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Machine learning-driven 
prognostic prediction model for 
composite small cell lung 
cancer: identifying risk factors 
with network tools and 
validation using SEER data 
and external cohorts 
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1School of Nursing, Hebei University, Baoding, China, 2Neurology Intensive Care Unit, Affiliated 
Hospital of Hebei University, Baoding, China, 3Department of Radiation Oncology, Affiliated Hospital 
of Hebei University, Baoding, China 
Background: Lung cancer continues to be the primary cause of cancer-related 
mortality globally, with combined small cell lung carcinoma (C-SCLC) 
constituting a relatively uncommon yet highly aggressive subset of this disease. 
Despite its clinical significance, limited efforts have been made to develop 
survival prediction models tailored to the clinical characteristics of C-SCLC 
patients. Additionally, the interpretability of existing models remains limited. 

Methods: This study aimed to develop and validate an interpretable machine 
learning model for predicting survival outcomes in C-SCLC patients using clinical 
data from the SEER database and external validation with Chinese patient 
cohorts. Initially, we employed the Cox proportional hazards model for 
rigorous variable selection. Subsequently, through 10-fold cross-validation and 
grid search for optimal parameters, we selected the XGBoost model as the best-
performing one among four candidates. Furthermore, we enhanced the model’s 
interpretability by incorporating the SHapley Additive exPlanations (SHAP) 
method, which helped us understand the contribution of each variable within 
the model. 

Results: We constructed a predictive model using data from 1,230 SEER patients 
and validated it externally with data from 154 Chinese patients. The XGBoost 
model demonstrated excellent performance in predicting survival outcomes at 
1-year, 3-year, and 5-year. The AUC values for the external validation cohort 
were 0.849, 0.830, and 0.811, respectively. SHAP analysis revealed that N stage, T 
stage, radiotherapy, surgery, and gender are key factors influencing the ML 
model’s predictions. To enhance clinical utility, we have developed an 
interpretable web-based tool to predict patients’ 1-year survival probability. 
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Conclusion: The XGBoost model, integrating demographic and clinical factors of 
C-SCLC patients, demonstrated excellent predictive performance. Our web-

based prediction tool will promote the development of personalized treatment 
strategies and optimize clinical decision-making. 
KEYWORDS 

SEER (surveillance epidemiology and end results) database, c-SCLC, SHAP (Shapley 
additive explanation), machine learning, composite small cell lung cancer 
 

1 Introduction 

The highest incidence rate among all types of cancer is due to 
lung cancer, which is the leading cause of cancer mortality worldwide 
(1). Combined- small cell lung cancer(C-SCLC) is a relatively rare 
subtype of lung cancer (2, 3), with an overall five-year survival rate of 
12.4% (4). According to the World Health Organization’s (WHO)

classification of tumors, C-SCLC is defined as a mixture of small cell 
lung cancer and any type of non-small cell lung histological type (5, 
6). This definition emphasizes the histological specificity of C-SCLC, 
which encapsulates the highly aggressive and rapid growth 
characteristics of small cell lung cancer (SCLC) as well as the 
components of non-small cell carcinoma (7). The complexity of C­
SCLC makes it particularly challenging to diagnose, treat, and predict 
survival. This study is dedicated to developing a prediction model 
based on explainable Machine Learning (ML) for accurately 
predicting the survival outcomes of patients with C-SCLC. The 
clinical application potential of this model is immense, as it can 
provide doctors and patients with more objective and accurate 
survival predictions, thereby assisting in the formulation of 
personalized treatment strategies and optimizing clinical decision-
making processes. 

However, significant issues still exist in the field of survival 
prediction for C-SCLC. Despite the increasing application of ML 
technology in the medical field in recent years, research on 
constructing survival prediction models based on patient clinical 
characteristics for this relatively rare subtype of lung cancer remains 
scarce. Furthermore, even though ML models exhibit impressive 
predictive performance, their “black box” nature (8), the difficulty in 
directly explaining the mechanism behind the model’s predictions 
—limits their widespread application in clinical decision-making. 

The healthcare sector has witnessed substantial growth in the 
utilization of ML technology in recent years, demonstrating 
impressive proficiency in data processing and pattern recognition 
(9–11). Concurrently, clinical researchers have been diligently 
employing a spectrum of ML technologies to furnish evidence-
based recommendations for cancer management. As the tumor with 
the highest incidence, lung cancer understandably commands 
substantial attention, and discernible progress has been achieved 
in its immunotherapy, patient screening, and radiomics (12–14), 
with relatively few studies investigating survival prediction models 
02 
for C-SCLC patients. Additionally, although some research has 
made progress in exploring the interpretability of ML models, 
studies on the interpretability of survival prediction models 
remain limited. 

In the study by Yang et al. (15) the clinical features of C-SCLC 
patients were integrated to successfully construct a high-
performance survival prediction model (15). In our study, we 
extracted more detailed clinical characteristics of patients from 
the SEER database. We then compared the performance of four 
machine learning algorithms and identified a model with the most 
outstanding performance. Finally, we externally validated this 
model  using  data  from  154  Chinese  C-SCLC  patients,  
demonstrating the model’s predictive accuracy across different 
racial groups, and developed a web-based tool for use by medical 
practitioners worldwide. ML models often lack interpretability, 
which makes it difficult for physicians to understand and trust 
their predictions. This issue limits their practical application in 
clinical decision-making. To overcome the “black-box” nature of 
these models, we used SHAP (SHapley Additive exPlanations) 
technology to elucidate the predictions of the ML model and 
provide visual representations of the impact of individual variables. 

The model not only has more robust predictive performance 
but is also accessible to physicians via an online platform. Moreover, 
it provides intuitive and understandable explanations of the 
prediction results, thereby helping them to formulate more 
precise treatment strategies. This study is expected to provide new 
insights and methods for clinical decision-making in C-SCLC 
patients and promote the further development of machine 
learning technology in oncological clinical research. 
2 Materials and methods 

2.1 Study data 

SEER Stat software (SEER*Stat, v8.4.0.1) was used to extract 
clinical data from 2010 to 2021 from the SEER database (Incidence ­
SEER Research Data, 17 Registries, Nov 2023 Sub (2000-2021)). To 
ensure the integrity of the data and the accuracy of the analysis, this 
study conducted data preprocessing by removing records with 
missing values. The screening and exclusion criteria were as 
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follows:(1) The primary sites of the tumor must be the lung and 
bronchus, coded as C34.0, C34.1, C34.2, C34.3, C34.8, and C34.9 
according to the International Classification of Disease for 
Oncology, Third Edition (ICD-O-3) topography;(2) The tumor 
must be pathologically confirmed as combined C-SCLC, coded as 
8045/3 in the ICD-O-3.(3) Patients will be excluded if their 
diagnostic methods are unknown or if they lack complete clinical 
information, treatment data, and survival data. A total of 1230 
patients with C-SCLC were ultimately recruited from the SEER 
database. Additionally, patients diagnosed and treated for C-SCLC 
at the Affiliated Hospital of Hebei University between 2000 and 
2021 were screened. Patients without complete clinical 
characteristic data and survival information were excluded. 
Consequently, 154 patients were ultimately included in the 
Frontiers in Oncology 03 
external validation group. Due to the research design, this study 
was approved by the Ethics Committee of the Affiliated Hospital of 
Hebei University (HDFT-LL-2022-075) and was conducted in 
accordance with the principles outlined in the Declaration of 
Helsinki. Figure 1 provides a clear depiction of the entire 
workflow of the proposed system. 
2.2 Data extraction and end point 

Data variables required for analysis were extracted, including 
age, sex, race, marital status, primary site, T stage, N stage, bone 
metastasis, brain metastasis, liver metastasis, lung metastasis, 
metastasis to other organs, surgery, radiotherapy, chemotherapy, 
FIGURE 1 

The workflow diagram for study design and patient screening. SEER, The Surveillance, Epidemiology, and End Results; ICD-O-3, International 
Classification of Diseases for Oncology; ROC, Receiver Operating Characteristic. 
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survival months, and vital status. The primary endpoint of this 
study was overall survival (OS). Survival time was calculated from 
the date of diagnosis to the date of the last follow-up, or until the 
date of death due to any cause. 
2.3 Statistical analysis 

Statistical analyses were performed using R version 4.2.3 and 
python version 3.11.4. The cut-off points for continuous variables 
were ascertained using X-tile software (version 3.6.1) and 
subsequently transformed into categorical variables. A descriptive 
analysis of the clinical baseline characteristics of the enrolled 
patients was performed, and the chi-square test was employed to 
assess differences in features between the training and validation 
groups. We conducted univariate Cox proportional hazards 
regression analysis using the data from the training cohort of 
patients to identify variables that are statistically significantly 
associated with patient survival outcomes. Subsequently, these 
significant variables were included in a multivariate Cox 
proportional hazards regression model. All statistical tests were 
two-tailed, with a significance level set at p < 0.05. 
2.4 Model construction and evaluation 
metrics 

Based on the selected variables, we proceeded to incorporate 
them into four distinct ML models: Logistic Regression (LR), 
Support Vector Machine (SVM), Random Forest (RF), and 
eXtreme Gradient Boosting (XGBoost). Grid search methods were 
used to determine the best performing hyperparameters for the four 
models. We used 10-fold cross-validation to determine the best 
performance. To evaluate the performance of the four models, we 
compared their AUC, accuracy, sensitivity, and specificity in both 
the validation and training sets. The hyperparameters selected for 
the final XGBoost model were as follows: colsample_bytree: 1, 
learning_rate: 0.3, max_depth: 8, min_child_weight: 4, 
n_estimators: 20, reg_lambda: 0.5, subsample: 1. The calibration 
curve comparing the mean predicted survival rate with the actual 
survival rate was used to assess the calibration of the model. 
Decision curve analysis (DCA) was performed by calculating the 
net benefits for a range of threshold probabilities to assess the 
clinical utility of the model (16). 
2.5 SHAP explainability analysis 

We employed SHAP to interpret the most effective predictive 
model. For tree-based models, TreeExplainer was employed due to 
its computational efficiency and precise SHAP value calculations 
(17). In contrast, KernelExplainer—a model-agnostic alternative— 
was applied to other model types, though it is slower and less precise 
(18). The choice of explainer depended on the model architecture 
and the trade-off between speed and flexibility. To rank features by 
Frontiers in Oncology 04
importance, we calculated their mean absolute SHAP values. This 
approach not only quantifies the global contribution of each feature 
but  a l so  r evea l s  how  ind iv idua l  f e a ture s  in  fl uence  
specific predictions. 
3 Results 

3.1 Baseline characteristics 

From the SEER database, a total of 1,230 patients were selected 
as the training cohort. Among them, 60% of the patients were ≤71 
years old, 26% were between 72-79 years old, and 14% were ≥80 
years old. The gender distribution was 56% male and 44% female. 
Regarding the primary tumor location, 52% of the patients had their 
primary site in the main bronchus, 30% in the upper right lobe, 
3.5% in the middle right lobe, 15% in the lower right lobe, 26% in 
the upper left lobe, 11% in the lower left lobe, and 11% in 
unspecified locations. Additionally, a validation cohort of 154 
patients was constituted, with 64%, 21%, and 14% of the patients 
belonging to the aforementioned age groups, respectively; 68% were 
male and 32% were female. Detailed demographic and clinical 
characteristics are shown in Table 1. 
3.2 Prognosis analysis of C-SCLC 

To identify prognostic variables, univariate and multivariate 
Cox regression analyses of overall survival (OS) were performed for 
patients with C-SCLC from the SEER database. The following 
variables were associated with OS: gender, age (≤71 years, 72-79 
years, ≥80 years), T stage, N stage, surgery, chemotherapy, 
radiotherapy, bone metastasis, brain metastasis, liver metastasis 
and other distant metastases were correlated with patient survival 
outcomes (Table 2, P<0.05). 
3.3 Performance comparison and 
Identification of the final model 

Based on the aforementioned results, we incorporated 11 
independent risk factors, including gender, age (≤71 years, 72-79 
years, ≥80 years), T stage, N stage, surgery, chemotherapy, 
radiotherapy, bone metastasis, brain metastasis, liver metastasis 
and other distant metastases, into four distinct machine learning 
models to evaluate their predictive performance in both the training 
and validation groups. Utilizing a 10-fold cross-validation method, 
the predictive capabilities of the four ML models were thoroughly 
evaluated (Figure 2). 

The SVM model demonstrated AUC values of 0.932, 0.901, and 
0.866 in the training groups for predicting 1-year, 3-year, and 5-year 
overall survival (OS), respectively. However, in the validation 
groups, the AUC values decreased to 0.764, 0.706, and 0.818. This 
indicates overfitting of the model. The RF model exhibited a similar 
situation, with excellent performance in the training groups but a 
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TABLE 1 Demographics and characteristics of patients in training and testing group. 

Group 

Variable Overall 
N=13841 

Validation cohort from China 
N 1541 

Training cohort from SEER database 
N 12301 P-value2 

Sex n (%) 0.002 

Female 612 (44) 50 (32) 562 (46) 

Male 772 (56) 104 (68) 668 (54) 

Age n (%) 0.409 

≤71 832 (60) 99 (64) 733 (60) 

72-79 357 (26) 33 (21) 324 (26) 

≥80 195 (14) 22 (14) 173 (14) 

Marital status n (%) 0.158 

Married 1104 (80) 114 (74) 990 (80) 

Unmarried 216 (16) 30 (19) 186 (15) 

Unknown 64 (4.6) 10 (6.5) 54 (4.4) 

Primary Site n (%) 0.335 

Main bronchus 72 (5.2) 12 (7.8) 60 (4.9) 

Right upper lobe 403 (29) 46 (30) 357 (29) 

Right middle lobe 48 (3.5) 5 (3.2) 43 (3.5) 

Right lower lobe 203 (15) 18 (12) 185 (15) 

Left upper lobe 358 (26) 38 (25) 320 (26) 

Left lower lobe 154 (11) 13 (8.4) 141 (11) 

Unspecific 146 (11) 22 (14) 124 (10) 

T n (%) 0.096 

T1 322 (23) 37 (24) 285 (23) 

T2 355 (26) 28 (18) 327 (27) 

T3 249 (18) 25 (16) 224 (18) 

T4 340 (25) 48 (31) 292 (24) 

TX 118 (8.5) 16 (10) 102 (8.3) 

N n (%) 0.025 

N0 465 (34) 36 (23) 429 (35) 

N1 139 (10) 12 (7.8) 127 (10) 

N2 500 (36) 67 (44) 433 (35) 

N3 222 (16) 31 (20) 191 (16) 

NX 58 (4.2) 8 (5.2) 50 (4.1) 

Bone metastasis 
n (%) 

0.350 

No/Unknown 1168 (84) 126 (82) 1042 (85) 

Yes 216 (16) 28 (18) 188 (15) 

(Continued) 
F
rontiers in Oncology 
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significant drop in AUC values in the validation groups. The 
XGBoost model performed well in predicting 1-year, 3-year, and 
5-year survival in C-SCLC patients. The training group AUCs were 
0.913 (95% CI: 0.889 - 0.937), 0.901 (95% CI: 0.882 - 0.921), and 
0.893 (95% CI: 0.875 - 0.911). The validation group AUCs were 
0.849 (95% CI: 0.777 - 0.921), 0.830 (95% CI: 0.763 - 0.897), and 
0.811 (95% CI: 0.762 - 0.859) (Figure 3). The XGBoost model 
demonstrates exceptional performance across accuracy, precision, 
and sensitivity metrics, which substantiates its superior 
generalization capability over the other three ML models. 
Ultimately, the XGBoost model was selected as the final model 
and underwent a more comprehensive evaluation. 

In the training cohort and validation cohort, the Brier values 
were 0.119 (95% CI, 0.088-0.152) and 0.122 (95% CI, 0.092-0.156), 
respectively (Figure 4). To further assess the efficacy of the XGBoost 
Frontiers in Oncology 06
model, clinical decision curves were constructed to appraise its 
clinical utility. The clinical decision curves for both the training and 
validation sets demonstrate that the model’s performance surpasses 
the “treat all” and “treat none” strategies across a broad range of 
threshold probabilities (Figure 5). This demonstrates the 
remarkable clinical applicability of the models, confirming their 
effectiveness in facilitating clinical decision-making. 
3.4 The significance of features in ML 
models 

We utilized the SHAP diagram to vividly illustrate the 
importance of each feature in our mode (Figure 6A). The left-
hand side of the graph enumerates all the features. The x-axis 
= =

TABLE 1 Continued 

Group 

Variable 
Overall 
N=13841 

Validation cohort from China 
N 1541 

Training cohort from SEER database 
N 12301 P-value2 

Brain metastasis 
n (%) 

0.384 

No/Unknown 1191 (86) 129 (84) 1062 (86) 

Yes 193 (14) 25 (16) 168 (14) 

Liver metastasis 
n (%) 

0.035 

No/Unknown 1168 (84) 121 (79) 1047 (85) 

Yes 216 (16) 33 (21) 183 (15) 

Lung metastasis 
n (%) 

0.958 

No/Unknown 1224 (88) 136 (88) 1088 (88) 

Yes 160 (12) 18 (12) 142 (12) 

Others metastasis 
n (%) 

0.391 

No/Unknown 1249 (90) 136 (88) 1113 (90) 

Yes 135 (9.8) 18 (12) 117 (9.5) 

Surgery n (%) 0.013 

No/Unknown 1027 (74) 127 (82) 900 (73) 

Yes 357 (26) 27 (18) 330 (27) 

Radiatherapy n (%) 0.194 

No/Unknown 751 (54) 76 (49) 675 (55) 

Yes 633 (46) 78 (51) 555 (45) 

Chemotherapy 
n (%) 

0.009 

No/Unknown 462 (33) 37 (24) 425 (35) 

Yes 922 (67) 117 (76) 805 (65) 
 

1Median (IQR) or Frequency (%). 
2Pearson’s Chi-squared test. 
frontiersin.org 

https://doi.org/10.3389/fonc.2025.1633635
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1633635 
depicts SHAP values, which quantify the influence exerted by each 
feature on the model’s output. Positive SHAP values signify an 
increase in the predicted outcome due to the feature, whereas 
negative values denote a decrease. The color gradient, spanning 
from blue to red, signifies the range of feature values from low to 
high. Specifically, in the case of “N stage”, blue dots symbolize lower 
stages, while red dots represent higher stages. The scatter of dots for 
each feature visualizes the varying impacts of that feature on the 
model’s predictions across its value spectrum. Dots situated farther 
from the origin (0) indicate a more pronounced effect of the feature 
on the model’s output. Figure 6B displays the mean absolute SHAP 
values, highlighting the average impact of each feature on the 
model’s output. N stage is the most critical feature, followed by T 
stage and Radiotherapy, which also significantly influence survival 
Frontiers in Oncology 07 
prognosis. Surgery, sex, and age also play notable roles, but their 
impact diminishes in order. 
3.5 Individualized model interpretability 
using SHAP 

To elucidate the model’s decision-making process at an 
individual level, we performed an in-depth interpretability 
analysis on two exemplary samples, as depicted. In the first SHAP 
sample plot (Figure 6C), three features were presented to illustrate 
their contributions to the model’s predictions: chemotherapy and 
bone metastasis have a positive impact on the model’s predictions, 
while radiotherapy has a negative impact on the model’s predicted 
FIGURE 2 

(A) Prediction performance of four models in the training group. (B) Prediction performance of four models in the validation group. ACC, Accuracy; 
AUC, Area Under the Curve; SENS, Sensitivity; SPEC, Specificity; LR, Logistic Regression; SVM, Support Vector Machine; RF, Random Forest; XGBoost, 
Extreme Gradient Boosting. 
TABLE 2 Univariate and multivariate Cox analysis of prognostic factors. 

Characteristics Uni-HR Uni-CI Uni-P Multi-HR Multi-CI Multi-P 

Sex 1.166 1.004-1.355 0.044 1.208 1.035-1.409 0.016 

Age 1.235 1.116-1.368 <0.001 1.258 1.131-1.398 <0.001 

Marital status 0.909 0.789-1.047 0.186 

Race 0.972 0.84-1.126 0.708 

Primary Site 1.079 1.032-1.127 0.001 

T 1.315 1.242-1.392 <0.001 1.122 1.051-1.198 0.001 

N 1.387 1.304-1.476 <0.001 1.226 1.14-1.319 <0.001 

Bone metastasis 2.353 1.923-2.879 <0.001 1.398 1.114-1.756 0.004 

Brain metastasis 1.782 1.436-2.212 <0.001 1.493 1.179-1.89 0.001 

Liver metastasis 2.57 2.102-3.143 <0.001 1.515 1.211-1.895 <0.001 

Lung metastasis 2.181 1.76-2.703 <0.001 1.159 0.918-1.462 0.215 

Others metastasis 1.585 1.239-2.028 <0.001 1.331 1.019-1.739 0.036 

Surgery 0.362 0.299-0.437 <0.001 0.415 0.328-0.526 <0.001 

Radiatherapy 0.863 0.743-1.003 0.054 0.659 0.552-0.787 <0.001 

Chemotherapy 0.705 0.603-0.824 <0.001 0.5 0.418-0.598 <0.001 
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value in this sample. It can also be observed that the factor of bone 
metastasis has the highest influence on the model’s output value. In 
the second SHAP sample plot (Figure 6D), it has been observed that 
age between 77-79 years, radiotherapy, and stage N0 have a negative 
impact on the model’s predicted values, while stage T2 has a 
positive impact, albeit a small one. Additionally, stage N0 has the 
greatest influence on the model’s final output values. 
3.6 Web-based predictive tools 

In order to enhance the clinical utility of the predictive model, 
we have constructed an interpretable web-based clinical prediction 
tool for forecasting patients’ 1-year survival probability (http:// 
www.xsmartanalysis.com/model/list/predict/model/html? 
mid=21255&symbol=2173ECSk6aW9dh146485). 
Frontiers in Oncology 08
4 Discussion 

C-SCLC is an exceptionally lethal and heterogeneous subtype of 
lung cancer that remains relatively uncommon (19, 20). SCLC 
comprises 15% of all lung cancer diagnoses (21), with C-SCLC 
accounting for 5%~28% of SCLC cases (2). Nevertheless, 
advancements in diagnostic techniques may be leading to an increase 
in the incidence of combined small cell lung cancer (22). Despite the 
efforts of scholars from all fields, the prognosis for C-SCLC patients 
remains dire, highlighting the pressing need for refined prognostic 
models (23–25). 

In the study by Yang et al. (15), researchers developed a 
nomogram model for predicting the prognosis of patients with C­
SCLC based on clinical features including age, sex, TNM stage, 
surgery, and chemotherapy (15). However, this model did not 
undergo external validation. In contrast, our study further refined 
FIGURE 4 

XGBoost model calibration curves for predicting 1-year OS: (A) Calibration curves for the training group. (B) Calibration curves for the validation 
group. OS, overall survival. Calibration curves for the XGBoost model illustrating the agreement between predicted and observed 1-year OS in 
training and validation cohorts. OS, overall survival. XGBoost, Extreme Gradient Boosting. 
FIGURE 3 

ROC curves for the XGBoost model’s survival predictions in the training and validation group at 1-year (A), 3-year (B), and 5-year (C). ROC curves for 
the XGBoost model show that the model performs excellently on both the training and validation sets. 
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FIGURE 6 

Interpretability analysis of XGBoost models: (A) SHAP dendrogram of features.X-axis: SHAP values, which indicate the impact of each feature on the 
model’s output. Positive values increase the predicted value, while negative values decrease it.Y-axis: Different features. Color: Represents the value 
of the feature, with red indicating high values and blue indicating low values. Dots: Each dot represents the SHAP value for a specific sample. (B) 
Importance ranking plot of features.X-axis: The mean SHAP value of each feature, indicating the average impact of the feature on the model’s 
output.Y-axis: The names of the features. Bars: The length of each bar represents the importance of the feature, with longer bars indicating a greater 
impact on the model’s output. Interpretability analysis of 2 independent samples:(C) Sample A. (D) Sample B. 
FIGURE 5 

DCA of the XGBoost model: (A) DCA for the training group. (B) DCA for the validation group. The clinical decision curves for both the training and 
validation groups demonstrate that the model outperforms the “treat all” and “treat none” strategies across a broad range of threshold probabilities. 
DCA, Decision curve analysis; XGBoost, Extreme Gradient Boosting. 
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tumor metastasis status, demonstrating its significant contribution 
within the model. Additionally, we performed external validation 
using an independent cohort of Chinese patients to assess the 
model’s predictive performance across different racial groups. We 
also employed the SHAP method to interpret the ‘black-box’ model, 
thereby enhancing both its credibility and clinical utility. Finally, we 
developed a web-based tool to facilitate the practical application of 
this model in clinical settings. 

At present, the treatment of C-SCLC is based on the National 
Comprehensive Cancer Network (NCCN) guidelines for SCLC, which 
do not further refine the standard treatment protocols for this specific 
type of cancer (26, 27). In prior research, the effect of radiotherapy on 
patients with C-SCLC remained uncertain (2). To date, no large-scale 
prospective clinical trials have been conducted to evaluate the role of 
thoracic radiotherapy in the treatment of patients with C-SCLC. In our 
study, multivariable Cox regression analysis showed that C-SCLC 
patients receiving radiotherapy had a better prognosis, with an HR 
of 0.659 (95% CI: 0.552-0.787, p<0.001). This indicates that 
radiotherapy is an independent prognostic factor for all-cause 
mortality. Surgical intervention is gaining increasing attention in 
SCLC patients and has also sparked significant interest in the context 
of composite carcinoma (3, 28). Our study confirmed that surgery is 
also an independent prognostic factor for all-cause mortality in 
C-SCLC patients, with a hazard ratio (HR) of 0.415, a 95% 
confidence interval (CI) of 0.328-0.526, and a p-value of less than 0.001. 

In reality, at the time of initial diagnosis, the vast majority of C­
SCLC patients are already in the advanced stage and have lost the 
opportunity for surgery. The reason may be that most patients are 
diagnosed through surgical pathology. In C-SCLC, the histological 
component of SCLC accounts for the vast majority of the tumor 
tissue, and the diagnostic rates of CT-guided lung biopsy, 
bronchoscopy biopsy, or cytological examination are relatively low. 
The reason is that ordinary biopsy or cytological examination yields a 
small amount of tissue sample, which is prone to missed diagnosis or 
misdiagnosis, and cannot accurately determine the tissue type of the 
tumor (29). Therefore, we believe that for limited-stage SCLC 
patients, the indications for surgery can be appropriately expanded 
according to the situation. This can avoid the possibility of 
misdiagnosis due to insufficient biopsy samples at the initial 
examination and  can also confirm whether there is transformation 
to N-SCLC (Non-Small Cell Lung Cancer). 

In terms of model interpretability, we choose the SHAP 
technique to address the “black box” issue of machine learning 
models, calculating the incremental effect of each feature on the 
model output and leveraging additive explanation models (30). The 
reason is that, unlike LIME (Local Interpretable Model-Agnostic 
Explanations) which focuses on analyzing individual predictions and 
their causes and is suitable for personalized interventions, SHAP has 
more advantages in understanding overall feature importance, 
identifying consistent patterns, determining the priority of risk 
factors, and guiding group-level interventions (31, 32). 

Our research shows that surgery and radiotherapy, along with T 
and N staging, significantly impact model output. An interactive web-
based prediction tool was developed to support clinical decision-
making. For a C-SCLC patient who hasn’t had radiotherapy or 
Frontiers in Oncology 10 
surgery, we can input their clinical characteristics into the tool to get 
a prediction result. By assuming they receive radiotherapy or surgery 
and getting another prediction result, we can clearly see the treatment 
plan’s impact on survival probability. This provides a strong basis for 
clinical decision-making. For confused or worried patients, doctors can 
show them the SHAP analysis chart to explain the effects of various 
factors on prognosis and the reasons for the chosen treatment plan. 
After understanding the impact of different treatment plans on survival 
probability, patients can discuss the most appropriate treatment plan 
with doctors based on their own values, quality of life, and expected 
lifespan. This patient-participatory treatment decision-making model 
will improve patients’ treatment compliance and their treatment 
experience and psychological state. The importance of interpretability  
in clinical applications of ML models cannot be overemphasized, as it 
fosters trust and facilitates the integration of these models into clinical 
practice (33, 34). These findings corroborate with prior research that 
has underscored the potential of ML in predicting survival outcomes 
across various cancer types (33, 35, 36). 

As far as we know, this is the largest study that has applied machine 
learning to the prognostics of C-SCLC. Nevertheless, there are several 
significant  limitations in  this study.  Firstly, the clinical pathological 
diagnosis in the SEER database cannot determine the existence of 
composite components, which have a significant impact on the 
treatment plan selection and prognosis of C-SCLC patients (37). 
Secondly, the SEER database lacks information on tumor markers, 
smoking history, genetic history, gene mutation information, family 
history, as well as specific chemotherapy and radiotherapy regimens, 
molecular targeted therapy, and immunotherapy. Our study also did 
not involve the impact of these factors on the prognosis of C-SCLC 
patients. Screening these factors and incorporating them into modeling 
is expected to yield a clinical prediction model with higher 
discrimination and accuracy. Lastly, when this machine learning 
model is validated in a larger external cohort, the validation results 
may change. In the future, large-scale prospective multicenter cohorts 
are needed  to  verify  and optimize this model.  
5 Conclusion 

In this study, we innovatively applied the XGBoost-based machine 
learning model to develop a survival prediction system for C-SCLC 
patients. By leveraging demographic characteristics and pathological 
indicators obtained from the SEER database, we prioritized the 
significance of various features. The model’s performance was 
comprehensively assessed using ROC curves, precision curves, 
calibration plots, and decision curves. Additionally, an external 
validation cohort was established to further corroborate the model’s 
reliability. Ultimately, we created an interactive web-based prediction 
tool to support clinical decision-making. 
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