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Background: Artificial intelligence (Al) has emerged as a promising adjunct to
radiologist interpretation in oncology imaging. This systematic review and meta-
analysis compares the diagnostic performance of Al systems versus radiologists
in predicting lung cancer treatment response, focusing solely on treatment
response rather than diagnosis.

Methods: We systematically searched PubMed, Embase, Scopus, Web of
Science, and the Cochrane Library from inception to March 31, 2025; Google
Scholar and CINAHL were used for citation chasing/grey literature. The review
protocol was prospectively registered in PROSPERO (CRD420251048243).
Studies directly comparing Al-based imaging analysis with radiologist
interpretation for predicting treatment response in lung cancer were included.
Two reviewers extracted data independently (Cohen’s k¥ = 0.87). We pooled
sensitivity, specificity, accuracy, and risk differences using DerSimonian—Laird
random-effects models. Heterogeneity (1?), threshold effects (Spearman
correlation), and publication bias (funnel plots, Egger's test) were assessed.
Subgroups were prespecified by imaging modality and therapy class.

Results: Eleven retrospective studies (n = 6,615) were included. Pooled sensitivity
for Al was 0.9 (95% Cl: 0.8-0.9; 12 = 58%), specificity 0.8 (95% Cl: 0.8-0.9; I* =
52%), and accuracy 0.9 (95% Cl: 0.8-0.9; pooled OR = 1.4, 95% ClI: 1.2-1.7). Risk
difference favored Al by 0.06 for sensitivity and 0.04 for specificity. Al's advantage
was most apparent in CT and PET/CT, with smaller/non-significant gains in MRI.
Egger’s test suggested no significant publication bias (p = 0.21).

Conclusion: Al demonstrates modest but statistically significant superiority over
radiologists in predicting lung cancer treatment response, particularly in CT and
PET/CT imaging. However, generalizability is limited by retrospective study
dominance, incomplete demographic reporting, lack of regulatory clearance,
and minimal cost-effectiveness evaluation. Prospective, multicenter trials
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incorporating explainable Al (e.g., SHAP, Grad-CAM), equity assessments, and
formal economic analyses are needed.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/,
identifier CRD420251048243.

artificial intelligence, lung cancer, treatment response, radiomics, diagnostic accuracy,
machine learning, predictive imaging, precision oncology

Introduction

Lung cancer remains the leading cause of cancer-related
mortality worldwide, with non-small cell lung cancer (NSCLC)
accounting for ~85% of cases (1). Despite advances in targeted
therapy and immunotherapy, many patients, particularly those with
advanced-stage disease, continue to experience poor outcomes,
underscoring the importance of early, accurate treatment
response assessment to guide timely therapeutic decisions and
avoid ineffective toxicity (2, 3).

Radiologic response assessment in routine practice relies
primarily on standardized criteria such as RECIST 1.1, applied by
expert radiologists across serial imaging studies (4). However, inter-
observer variability and qualitative thresholds can limit
reproducibility and delay recognition of subtle treatment effects
(e.g., inflammatory changes, pseudoprogression), potentially leading
to under or over estimating efficacy (5, 6).

Artificial intelligence (AI) systems spanning radiomics pipelines
and deep learning architectures can quantify high-dimensional image
features and temporal changes beyond human perception, promising
earlier and potentially more objective prediction of treatment response
(7-10). Early studies in thoracic oncology suggest Al may match or
exceed radiologists for specific tasks (e.g., response prediction on CT or
PET/CT). Still, methodological heterogeneity, inconsistent reporting,
and limited prospective validation hinder confident clinical translation.

Prior reviews have mainly focused on diagnosis or broad oncologic
use cases rather than the comparative performance of Al versus
radiologists specifically for treatment response prediction in lung
cancer. To address this gap, the present work exclusively evaluates
comparative diagnostic performance for treatment response, not initial
diagnosis, aligning the title, eligibility criteria, abstract, and
analyses accordingly.

We conducted a PRISMA-guided systematic review and meta-
analysis to synthesize pooled sensitivity, specificity, and accuracy for Al
systems versus radiologists in predicting lung cancer treatment
response, with prespecified subgroup analyses (by imaging modality
and clinical context) and comprehensive assessment of heterogeneity
(I?), threshold effects, sensitivity analyses (leave-one-out), and
publication bias (funnel/Egger). We also expand on interpretability
(e.g, SHAP, Grad-CAM), demographic equity, regulatory status, and
economic feasibility to inform clinical adoption.
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Methods
Study design and reporting

We conducted a systematic review and meta-analysis following
PRISMA 2020 guidelines (11). The PRISMA flow diagram appears
as Figure 1, and full database-specific search strings are provided in
Supplementary Table S1 to ensure reproducibility. The protocol was
registered in PROSPERO under the ID CRD420251048243.

Databases and search strategy

We searched five core databases from inception through March
31, 2025: PubMed/MEDLINE, Embase, Scopus, Web of Science,
and the Cochrane Library. To minimize confusion, Google Scholar
and CINAHL were used only for citation chasing/grey literature
and are not counted among the core databases. Search terms
combined controlled vocabulary and keywords related to lung
cancer, artificial intelligence/deep learning/radiomics, treatment
response/assessment, and diagnostic accuracy.

Searches were run in PubMed/MEDLINE, Embase, Scopus,
Web of Science, and the Cochrane Library from inception to
March 31, 2025; Google Scholar and CINAHL were used for grey
literature and backward/forward citation chasing. The strategy
combined controlled vocabulary (e.g., MeSH/Emtree for “Lung

» o« » »

Neoplasms,” “Artificial Intelligence,” “Machine Learning,” “Deep

» o«

Learning,” “Treatment Outcome,” and “Image Interpretation,
Computer-Assisted”) and keywords (e.g., “lung cancer,” NSCLC,
SCLC, radiomics, “convolutional neural network”/CNN, “treatment
response,” RECIST, “pathologic response,” radiologist*, radiology,
predict*, prognos*, assess*). No language limits were applied at the
search stage. Records were deduplicated (reference manager plus
manual verification) before screening. Full database-specific strings

are provided in Supplementary Table S1.
Eligibility criteria

We included peer-reviewed studies directly comparing AI
systems with radiologist interpretation for predicting treatment
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FIGURE 1
PRISMA flow diagram of study selection.

response in lung cancer using imaging (CT, PET/CT, or MRI), and
reporting sufficient data for sensitivity, specificity, accuracy, or risk
difference. We excluded diagnosis-only studies (screening/staging
without response assessment), non-comparative Al reports,
conference abstracts without complete data, non-human studies,
and papers lacking extractable 2x2 diagnostic data.

Screening, data extraction, and inter-rater
reliability

Titles/abstracts and full texts were screened independently by two
reviewers, with discrepancies resolved through consensus or
adjudication by a third reviewer. Inter-rater reliability was excellent
(Cohen’s k¥ = 0.87) (12). Extracted variables included study
characteristics (author, year, country, design), patient demographics
(age, sex, and, when available, ethnicity), cancer type and stage,
imaging modality, AI architecture and training/validation details,
radiologist comparator experience, definition of “treatment
response,” and diagnostic performance metrics (sensitivity,
specificity, accuracy, and AUC). We also recorded regulatory status
(FDA/CE vs research prototype) and equity-relevant reporting, such
as subgroup performance by sex or ethnicity.
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Risk of bias assessment

Two independent reviewers appraised the risk of bias using
QUADAS-2, which was adapted to Al diagnostic accuracy studies;
consensus resolved discrepancies (13).

Outcomes

Primary outcomes were pooled sensitivity and specificity for Al
versus radiologists in predicting treatment response. Secondary
outcomes included overall diagnostic accuracy and risk difference
between AI and radiologist performance. Prespecified subgroups
included imaging modality (CT, PET/CT, MRI), disease stage (early
vs advanced), and therapy class (e.g., EGFR-targeted therapy,
immunotherapy, chemotherapy).

Statistical analysis
Analyses were performed in Review Manager (RevMan) version

5.4 (Cochrane Collaboration) (14). We used random-effects
(DerSimonian-Laird) models to pool effects and 95% CIs (15).
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Sensitivity and specificity were summarized as risk ratios (RRs) to
provide a directly interpretable relative change in detection
performance, whereas overall diagnostic accuracy was summarized
as odds ratios (ORs) because accuracy integrates both true-positive
and true-negative rates and ORs are standard for that metric in
diagnostic meta-analyses; adopting a single measure for all three
outcomes can misrepresent variance structure.

Heterogeneity, threshold effect, and
robustness

Between-study heterogeneity was assessed with %> and
quantified as I* (low <25%, moderate 25-50%, high >50%) (16).
We assessed potential threshold effects (variable response
definitions/decision thresholds) using Spearman’s correlation
between sensitivity and false-positive rate (17). Leave-one-out
sensitivity analyses tested robustness to any single study.

Publication bias

The Funnel plots and Egger’s regression test were used to
evaluate small-study effects/publication bias (18).

Population overlap

Because several studies originated from the same institutions,
we screened for potential cohort overlap; when uncertainty
remained, corresponding authors were contacted. Where
confirmation was unavailable, the possibility of residual overlap is
acknowledged as a limitation and was explored qualitatively in
sensitivity checks.

Results
Study selection and characteristics

The database search identified 2,847 records across seven
databases (PubMed: 1,124; Embase: 856; Scopus: 423; Web of
Science: 267; Cochrane Library: 89; Google Scholar: 67; CINAHL:
21). After deduplication (n = 892), 1,955 titles/abstracts were
screened; 45 full texts were assessed for eligibility. Eleven studies
met the inclusion criteria (Table 1), encompassing 6,615 patients
undergoing treatment response assessment.

The included studies spanned 2018-2024 and were conducted in
the United States (n=4), China (n=3), Germany (n=2), South Korea
(n=1), and Japan (n=1), reflecting diverse populations and healthcare
settings. Imaging modalities comprised CT (n=5), PET/CT (n=4),
and MRI (n=2), with some multimodal approaches. All studies
directly compared Al performance against radiologist interpretation

Frontiers in Oncology

10.3389/fonc.2025.1634694

for predicting treatment response using standardized outcomes
(RECIST, pathologic response, or survival proxies).

Pooled diagnostic performance

Across studies, Al showed modest but statistically significant
superiority over radiologists. Pooled sensitivity: 0.9 (95% CI: 0.8-
0.9; I? = 58%; Figure 2); pooled specificity: 0.8 (95% CI: 0.8-0.9; I* =
52%; Figure 3); accuracy: 0.9 (95% CI: 0.8-0.9), with pooled OR for
accuracy = 1.4 (95% CI: 1.2-1.7; Figure 4). Risk differences favored
AT by 0.06 (sensitivity) and 0.04 (specificity).

Subgroup analysis by imaging modality

ATl’s advantage was most pronounced in PET/CT and CT
subgroups; MRI showed smaller/non-significant gains. See Table 2.

Sensitivity analysis, threshold effect, and publication bias.

Leave-one-out analyses showed consistent pooled effects,
indicating robustness. No significant threshold effect was detected
(Spearman correlation not substantial). Egger’s test revealed no
significant small-study effects for sensitivity, specificity, or accuracy
(e.g., overall p = 0.21). The visual inspection of the funnel plot
showed no meaningful asymmetry.

PRISMA flow

Figure 1. PRISMA flow diagram of study selection.

Discussion

This meta-analysis demonstrates that artificial intelligence
models achieve statistically significant, albeit modest, superiority
over radiologists in predicting lung cancer treatment response, with
pooled sensitivity and specificity improvements of 6% and 4%,
respectively. These findings represent a meaningful advancement in
precision oncology, where even marginal gains in predictive
accuracy can translate to substantial clinical benefits given the
high stakes of treatment selection in lung cancer management.

The observed performance advantage was most pronounced in
PET and CT imaging, modalities that form the cornerstone of
treatment response evaluation in current clinical practice (19). This
modality-specific superiority likely reflects the inherent
characteristics of these imaging techniques and their alignment
with Al pattern recognition capabilities. PET imaging’s quantitative
metabolic information provides rich data for machine learning
algorithms to identify subtle changes in tumor glucose uptake
that may precede morphological changes detectable by human
interpretation. Similarly, CT’s high spatial resolution and
standardized acquisition protocols create consistent datasets that
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Study (first q 8 . Comparator Primary
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r) 9 P yp yp ging (radiologist) outcome
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Sarah A NR Canada/ Retrospective 45 edian 70 71% NSCLC NR Radiomics ML CT & PET Radiologists reatment
Netherlands (59-84) male response
Ret ti M 65— Statistical dels/logisti Treat t
Tu, Wei, et al. NR | China CLrospective 1 054 can NR  NSCLC &SCLC  NR atistical models/logistic - Radiologists reatmen
analysis 67 (not advanced ML) response
Hawkins, et al. NR | USA Retrospective 5, Median 671 \p  Nscic NR NR cr Radiologists Treatment
cohort (39-87) response
MacMahon, Heber, et al. = NR USA Observer- 100 Mean 614 NR NR NR V'fmcouver/Brock model Low-dose CT Radiologists Treatment
performance (SD 5.0) (risk) response
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X Retrospective 699 (EGFR-TKI Median EfficientNetV2-based X . Treatment
Deng, K s L. h LC (ADE N T 1
eng, Kexue, et a NR | China multicenter | 570; ICI 129) ~58-63 NR | NSCLC (ADE) R ESBP ¢ Radiologists response
South Retrospective Mean 62.8 Adeno 62.4%, Ensemble ML (BDT, Radiologists (trainee/ | Treatment
Yoo, , et al. NR 980 NR NR FDG PET/CT
00, Jang, e Korea diagnostic (SD 10.2) SqCC 35.8% SVM, LR, NN, forest) / competent/expert) response
L. . . - . X Treatment
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Choi, Hyewon, et al. NR ou .e rospe.c ve 676 + 141 edian NR re omlne‘m v NR 3D CNN (dense blocks) CT adiologists reatmen
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FIGURE 2
Forest plot of pooled sensitivity (Al vs radiologists).

facilitate robust AT model training and validation. In contrast, MRI-
only analyses did not show a statistically significant Al advantage in
our pooled results, underscoring the need for modality-
specific validation.

The predominance of convolutional neural network (CNN)-
based architectures among the evaluated Al systems aligns with
the established superiority of deep learning approaches in medical
image analysis (20). CNNs excel at hierarchical feature extraction,

0.5

0.9 1.0

Sensitivity

automatically identifying complex patterns across multiple scales
that may escape human perception. However, the absence of
regulatory approval for any evaluated systems highlights a
critical gap between research innovation and clinical translation
(21). This regulatory void raises fundamental questions about
quality assurance, liability frameworks, and reimbursement
mechanisms that must be addressed before widespread

clinical adoption.

Forest Plot: Al vs Radiologist Specificity in Lung Cancer Treatment Response
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FIGURE 3
Forest plot of pooled specificity (Al vs radiologists).
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Forest Plot: Al vs Radiologist Accuracy in Lung Cancer Treatment Response
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FIGURE 4
Forest plot of pooled accuracy (Al vs radiologists).

The clinical implications of Al-assisted treatment response
prediction extend beyond diagnostic accuracy to encompass
broader aspects of personalized cancer care. Accurate early
prediction of treatment response could enable adaptive therapy
strategies, allowing clinicians to modify treatment regimens before
resistance develops or toxicity accumulates. This paradigm shift
from reactive to proactive treatment management represents a
fundamental evolution in oncological practice, potentially
improving both survival outcomes and quality of life for patients
with lung cancer.

However, integrating Al into clinical decision-making
workflows presents complex challenges that transcend technical
performance metrics. The “black box” nature of deep learning
models creates interpretability barriers that may impede clinician
acceptance and patient trust. While several studies incorporated
explainable AT methods such as Gradient-weighted Class Activation
Mapping (Grad-CAM), none systematically evaluated their impact
on clinical decision-making or patient outcomes (22).
Complementary frameworks such as SHAP can also clarify
feature contributions (e.g., tumor texture, volume, or metabolic
intensity), and embedding these explanations into reporting/PACS
could facilitate human AI collaboration in practice (23).

The demographic homogeneity observed across the included
studies raises essential questions about AI generalizability and
health equity (24). The underrepresentation of diverse patient
populations in training datasets may perpetuate healthcare
disparities, as AI models may perform suboptimally in
underrepresented groups which is constant in other studies as
well. This concern is particularly relevant in lung cancer, where

Frontiers in Oncology

significant racial and socioeconomic disparities in outcomes already
exist. Ensuring equitable AI performance across diverse populations
will require deliberate efforts to include representative datasets and
conduct subgroup analyses during model development
and validation.

Economic considerations represent another critical dimension
of AI implementation that remains largely unexplored in the
current literature (25). While the direct costs of Al systems are
substantial, encompassing software licensing, hardware
infrastructure, and integration expenses, the potential for cost
savings through improved treatment selection and reduced
unnecessary interventions may justify these investments. The
economic burden of lung cancer treatment, exceeding $21 billion
annually in the United States, suggests that even modest
improvements in treatment response prediction could yield
significant healthcare savings through optimized resource
allocation and reduced treatment failures. Formal cost-
effectiveness analyses were not reported across the included
studies and should be incorporated prospectively.

The heterogeneity observed across studies in Al architectures,
training methodologies, and validation approaches reflects the
nascent state of the field and the absence of standardized
evaluation frameworks. This variability complicates direct
comparisons between AI systems and may contribute to the
moderate statistical heterogeneity observed in our meta-analysis
(I* values in the mild range). We found no evidence of a threshold
effect based on Spearman’s correlation, and leave-one-out
sensitivity analyses did not materially change the pooled
estimates, supporting the robustness of the findings. Funnel plot
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2 symmetry and Egger’s test were consistent with a low likelihood of
Q; . publication bias (p = 0.21), although selective reporting cannot be
2 = entirely excluded. Potential overlap of patient cohorts from the
E J‘g same institutions could not be wholly resolved and may have
é E modestly inflated pooled sample size estimates. Finally, the
2 E Eﬂ protocol for this review was not prospectively registered, which
%,,J § é introduces some risk of reporting bias despite our PRISMA-
2;; 3|2 g guided methods.
§ g‘b § N . “;; o The temporal dynamics of treatment respf)nse Predlctlon [.)r.esent
% 5 2 7:; ;253 5 o s i additional complexity that warrants consideration. Traditional
g g g E g E E _é 5 imaging-based response assessment typically occurs at predetermined
I Lé g é} % S E"E :; é intervals, often weeks to months after treatment initiation. AI models
é §° % :; '\;' 5 8 g § capable of earlier response prediction could enable more timely
e 6 b & = 666 &8 6 6 treatment modifications, potentially improving outcomes while
° = minimizing exposure to ineffective therapies. However, the optimal
% 'E%: timing for Al-assisted response prediction and its integration with
5|5 ;§ g existing clinical protocols requires further investigation.
_ >z Elel _ Future research should prioritize prospective, multicenter
EN § [‘; 2 s 8 £ § i validation studies that address the limitations identified in this meta-
§ é g g § § E g § analysis. Such studies should incorporate diverse patient populations,
= § S v 3 05 § ; S ¢ standardized imaging protocols, and comprehensive economic
S|e|s|#|s|S|=|s|*|=s|° evaluations to provide robust evidence for clinical implementation.
= Additionally, the development of hybrid human-AI decision support
% systems that leverage the complementary strengths of both approaches
Y = may offer superior performance compared to either modality alone.
= g The findings of this meta-analysis position Al as a promising adjunct to
g R ‘; N radiologist interpretation rather than a replacement technology (26).
& g E g é é The modest but consistent performance improvements observed across
g c%: % g g g § \f/ multiple studies suggest that Al can enhance human expertise while
§ :;’ § s £ 2 = 3 % 2 ; 2 presewmg the critical role of chl_uce}l judgment in cancer care. This
collaborative approach may optimize the benefits of both human
experience and machine precision, ultimately improving patient
% outcomes through more accurate and timely treatment
g E 2 g response prediction.
2 8 3 £
S R f - I Strengths and limitations
This meta-analysis provides one of the most comprehensive
evaluations comparing artificial intelligence (AI) and radiologist
$ = ;:% :%\D performance in predicting lung cancer treatment response. Key
L;, s f ::/ " 2 strengths include a large pooled sample size of 6,615 patients across
:g 3 g ) [,; ; " 2 2 11 independent studies, which confers strong statistical power. The
o 2 % é g g g % g E methodology adhered to PRISMA 2020 guidelines, incorporating a
2 2z 2 o2 o2 8 £ 8 £ g multi-database search strategy (PubMed, Embase, Scopus, Web of
3 Science, and Cochrane Library) with clearly defined inclusion criteria.
kY Multiple diagnostic performance metrics (sensitivity, specificity,
'g = accuracy, and risk difference) were analyzed using standardized
£ g ol % E ™ statistical models in RevMan, with transparent visualization through
g = E ?{ E ; % i‘% = | forest plots. Independent dual-reviewer screening and data extraction
g g s g g % g SR f g A enhanced methodological reliability, with inter-rater agreement
E, ‘% 5 g i 3 g é ; g E § ':g quantified (Cohen’s k¥ = 0.84). In addition, subgroup analyses by
~ i ; £ 2 ] ﬂzf E E %" 2. % & imaging modality (CT, PET, MRI) and clinical context (e.g.,
= g i ”% § = g i 4 g § i g advanced disease, EGFR-targeted therapy) provided clinically
E il Bl el Nl Rl Bl Bl el Mt B B g relevant insights.
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Several limitations should also be acknowledged. First, the
predominance of retrospective designs (10 of 11 studies) increases
susceptibility to selection bias and limits external validity. Second,
potential population overlap between studies from the same
institutions could not be fully resolved due to limited reporting,
potentially inflating pooled sample sizes. Third, heterogeneity in
imaging modalities, AI architectures, and “treatment response”
definitions may affect comparability and introduce threshold effects.
Fourth, incomplete demographic reporting across studies limits
assessment of equity and generalizability to diverse patient
populations. Fifth, none of the included AI systems had regulatory
clearance, restricting immediate clinical applicability. Sixth, cost-
effectiveness analyses were absent, despite economic feasibility being
critical for adoption in resource-limited healthcare systems. Seventh,
interpretability tools were rarely incorporated, with limited application
of explainable AT approaches such as Grad-CAM or SHAP. Finally,
while efforts were made to minimize reporting bias, publication bias
remains possible due to underreporting negative or neutral findings.

Conclusion

This meta-analysis demonstrates that AI models achieve
modest but statistically significant superiority over radiologists in
predicting lung cancer treatment response, with pooled gains in
sensitivity and accuracy, particularly in CT and PET imaging and in
subgroups with advanced disease or EGFR-targeted therapy. These
findings highlight AT’s potential as a valuable adjunct to human
expertise, capable of enhancing diagnostic precision while
maintaining comparable specificity and safety.

However, the predominance of retrospective studies, incomplete
demographic reporting, heterogeneity in Al architectures, and lack of
regulatory clearance limit the immediate generalizability of these results.
Furthermore, few studies have incorporated explainable AT methods or
assessed cost-effectiveness, which are factors critical for clinical adoption.

Future research should prioritize large-scale, multicenter,
prospective trials that evaluate AI in real-world workflows,
incorporate transparent and interpretable algorithms, assess equity
across diverse populations, and address economic feasibility. Al
integration should be conceptualized as augmenting, not replacing,
radiologist judgment, fostering a multidisciplinary, patient-centered
approach to lung cancer care. Additionally, the MRI-only subgroup
did not show a significant AT advantage, and publication bias appeared
unlikely based on Egger’s test (p = 0.21).
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