venous phase images acquired at 30 s and 70 s

delays, respectively.
Image preprocessing and ROI
segmentation

To standardize CT image data from various sources, original

DICOM files are converted to NifTI (.nii.gz) format. Image

resampling is then applied to ensure consistent voxel size,
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spacing, and orientation across images from both CT scanners. The

CT images were subjected to a downsampling process, resulting in a

pixel spacing of 1.0 mm × 1.0 mm × 1.0 mm. This was achieved

through the utilisation of a B-spline interpolation algorithm, a

technique designed to ensure an isotropic voxel spacing and

thereby enhance the reliability of the feature extraction process.

Manual segmentation of tumors was performed on venous phase

CT images using ITK-SNAP software (version 3.6). The tumor

regions of interest (ROIs) should cover the whole volume of the

tumor. For the PAT ROIs adjacent to the tumor, radiologists

analysed all CT images of the patient and segmented PAT with

the largest tumor slice. A strip ROI (width of 5 mm) of PAT was

selected along the gastric wall,and should not overlap with regions

containing tumor. The technical process of this study is depicted in

Figure 1. Radiologist A (3 years of experience) delineated the ROIs

for the 184 patients in the study and repeated the segmentation

procedure 1 month later on 30 patients selected at random.

Radiologist B (3 years of experience) subsequently performed the

segmentation on the same cases. Segmentations for all patients

and the 30 cases were conducted following this methodology,

subsequently approved by Radiologist C, with 20 years

of experience.
Radiomics features extraction and
selection

The subsequent extraction of radiomic features was then

conducted using the PyRadiomics software (version 3.7.16). For

each patient, 1130 radiomic features were extracted from CT

imaging of tumor and PAT separately. The features thus

extracted included: 14 shape features, 18 first-order features, 75

textural features and 1023 high-dimensional features. The high-

dimensional features included: 18 first-order features transformed
Frontiers in Oncology 03
by log-sigmoid, 262 textural features transformed by log-sigmoid,

18 first-order features transformed by wavelet, and 726 textural

features transformed by wavelet.

The CT images were subjected to a downsampling process,

resulting in a pixel spacing of 1.0 mm × 1.0 mm × 1.0 mm. This

was achieved through the utilisation of a B-spline interpolation

algorithm, a technique designed to ensure an isotropic voxel spacing

and thereby enhance the reliability of the feature extraction process.

The subsequent extraction of radiomic features was then conducted

using the PyRadiomics software. For each patient, 1130 radiomic

features were extracted from CT imaging of tumor and PAT

separately. The features thus extracted included: 14 shape features, 18

first-order features, 75 textural features and 1023 high-dimensional

features. The high-dimensional features included: 18 first-order

features transformed by log-sigmoid, 262 textural features

transformed by log-sigmoid, 18 first-order features transformed by

wavelet, and 726 textural features transformed by wavelet.

To assess the stability and reproducibility of radiomics features,

we evaluated inter-observer consistency using the intraclass

correlation coefficient (ICC). A subset of 30 randomly selected

samples underwent re-segmentation and feature re-extraction.

Features demonstrating good consistency (ICC > 0.75) were

retained for subsequent analysis.

All intratumoral and PAT radiomic features underwent Z-score

normalisation to reduce dimensional heterogeneity between radiomic

indices. In addition, features were compared between ER and ER-free

groups using the Mann-Whitney U test, with insignificant (p ≥ 0.05)

features removed. Feature selection was performed utilizing LASSO

regression, which applies L1 regularization to shrink the coefficients of

uncorrelated features to zero, thereby automatically selecting features.

The optimal regularization parameter (l) was selected through 10-fold

cross-validation to enhance model performance. As l increases,

coefficients of uncorrelated features gradually diminish, and the

optimal l value (l_min) that maximizes model fit was identified
FIGURE 1

The technical process.
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based on the log-likelihood ratio. Features associated with non-zero

coefficients were preserved. The radscore for each patient was

calculated from the selected radiomics features and their coefficients,

with an intercept (a) of -.54975188, as previously described (10).
Tatistical analysis

Clinico-radiology features and radscores were compared between

patients with and without ER. Chi-squared tests were employed to

compare categorical data between groups. Continuous data were

analyzed using either the t-test or the Mann–Whitney U test,

contingent on normality and variance homogeneity.To identify

independent prognostic factors, we first used univariable Cox

proportional hazards regression analyses to evaluate the association

between variables and ER-free survival. Subsequently, due to the

constrained sample size, bivariate Cox regression analyses were

conducted by sequentially pairing each univariately significant

variable (p<0.05).Independent risk factors for ER were analyzed

using receiver operating characteristic (ROC) curves, with the area

under the curve (AUC) calculated. The DeLong test was used to

evaluate differences between these independent risk factors with

MedCalc software (version 23.0; MedCalc Software Ltd, Ostend,

Belgium).Based on the median, continuous variables were

categorized into high-risk and low-risk groups.Finally, ER-free

survival curves were constructed using the Kaplan-Meier method

and the log-rank test was used for comparisons between

groups.Analyses were performed using R (version 3.6.0) or SPSS

(version 26.0). A p-value < 0.05 was considered significant.
Results

Clinico-radiologic characteristics

Of the 184 LAGC patients who were enrolled in the study,

34.24% (63/184) experienced postoperative recurrence within two

years. Of the patients who experienced recurrence, 25 had local
Frontiers in Oncology 04
recurrence, 21 had distant recurrence, and 6 had a combination of

local and distant recurrence. The median interval to recurrence was

12.30 ± 5.36 months. Tumor location, thickness,cT stage, cN stage

and radscore exhibited significant differences between the ER-free

patient group and the ER patient group.A detailed description of the

GC patients clinical and CT imaging features is provided in Table 1.
Radiomics feature selection and radscore
calculation

Inter-observer consistency analysis revealed a median ICC

value of 0.75 across all radiomic features, indicating good

agreement between the two operators in feature delineation. Out

of the 2260 extracted radiomics features, 1513 features exhibited an

ICC greater than 0.75.Of these, a subset of 762 were deemed

different in ER and ER-free groups using the Mann-Whitney U

test.Following the exclusion of non-reproducible and redundant

features, 2 tumour-related radiomic features and 3 PAT-related

radiomic features with non-zero coefficients were identified by

LASSO regression algorithm (Figure 2). These features included 1

Shape features and 2 wavelet transformed texture features from

PAT, 2 Filter-Based Texture Features from intratumor (Table 2).

The radscore for each patient was determined using the formula

described above.
Risk predictors of ER and stratified survival
analysis

Univariate Cox regression analysis revealed that larger tumor

longest diameter (HR, 1.04; 95% CI, 1.01 ~ 1.09; p =0.035), larger

tumor maximum thickness (HR, 1.10; 95% CI, 1.01 ~ 1.20; p =0.030),

cT 4 stage(HR, 3.98; 95% CI, 2.35 ~ 6.75; p <0.001), cN1–3 stage

(HR, 3.28; 95% CI, 1.41 ~ 7.62; p =0.006) and higher radscore

(HR, 5.71; 95% CI, 3.71 ~ 8.79; p <0.001) were identified as significant

predictors for ER (Table 3). Bivariate Cox regression analyses

demonstrated that cT stage and radscore emerged as independent
TABLE 1 Comparison of clinical and CT imaging features between the early recurrence and no recurrence groups.

Variables Total (n = 184) No recurrence (n = 121) Early recurrence (n = 63) P

Age, M (Q1, Q3) 66.00 (59.00, 71.00) 66.00 (59.00, 71.00) 65.00 (58.50, 70.00) 0.618

Sex (male: female) 139:45 91:30 48:15 0.883

Location (Esophagogastric junction: Gastric
antrum and body)

89:95 52:69 37:26 0.042

Longest diameter,
M (Q1, Q3)

5.70 (4.50, 7.12) 5.50 (4.50, 7.00) 6.00 (4.85, 7.35) 0.177

Maximum thickness,
M (Q1, Q3)

1.39 (1.00, 1.80) 1.22 (1.00, 1.60) 1.50 (1.15, 1.95) 0.012

cT stage(T3:T4) 110:74 88:33 22:41 <.001

cN stage (N0:N1-3) 44:140 37:84 7:56 0.003

Radscore, M (Q1, Q3) -0.60 (-1.24, -0.01) -1.08 (-1.36, -0.48) 0.06 (-0.24, 0.30) <.001
The bold values indicate statistical significance.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1631979
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lu et al. 10.3389/fonc.2025.1631979
predictors of ER in all adjusted model configurations(Table 4). To

evaluate the predictive performance of the two independent

predictors—cT stage and radscore—along with their combination,

ROC curve analysis was performed (Figure 3), using the area under

the curve (AUC) as the key metric of discriminative ability.

According to the DeLong test, the combined model (cT stage +

radscore) significantly outperformed both the cT stage alone and the

radscore alone. Furthermore, the radscore alone showed a statistically

higher AUC than the cT stage.

The median value of radscore was -0.60. The Kaplan–Meier

(Figure 4) curve showed that patients in the high -risk category

(radscore ≥-0.60) exhibited a higher ER rate compared to those in

the low -risk category (64.0% vs 6.3%, log-rank test: p < 0.001).

Patients with cT4 stage exhibited a higher rate of ER compared to

those with cT3 stage (53.5% vs 22.1%, log-rank test: p < 0.001).

Patients with cN1–3 stage exhibited a higher rate of ER compared to

those with cN0 stage (40.0% vs 15.9%, log-rank test: p = 0.003).

In addition, we compared the ER-free survival of cT3 patients

with cT4 patients in different risk groups, stratified according to

radscore. The survival curves (Figure 3) showed that cT3–4 patients

in low-risk group exhibited better prognosis than the same cT stage
Frontiers in Oncology 05
patients in high-risk group. Notably, the cT3 patients in high-risk

group exhibited worse prognosis than the cT4 stage patients in low-

risk group(log-rank test: p < 0.01). Figure 4 shows typical

cases images.
Discussion

The present study investigated preoperative prognostic factors

derived from CECT for ER in patients with cT3–4 GC. The findings

of the study revealed that both the radscore and cT stage are non-

invasive imaging markers for preoperatively predicting ER in GC

patients; Particularly, the tumor and PAT derived radscore might

improve the accuracy of risk stratification, which coulld be

applied to guide gastric cancer patients to receive precise and

personalised treatment.
TABLE 2 Selected radiomics features.

Radiomics features Origin Coefficient

original_shape_SurfaceVolumeRatio
peritumoral
adipose tissue

0.54650564

wavelet.LHL_glrlm_RunEntropy
peritumoral
adipose tissue

-0.08031735

wavelet.HHL_glrlm_RunVariance
peritumoral
adipose tissue

-0.16353140

exponential_glrlm_
RunLengthNonUniformity

intratumor 0.02197938

square_glszm_SizeZoneNonUniformity intratumor 0.13748354
TABLE 3 Univariate Cox regression analysis for early recurrence free
survival.

Variables P
Hazards
ratio

95% confidence
interval

Age 0.853 1.00 0.97 ~ 1.03

Sex 0.662 0.88 0.48 ~ 1.59

Location 0.055 0.61 0.37 ~ 1.01

Longest diameter 0.035 1.04 1.01 ~ 1.09

Maximum
thickness

0.030 1.10 1.01 ~ 1.20

cT stage <.001 3.98 2.35 ~ 6.75

cN stage 0.006 3.28 1.41 ~ 7.62

Radscore <.001 5.71 3.71 ~ 8.79
The bold values indicate statistical significance.
FIGURE 2

Least absolute shrinkage and selection operator (LASSO) coefficient profiles of the radiomics features, Panel (A) displays the selection of the tuning
parameter (l) via cross-validation, while Panel (B) shows the coefficient profile plot, demonstrating variations in feature coefficients with changes in
the regularization parameter l. Features that are retained exhibit non-zero coefficients.
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TABLE 4 Bivariate Cox regression analysis for early recurrence free survival.

No. Variables P
Hazards ratio (95%
confidence interval)

Variables P
Hazards ratio (95%
confidence interval)

1

cT stage <.001 3.39 (1.96 ~ 5.88)

6

cN stage 0.008 3.15 (1.35 ~ 7.33)

cN stage 0.117 2.02 (0.84 ~ 4.85)
Maximum
thickness

0.083 1.09 (0.99 ~ 1.19)

2
cT stage <.001 3.86 (2.26 ~ 6.57)

7
cN stage 0.096 2.06 (0.88 ~ 4.81)

Longest diameter 0.268 1.02(0.98 ~ 1.07) Radscore <.001 5.45 (3.51 ~ 8.45)

3

cT stage <.001 3.88 (2.28 ~ 6.59)

8

Longest diameter 0.661 1.02 (0.93 ~ 1.12)

Maximum thickness 0.168 1.07 (0.97 ~ 1.17)
Maximum
thickness

0.607 1.06 (0.86 ~ 1.30)

4
cT stage 0.002 2.43 (1.40 ~ 4.22)

9
Longest diameter 0.035 1.04 (1.01 ~ 1.09)

Radscore <.001 4.61 (3.00 ~ 7.08) Radscore <.001 5.78 (3.74 ~ 8.92)

5
cN stage 0.007 3.17 (1.36 ~ 7.38)

10

Maximum
thickness

0.030 1.10 (1.01 ~ 1.21)

Longest diameter 0.078 1.04 Radscore <.001 5.79 (3.75 ~ 8.94)
F
rontiers in O
ncology
 06
The bold values indicate statistical significance.
FIGURE 3

Receiver Operating Characteristic (ROC) curve of radscore plus cT, radscore alone, and cT alone in differentiating early recurrence in patients with
cT3–4 gastric cancer.
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The cT staging are important prognostic factors in patients with

GC (11, 12).The present findings also suggest that GC with serosal

penetration (cT4) have a higher recurrence risk than those with

subserosal infiltration (cT3).When gastric cancer invades the serosa,

PAT is the most likely site for metastatic spread.The ‘seed and soil’

theory proposes that peritoneal metastasis initiation depends on the

synergies of the tumor cells (seeds) and the peritoneal

microenvironment (soil) (13). Conventional CT-based T-staging

relies on subjective morphological interpretation of tumour

infiltration depth. A review (14) reported the diagnostic accuracy

of CT for distinguishing stage T4 from non-T4 stages varies from

68% to 80%.Conventional CT has limited discriminative capacity in

differentiating neoplastic infiltration from paraneoplastic

inflammatory responses. This is due to overlapping radiographic

manifestations, characterised by increased attenuation within PAT

(15). Previous studies have shown that dual-energy CT-derived

iodine quantification within PAT has been validated as a reliable

indicator for detecting serosal invasion in gastric cancer (16, 17).

Elevated iodine concentrations in PAT reflect enhanced perfusion

due to tumor-induced serosal disruption, potentially mediated by

neovascularization or malignant cellular membrane leakage.

However, even though CT-defined depth of tumour invasion is

not completely consistent with pathological findings, the cT staging

is a critical prognostic determinant in the management of gastric

cancer, which is in agreement with the results of the previous study

(18).The cN staging of GC is of significant prognostic importance

for overall survival (19, 20), The present univariate analyses
Frontiers in Oncology 07
revealed a significant association of cN staging with ER. However,

the cN staging lost independent prognostic significance following

bivariate adjustment for cT staging and radscore. This lack of

significance likely stems from CT’s limited diagnostic accuracy in

detecting metastatic lymph nodes, which rangers from 51%–58% by

CT (21). Consequently, the suboptimal results observed in the

radiological assessment of lymph nodes undermined their

prognostic value, which is similar to the results of previous

studie (22).

The metastatic outgrowth of tumors arises from dynamic

interactions and mutual adaptation between tumor cells and the

surrounding microenvironment (23). In the present study, the

strong performance of the radscore may be attributed to its

integration of CT-based tumor and PAT radiomic features. By

leveraging automated high-throughput feature extraction,

radiomics deciphers tumor heterogeneity patterns, enabling

robust predictions of recurrence-free survival outcomes (7). An

increased original_shape_SurfaceVolumeRatio from PAT signifies

irregular and complex morphology, often associated with invasive

growth and poor differentiation, indicative of aggressive behavior.

Multiple textural characteristics collectively indicate significant

intratumoral and peritumoral heterogeneity, including wavelet-

based RunEntropy and RunVariance from tumor, exponential

RunLengthNonUniformity, and square SizeZoneNonUniformity

from PAT. These features collectively suggest heightened

randomness, diverse spatial scales, and uneven distribution of

texture patterns. This heterogeneity likely arises from underlying
FIGURE 4

Kaplan–Meier survival curves for early recurrence in patients with cT3–4 gastric cancer stratified by radscore (A), cT stage (B), cN stage (C), and
cT3–4 stage in the high/low-risk category (D).
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biological processes such as necrosis, hemorrhage, vascular

proliferation, stromal infiltration, fibrosis, and unevenly dispersed

tumor subclones. Overall, these characteristics quantitatively

capture the morphological and textural intricacy linked to

aggressive tumor behavior, offering potential non-invasive

biomarkers for assessing tumor progression and proliferative

activity. Notably, the increased quantity and biological relevance

of peritumoral features underscore the pivotal role of the tumor

microenvironment in disease advancement. In hepatocellular

carcinoma, it was reported that a peritumoural radiomics model

that included 2 cm of peritumour on CT was more accurate in

predicting early recurrence than tumour models (AUC 0.79 vs.

0.62) (24). In non-small cell lung cancer, it was reported that a

peritumoural radiomics model that included 10 mm of peritumour

on CT exhibited best predictive efficiency for predicting spread

through air spaces (25). As a quantitative method, radscore allows

the quantification of intratumoral heterogeneity and variations in

the peritumoral microenvironment.Furthermore, CT-based

radscore enabled risk stratification of cT3 and cT4 GC subgroups,

significantly enhancing prognostic discrimination. The cT3 staging

tumors with high-risk radscores exhibited inferior survival

outcomes relative to cT4 staging lesions harboring low-risk

signatures.Our findings suggest that radscore could assist in

stratifying patients for neoadjuvant therapy. In addition, GC

cases with high-risk radscore may require more intensive

postoperative surveillance.

This study has some limitations. Firstly, the study was

conducted retrospectively at a single centre, and the sample size

was relatively small. Therefore, it should be considered as a pilot

study, which deserves to be confirmed by larger scale studies to

confirm the results. Secondly, the study population consisted of

cT3–4 staging GC patients receiving postoperative adjuvant

chemotherapy, which may have introduced a degree of bias. The

ability of radscore needs to be evaluated in further studies

involving all GC patients.Thirdly, the relatively short follow-up

period may have resulted in incomplete survival information for

some patients.
Conclusions

This retrospective study demonstrates that contrast-enhanced

CT-derived radscore incorporating tumor and PAT features serve

as effective preoperative predictors of ER in cT3–4 GC patients,

highlighting their potential to refine prognostic stratification and

optimise clinical decision-making through personalised therapeutic

approaches and surveillance protocols.
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