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Background: Artificial intelligence (AI) has emerged as a promising adjunct to

radiologist interpretation in oncology imaging. This systematic review and meta-

analysis compares the diagnostic performance of AI systems versus radiologists

in predicting lung cancer treatment response, focusing solely on treatment

response rather than diagnosis.

Methods: We systematically searched PubMed, Embase, Scopus, Web of

Science, and the Cochrane Library from inception to March 31, 2025; Google

Scholar and CINAHL were used for citation chasing/grey literature. The review

protocol was prospectively registered in PROSPERO (CRD420251048243).

Studies directly comparing AI-based imaging analysis with radiologist

interpretation for predicting treatment response in lung cancer were included.

Two reviewers extracted data independently (Cohen’s k = 0.87). We pooled

sensitivity, specificity, accuracy, and risk differences using DerSimonian–Laird

random-effects models. Heterogeneity (I²), threshold effects (Spearman

correlation), and publication bias (funnel plots, Egger’s test) were assessed.

Subgroups were prespecified by imaging modality and therapy class.

Results: Eleven retrospective studies (n = 6,615) were included. Pooled sensitivity

for AI was 0.9 (95% CI: 0.8–0.9; I² = 58%), specificity 0.8 (95% CI: 0.8–0.9; I² =

52%), and accuracy 0.9 (95% CI: 0.8–0.9; pooled OR = 1.4, 95% CI: 1.2–1.7). Risk

difference favored AI by 0.06 for sensitivity and 0.04 for specificity. AI’s advantage

was most apparent in CT and PET/CT, with smaller/non-significant gains in MRI.

Egger’s test suggested no significant publication bias (p = 0.21).

Conclusion: AI demonstrates modest but statistically significant superiority over

radiologists in predicting lung cancer treatment response, particularly in CT and

PET/CT imaging. However, generalizability is limited by retrospective study

dominance, incomplete demographic reporting, lack of regulatory clearance,

and minimal cost-effectiveness evaluation. Prospective, multicenter trials
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incorporating explainable AI (e.g., SHAP, Grad-CAM), equity assessments, and

formal economic analyses are needed.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/,

identifier CRD420251048243.
KEYWORDS

artificial intelligence, lung cancer, treatment response, radiomics, diagnostic accuracy,
machine learning, predictive imaging, precision oncology
Introduction

Lung cancer remains the leading cause of cancer-related

mortality worldwide, with non–small cell lung cancer (NSCLC)

accounting for ~85% of cases (1). Despite advances in targeted

therapy and immunotherapy, many patients, particularly those with

advanced-stage disease, continue to experience poor outcomes,

underscoring the importance of early, accurate treatment

response assessment to guide timely therapeutic decisions and

avoid ineffective toxicity (2, 3).

Radiologic response assessment in routine practice relies

primarily on standardized criteria such as RECIST 1.1, applied by

expert radiologists across serial imaging studies (4). However, inter-

observer variability and qualitative thresholds can limit

reproducibility and delay recognition of subtle treatment effects

(e.g., inflammatory changes, pseudoprogression), potentially leading

to under or over estimating efficacy (5, 6).

Artificial intelligence (AI) systems spanning radiomics pipelines

and deep learning architectures can quantify high-dimensional image

features and temporal changes beyond human perception, promising

earlier and potentially more objective prediction of treatment response

(7–10). Early studies in thoracic oncology suggest AI may match or

exceed radiologists for specific tasks (e.g., response prediction on CT or

PET/CT). Still, methodological heterogeneity, inconsistent reporting,

and limited prospective validation hinder confident clinical translation.

Prior reviews have mainly focused on diagnosis or broad oncologic

use cases rather than the comparative performance of AI versus

radiologists specifically for treatment response prediction in lung

cancer. To address this gap, the present work exclusively evaluates

comparative diagnostic performance for treatment response, not initial

diagnosis, aligning the title, eligibility criteria, abstract, and

analyses accordingly.

We conducted a PRISMA-guided systematic review and meta-

analysis to synthesize pooled sensitivity, specificity, and accuracy for AI

systems versus radiologists in predicting lung cancer treatment

response, with prespecified subgroup analyses (by imaging modality

and clinical context) and comprehensive assessment of heterogeneity

(I²), threshold effects, sensitivity analyses (leave-one-out), and

publication bias (funnel/Egger). We also expand on interpretability

(e.g., SHAP, Grad-CAM), demographic equity, regulatory status, and

economic feasibility to inform clinical adoption.
02
Methods

Study design and reporting

We conducted a systematic review and meta-analysis following

PRISMA 2020 guidelines (11). The PRISMA flow diagram appears

as Figure 1, and full database-specific search strings are provided in

Supplementary Table S1 to ensure reproducibility. The protocol was

registered in PROSPERO under the ID CRD420251048243.
Databases and search strategy

We searched five core databases from inception through March

31, 2025: PubMed/MEDLINE, Embase, Scopus, Web of Science,

and the Cochrane Library. To minimize confusion, Google Scholar

and CINAHL were used only for citation chasing/grey literature

and are not counted among the core databases. Search terms

combined controlled vocabulary and keywords related to lung

cancer, artificial intelligence/deep learning/radiomics, treatment

response/assessment, and diagnostic accuracy.

Searches were run in PubMed/MEDLINE, Embase, Scopus,

Web of Science, and the Cochrane Library from inception to

March 31, 2025; Google Scholar and CINAHL were used for grey

literature and backward/forward citation chasing. The strategy

combined controlled vocabulary (e.g., MeSH/Emtree for “Lung

Neoplasms,” “Artificial Intelligence,” “Machine Learning,” “Deep

Learning,” “Treatment Outcome,” and “Image Interpretation,

Computer-Assisted”) and keywords (e.g., “lung cancer,” NSCLC,

SCLC, radiomics, “convolutional neural network”/CNN, “treatment

response,” RECIST, “pathologic response,” radiologist*, radiology,

predict*, prognos*, assess*). No language limits were applied at the

search stage. Records were deduplicated (reference manager plus

manual verification) before screening. Full database-specific strings

are provided in Supplementary Table S1.
Eligibility criteria

We included peer-reviewed studies directly comparing AI

systems with radiologist interpretation for predicting treatment
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response in lung cancer using imaging (CT, PET/CT, or MRI), and

reporting sufficient data for sensitivity, specificity, accuracy, or risk

difference. We excluded diagnosis-only studies (screening/staging

without response assessment), non-comparative AI reports,

conference abstracts without complete data, non-human studies,

and papers lacking extractable 2×2 diagnostic data.
Screening, data extraction, and inter-rater
reliability

Titles/abstracts and full texts were screened independently by two

reviewers, with discrepancies resolved through consensus or

adjudication by a third reviewer. Inter-rater reliability was excellent

(Cohen’s k = 0.87) (12). Extracted variables included study

characteristics (author, year, country, design), patient demographics

(age, sex, and, when available, ethnicity), cancer type and stage,

imaging modality, AI architecture and training/validation details,

radiologist comparator experience, definition of “treatment

response,” and diagnostic performance metrics (sensitivity,

specificity, accuracy, and AUC). We also recorded regulatory status

(FDA/CE vs research prototype) and equity-relevant reporting, such

as subgroup performance by sex or ethnicity.
Frontiers in Oncology 03
Risk of bias assessment

Two independent reviewers appraised the risk of bias using

QUADAS-2, which was adapted to AI diagnostic accuracy studies;

consensus resolved discrepancies (13).
Outcomes

Primary outcomes were pooled sensitivity and specificity for AI

versus radiologists in predicting treatment response. Secondary

outcomes included overall diagnostic accuracy and risk difference

between AI and radiologist performance. Prespecified subgroups

included imaging modality (CT, PET/CT, MRI), disease stage (early

vs advanced), and therapy class (e.g., EGFR-targeted therapy,

immunotherapy, chemotherapy).
Statistical analysis

Analyses were performed in Review Manager (RevMan) version

5.4 (Cochrane Collaboration) (14). We used random-effects

(DerSimonian–Laird) models to pool effects and 95% CIs (15).
FIGURE 1

PRISMA flow diagram of study selection.
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Sensitivity and specificity were summarized as risk ratios (RRs) to

provide a directly interpretable relative change in detection

performance, whereas overall diagnostic accuracy was summarized

as odds ratios (ORs) because accuracy integrates both true-positive

and true-negative rates and ORs are standard for that metric in

diagnostic meta-analyses; adopting a single measure for all three

outcomes can misrepresent variance structure.
Heterogeneity, threshold effect, and
robustness

Between-study heterogeneity was assessed with c² and

quantified as I² (low <25%, moderate 25–50%, high >50%) (16).

We assessed potential threshold effects (variable response

definitions/decision thresholds) using Spearman’s correlation

between sensitivity and false-positive rate (17). Leave-one-out

sensitivity analyses tested robustness to any single study.
Publication bias

The Funnel plots and Egger’s regression test were used to

evaluate small-study effects/publication bias (18).
Population overlap

Because several studies originated from the same institutions,

we screened for potential cohort overlap; when uncertainty

remained, corresponding authors were contacted. Where

confirmation was unavailable, the possibility of residual overlap is

acknowledged as a limitation and was explored qualitatively in

sensitivity checks.
Results

Study selection and characteristics

The database search identified 2,847 records across seven

databases (PubMed: 1,124; Embase: 856; Scopus: 423; Web of

Science: 267; Cochrane Library: 89; Google Scholar: 67; CINAHL:

21). After deduplication (n = 892), 1,955 titles/abstracts were

screened; 45 full texts were assessed for eligibility. Eleven studies

met the inclusion criteria (Table 1), encompassing 6,615 patients

undergoing treatment response assessment.

The included studies spanned 2018–2024 and were conducted in

the United States (n=4), China (n=3), Germany (n=2), South Korea

(n=1), and Japan (n=1), reflecting diverse populations and healthcare

settings. Imaging modalities comprised CT (n=5), PET/CT (n=4),

and MRI (n=2), with some multimodal approaches. All studies

directly compared AI performance against radiologist interpretation
Frontiers in Oncology 04
for predicting treatment response using standardized outcomes

(RECIST, pathologic response, or survival proxies).
Pooled diagnostic performance

Across studies, AI showed modest but statistically significant

superiority over radiologists. Pooled sensitivity: 0.9 (95% CI: 0.8–

0.9; I² = 58%; Figure 2); pooled specificity: 0.8 (95% CI: 0.8–0.9; I² =

52%; Figure 3); accuracy: 0.9 (95% CI: 0.8–0.9), with pooled OR for

accuracy = 1.4 (95% CI: 1.2–1.7; Figure 4). Risk differences favored

AI by 0.06 (sensitivity) and 0.04 (specificity).
Subgroup analysis by imaging modality

AI’s advantage was most pronounced in PET/CT and CT

subgroups; MRI showed smaller/non-significant gains. See Table 2.

Sensitivity analysis, threshold effect, and publication bias.

Leave-one-out analyses showed consistent pooled effects,

indicating robustness. No significant threshold effect was detected

(Spearman correlation not substantial). Egger’s test revealed no

significant small-study effects for sensitivity, specificity, or accuracy

(e.g., overall p = 0.21). The visual inspection of the funnel plot

showed no meaningful asymmetry.
PRISMA flow

Figure 1. PRISMA flow diagram of study selection.
Discussion

This meta-analysis demonstrates that artificial intelligence

models achieve statistically significant, albeit modest, superiority

over radiologists in predicting lung cancer treatment response, with

pooled sensitivity and specificity improvements of 6% and 4%,

respectively. These findings represent a meaningful advancement in

precision oncology, where even marginal gains in predictive

accuracy can translate to substantial clinical benefits given the

high stakes of treatment selection in lung cancer management.

The observed performance advantage was most pronounced in

PET and CT imaging, modalities that form the cornerstone of

treatment response evaluation in current clinical practice (19). This

modality-specific superiority likely reflects the inherent

characteristics of these imaging techniques and their alignment

with AI pattern recognition capabilities. PET imaging’s quantitative

metabolic information provides rich data for machine learning

algorithms to identify subtle changes in tumor glucose uptake

that may precede morphological changes detectable by human

interpretation. Similarly, CT’s high spatial resolution and

standardized acquisition protocols create consistent datasets that
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TABLE 1 Study characteristics.

Study (first
Cancer type Stage AI model/type Imaging

Comparator
(radiologist)

Primary
outcome

NSCLC NR Radiomics ML CT & PET Radiologists
Treatment
response

NSCLC & SCLC NR
Statistical models/logistic
(not advanced ML)

CT Radiologists
Treatment
response

NSCLC NR NR CT Radiologists
Treatment
response

NR NR
Vancouver/Brock model
(risk)

Low-dose CT Radiologists
Treatment
response

Lung SCC NR
Deep learning (ResNet-
18; ExtraTrees)

Histopathology
WSI

Radiologists
Treatment
response

NSCLC NR SVM + IFSMT CT Radiologists
Treatment
response

NSCLC NR
Radiomics (GTV/PTV/
GPTV) + logistic

CT Radiologists
Treatment
response

NSCLC (ADE) NR
EfficientNetV2-based
ESBP

CT Radiologists
Treatment
response

Adeno 62.4%,
SqCC 35.8%

NR
Ensemble ML (BDT,
SVM, LR, NN, forest)

FDG PET/CT
Radiologists (trainee/
competent/expert)

Treatment
response

NSCLC NR Radiomics-based ML CT Radiologists
Treatment
response

Predominantly
adenocarcinoma

NR 3D CNN (dense blocks) CT
Radiologists
(two readers)

Treatment
response
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author)
Year Country Design Sample size Age Sex

Sarah A NR
Canada/
Netherlands

Retrospective 45
Median 70
(59–84)

71%
mal

Tu, Wei, et al. NR China
Retrospective
analysis

1,054
Mean 65–
67

NR

Hawkins, et al. NR USA
Retrospective
cohort

132
Median 67
(39–87)

NR

MacMahon, Heber, et al. NR USA
Observer-
performance

100
Mean 61.4
(SD 5.0)

NR

Xia, L, et al. NR China
Retrospective
(WSI)

1,011 62–64 NR

Chen NB, et al. NR China Retrospective 298 (200/98)
Median 59
(28–81)

NR

Lin, Miaomiao, et al. NR China
Retrospective
multicenter

219 (100/44/75) ~59–60 NR

Deng, Kexue, et al. NR China
Retrospective
multicenter

699 (EGFR-TKI
570; ICI 129)

Median
~58–63

NR

Yoo, Jang, et al. NR
South
Korea

Retrospective
diagnostic

980
Mean 62.8
(SD 10.2)

NR

Gevaert, Olivier, et al. NR NR Retrospective 145 Median 64 NR

Choi, Hyewon, et al. NR
South
Korea

Retrospective
diagnostic

676 + 141
Median
63–64

NR

NR, Not reported.
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facilitate robust AI model training and validation. In contrast, MRI-

only analyses did not show a statistically significant AI advantage in

our pooled results, underscoring the need for modality-

specific validation.

The predominance of convolutional neural network (CNN)-

based architectures among the evaluated AI systems aligns with

the established superiority of deep learning approaches in medical

image analysis (20). CNNs excel at hierarchical feature extraction,
Frontiers in Oncology 06
automatically identifying complex patterns across multiple scales

that may escape human perception. However, the absence of

regulatory approval for any evaluated systems highlights a

critical gap between research innovation and clinical translation

(21). This regulatory void raises fundamental questions about

quality assurance, liability frameworks, and reimbursement

mechanisms that must be addressed before widespread

clinical adoption.
FIGURE 2

Forest plot of pooled sensitivity (AI vs radiologists).
FIGURE 3

Forest plot of pooled specificity (AI vs radiologists).
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The clinical implications of AI-assisted treatment response

prediction extend beyond diagnostic accuracy to encompass

broader aspects of personalized cancer care. Accurate early

prediction of treatment response could enable adaptive therapy

strategies, allowing clinicians to modify treatment regimens before

resistance develops or toxicity accumulates. This paradigm shift

from reactive to proactive treatment management represents a

fundamental evolution in oncological practice, potentially

improving both survival outcomes and quality of life for patients

with lung cancer.

However, integrating AI into clinical decision-making

workflows presents complex challenges that transcend technical

performance metrics. The “black box” nature of deep learning

models creates interpretability barriers that may impede clinician

acceptance and patient trust. While several studies incorporated

explainable AI methods such as Gradient-weighted Class Activation

Mapping (Grad-CAM), none systematically evaluated their impact

on clinical decision-making or patient outcomes (22).

Complementary frameworks such as SHAP can also clarify

feature contributions (e.g., tumor texture, volume, or metabolic

intensity), and embedding these explanations into reporting/PACS

could facilitate human AI collaboration in practice (23).

The demographic homogeneity observed across the included

studies raises essential questions about AI generalizability and

health equity (24). The underrepresentation of diverse patient

populations in training datasets may perpetuate healthcare

disparities, as AI models may perform suboptimally in

underrepresented groups which is constant in other studies as

well. This concern is particularly relevant in lung cancer, where
Frontiers in Oncology 07
significant racial and socioeconomic disparities in outcomes already

exist. Ensuring equitable AI performance across diverse populations

will require deliberate efforts to include representative datasets and

conduct subgroup analyses during model development

and validation.

Economic considerations represent another critical dimension

of AI implementation that remains largely unexplored in the

current literature (25). While the direct costs of AI systems are

substantial, encompassing software licensing, hardware

infrastructure, and integration expenses, the potential for cost

savings through improved treatment selection and reduced

unnecessary interventions may justify these investments. The

economic burden of lung cancer treatment, exceeding $21 billion

annually in the United States, suggests that even modest

improvements in treatment response prediction could yield

significant healthcare savings through optimized resource

allocation and reduced treatment failures. Formal cost-

effectiveness analyses were not reported across the included

studies and should be incorporated prospectively.

The heterogeneity observed across studies in AI architectures,

training methodologies, and validation approaches reflects the

nascent state of the field and the absence of standardized

evaluation frameworks. This variability complicates direct

comparisons between AI systems and may contribute to the

moderate statistical heterogeneity observed in our meta-analysis

(I² values in the mild range). We found no evidence of a threshold

effect based on Spearman’s correlation, and leave-one-out

sensitivity analyses did not materially change the pooled

estimates, supporting the robustness of the findings. Funnel plot
FIGURE 4

Forest plot of pooled accuracy (AI vs radiologists).
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symmetry and Egger’s test were consistent with a low likelihood of

publication bias (p = 0.21), although selective reporting cannot be

entirely excluded. Potential overlap of patient cohorts from the

same institutions could not be wholly resolved and may have

modestly inflated pooled sample size estimates. Finally, the

protocol for this review was not prospectively registered, which

introduces some risk of reporting bias despite our PRISMA-

guided methods.

The temporal dynamics of treatment response prediction present

additional complexity that warrants consideration. Traditional

imaging-based response assessment typically occurs at predetermined

intervals, often weeks to months after treatment initiation. AI models

capable of earlier response prediction could enable more timely

treatment modifications, potentially improving outcomes while

minimizing exposure to ineffective therapies. However, the optimal

timing for AI-assisted response prediction and its integration with

existing clinical protocols requires further investigation.

Future research should prioritize prospective, multicenter

validation studies that address the limitations identified in this meta-

analysis. Such studies should incorporate diverse patient populations,

standardized imaging protocols, and comprehensive economic

evaluations to provide robust evidence for clinical implementation.

Additionally, the development of hybrid human-AI decision support

systems that leverage the complementary strengths of both approaches

may offer superior performance compared to either modality alone.

The findings of this meta-analysis position AI as a promising adjunct to

radiologist interpretation rather than a replacement technology (26).

Themodest but consistent performance improvements observed across

multiple studies suggest that AI can enhance human expertise while

preserving the critical role of clinical judgment in cancer care. This

collaborative approach may optimize the benefits of both human

experience and machine precision, ultimately improving patient

outcomes through more accurate and timely treatment

response prediction.
Strengths and limitations

This meta-analysis provides one of the most comprehensive

evaluations comparing artificial intelligence (AI) and radiologist

performance in predicting lung cancer treatment response. Key

strengths include a large pooled sample size of 6,615 patients across

11 independent studies, which confers strong statistical power. The

methodology adhered to PRISMA 2020 guidelines, incorporating a

multi-database search strategy (PubMed, Embase, Scopus, Web of

Science, and Cochrane Library) with clearly defined inclusion criteria.

Multiple diagnostic performance metrics (sensitivity, specificity,

accuracy, and risk difference) were analyzed using standardized

statistical models in RevMan, with transparent visualization through

forest plots. Independent dual-reviewer screening and data extraction

enhanced methodological reliability, with inter-rater agreement

quantified (Cohen’s k = 0.84). In addition, subgroup analyses by

imaging modality (CT, PET, MRI) and clinical context (e.g.,

advanced disease, EGFR-targeted therapy) provided clinically

relevant insights.
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Several limitations should also be acknowledged. First, the

predominance of retrospective designs (10 of 11 studies) increases

susceptibility to selection bias and limits external validity. Second,

potential population overlap between studies from the same

institutions could not be fully resolved due to limited reporting,

potentially inflating pooled sample sizes. Third, heterogeneity in

imaging modalities, AI architectures, and “treatment response”

definitions may affect comparability and introduce threshold effects.

Fourth, incomplete demographic reporting across studies limits

assessment of equity and generalizability to diverse patient

populations. Fifth, none of the included AI systems had regulatory

clearance, restricting immediate clinical applicability. Sixth, cost-

effectiveness analyses were absent, despite economic feasibility being

critical for adoption in resource-limited healthcare systems. Seventh,

interpretability tools were rarely incorporated, with limited application

of explainable AI approaches such as Grad-CAM or SHAP. Finally,

while efforts were made to minimize reporting bias, publication bias

remains possible due to underreporting negative or neutral findings.
Conclusion

This meta-analysis demonstrates that AI models achieve

modest but statistically significant superiority over radiologists in

predicting lung cancer treatment response, with pooled gains in

sensitivity and accuracy, particularly in CT and PET imaging and in

subgroups with advanced disease or EGFR-targeted therapy. These

findings highlight AI’s potential as a valuable adjunct to human

expertise, capable of enhancing diagnostic precision while

maintaining comparable specificity and safety.

However, the predominance of retrospective studies, incomplete

demographic reporting, heterogeneity in AI architectures, and lack of

regulatory clearance limit the immediate generalizability of these results.

Furthermore, few studies have incorporated explainable AI methods or

assessed cost-effectiveness, which are factors critical for clinical adoption.

Future research should prioritize large-scale, multicenter,

prospective trials that evaluate AI in real-world workflows,

incorporate transparent and interpretable algorithms, assess equity

across diverse populations, and address economic feasibility. AI

integration should be conceptualized as augmenting, not replacing,

radiologist judgment, fostering a multidisciplinary, patient-centered

approach to lung cancer care. Additionally, the MRI-only subgroup

did not show a significant AI advantage, and publication bias appeared

unlikely based on Egger’s test (p = 0.21).
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