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Acute myeloid leukemia (AML) is a highly heterogeneous malignant

hematological neoplasm. Although standard diagnostic procedures have been

established, traditional methods still face limitations with regard to efficiency,

accuracy, and standardization. In recent years, artificial intelligence (AI) has

demonstrated notable advantages in medical image analysis, flow cytometry

interpretation, and genetic data modeling, offering new approaches for

adjunctive diagnosis of AML. This review systematically summarizes recent

research advances in adjunctive diagnosis of AML, categorizing current AI-

based approaches based on data modality into three groups: blood smear

image analysis, flow cytometry data interpretation, and genetic data modeling.

We focus on the application strategies, diagnostic performance, and limitations

of these approaches. Studies have shown that AI not only enhances diagnostic

efficiency and reduces subjective bias, but also holds promise in identifying novel

biomarkers. Nevertheless, current models still suffer from limited generalizability

and insufficient clinical interpretability. Future efforts should prioritize data

standardization, improve model transparency, and facilitate the seamless

integration of AI systems into clinical workflows to support precision diagnosis

and treatment of AML.
KEYWORDS

acute myeloid leukemia, blood smear image, flow cytometry, genetic analysis,
artificial intelligence
1 Introduction

Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by

marked molecular and clinical heterogeneity, accounting for approximately 80% of adult

acute leukemia cases (1). According to data from the Global Burden of Disease Project, the

global burden of AML has increased substantially between 1990 and 2021, with the annual

incidence rising from 79,372 to 144,645 cases, and annual mortality increasing from 74,917
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to 130,189 deaths (2). Pathologically, AML is driven by the

accumulation of genetic alterations in myeloid progenitor cells,

resulting in impaired differentiation and uncontrolled proliferation

(see Figure 1), ultimately leading to hematopoietic failure (3).

Clinically, AML often presents with nonspecific symptoms such

as anemia, fever, and fatigue (4), yet progresses rapidly and is

difficult to manage (5, 6). Notably, even after initial treatment,

residual leukemic cells known as minimal residual disease (MRD)

may persist, representing a key factor contributing to disease relapse

(7). Overall, AML is associated with poor prognosis, with a 5-year

survival rate of approximately 30%, and less than 10% in patients

over the age of 65 (8). These challenges highlight the urgent need for

more accurate diagnostic modalities, robust risk stratification

frameworks, and individualized treatment strategies to improve

clinical outcomes.

In recent years, artificial intelligence (AI) technologies,

including machine learning and deep learning, have shown

remarkable potential in recognizing complex patterns, analyzing

high-dimensional data, and facilitating clinical decision-making (9,

10). Within the field of medical image analysis, AI algorithms have

achieved significant success in tasks such as lesion detection, organ

segmentation, and diagnostic assistance. In some scenarios, their

performance has matched or even surpassed that of experienced

physicians (11, 12). Beyond imaging, AI has also been extensively

applied to the analysis of multidimensional datasets, such as flow

cytometry and genomic profiles, to support disease prediction,

classification, prognosis assessment, and evaluation of therapeutic

responses (13, 14). The integration of AI into the automated

analysis of images and flow cytometry data can greatly reduce

diagnostic turnaround time, which is particularly critical for

conditions requiring prompt intervention, such as acute

promyelocytic leukemia (APL) (15), Additionally, AI systems help

reduce subjectivity in morphological and flow cytometric

interpretation, thereby improving reproducibil ity and

standardization. More importantly, AI models are capable of

identifying subtle features and potential novel biomarkers that

may be imperceptible to human experts, contributing to a more

profound understanding of disease pathogenesis.
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In this review, “adjunctive” AI-assisted AML diagnosis refers to

systems that do not render an autonomous final diagnosis. Instead,

they function as decision-support tools that generate data-driven

analyses—such as risk scores, classification recommendations,

anomaly alerts, or triage prioritization—to enhance expert

judgment, improve efficiency and consistency, and integrate with

existing workflows. The final diagnostic decision remains with the

treating physician.

Therefore, this review systematically summarizes recent

advances in adjunctive diagnosis of AML, categorized by data

modality into three major areas: blood smear image analysis, flow

cytometry data interpretation, and genetic data modeling. For each

modality, we examine the applied strategies, diagnostic

performance, and inherent limitations. Finally, we discuss current

challenges and outline future directions for the integration of AI-

based adjunct ive diagnost ic techniques into rout ine

clinical practice.
2 Review methods

This review was designed as a narrative survey of research on AI

applied to adjunctive diagnosis of AML. Literature searches were

conducted in PubMed and Web of Science, covering publications

from January 2015 to March 2025, in order to capture both early

applications and the most recent advances. The following keywords

and their combinations were applied: “acute myeloid leukemia,”

“artificial intelligence,” “machine learning,” “deep learning,” “blood

smear,” “flow cytometry,” and “genomics.” Searches were limited to

studies published in English.

Inclusion criteria were (1): original research applying AI or

machine learning methods to AML diagnosis, subtype classification,

MRD detection, or molecular feature prediction. (2) studies based

on blood smear morphology, flow cytometry data, or genetic

datasets. (3) reports providing quantitative outcomes such as

accuracy, sensitivity, specificity, or AUC.

Exclusion criteria were: (1) studies focused solely on therapeutic

prediction, drug screening, or treatment response without
FIGURE 1

Morphological comparison between peripheral blood from a healthy individual and a patient with AML. (A) Normal smear with abundant mature
erythrocytes and leukocyte subtypes. (B) AML smear with reduced mature cells and increased blasts. Such differences underpin AI-assisted blast
detection and triage in hematology workflows, though performance depends on stain/scan standardization and external validation.
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diagnostic relevance; and (2) narrative reviews, editorials, or

conference abstracts lacking sufficient methodological detail.

Preprints (bioRxiv/medRxiv) were included when they presented

AML-specific AI diagnostic research not yet available in peer-reviewed

journals; these are clearly labeled as preprints in the References. Two

authors independently screened titles/abstracts, reviewed full texts for

eligibility, and extracted study design, data modality, sample size/splits,

AI approach, and diagnostic performance metrics.
3 AML diagnosis: standards and
clinical practice

3.1 Classification criteria

The clinical classification and diagnosis of AML are primarily

based on three major systems. The first is the French-American-

British (FAB) classification proposed in 1976 (16), which uses a

threshold of >30% blast cells in the bone marrow for diagnosis.

Based on cytomorphology and cytochemical staining, AML is

subdivided into eight types (M0–M7).

The second is the fifth edition of the World Health

Organization (WHO) classification of hematologic malignancies

(17), which lowers the diagnostic threshold to >20% blasts in the

bone marrow or peripheral blood (see Table 1). It incorporates

morphological, immunophenotypic, cytogenetic, and molecular

genetic features into a comprehensive MICM (Morphology,

Immunophenotype, Cytogenetics, Molecular abnormalities)

framework. Notably, patients with specific genetic abnormalities

such as PML::RARA or RUNX1::RUNX1T1 can be diagnosed with

AML even if the blast percentage is below 20%.

The third is the International Consensus Classification (ICC)

released in 2022 (18), which largely aligns with the WHO system
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but introduces refinements (see Table 2). While retaining the 20%

blast threshold as a general criterion, ICC allows for AML diagnosis

at ≥10% blasts in certain clinical contexts, such as therapy-related or

secondary AML, or in the presence of high-risk genetic mutations.

Additionally, ICC delineates precursor states such as

myelodysplasia-related AML, refines mutational criteria, and

introduces severa l h igh-r i sk biomarkers to enhance

diagnostic granularity.

In addition, the guidelines issued by the European LeukemiaNet

(ELN) stratify patients into favorable, intermediate, and adverse risk

groups (19). They also emphasize the importance of dynamically

monitoring MRD using methods such as multiparameter flow

cytometry (MFC) and quantitative PCR to support early

prognostic evaluation and guide individualized treatment.

The FAB/WHO/ICC/ELN taxonomies define clinically

accepted ground truth labels for supervised AI studies by

specifying AML diagnostic categories and ELN risk strata. These

frameworks also anchor clinically meaningful endpoints—such as

overall/event-free survival, MRD status, and relapse—thereby

aligning model outputs with prognostic relevance. Using these

standardized labels and endpoints ensures cross-study

comparability and enhances the translational validity of AI results.
3.2 Traditional diagnostic processes

Traditional diagnosis of AML typically involves the integrated

application of multiple diagnostic modalities. Initial assessments

include peripheral blood tests, such as complete blood count and

morphological analysis of blood smears, to detect abnormalities in

cell counts and morphology (20). This is followed by bone marrow

aspiration and biopsy to evaluate blast cell percentage and

cytomorphological features (21). Flow cytometry is then

employed for immunophenotyping, enabling the detection of

surface and cytoplasmic antigen expression patterns to assist in

AML subtyping and MRD monitoring (22). For specific AML

subtypes, additional cytogenetic and molecular genetic testing

such as chromosomal aberrations and mutations in genes like
TABLE 2 ICC classification of AML and required blast cell proportion for
diagnosis.

ICC 2022 edition classification of AML
Blast

percentage

AML with RUNX1::RUNX1T1 fusion
AML with CBFB::MYH11 fusion
AML with DEK::NUP214 fusion
AML with KMT2A rearrangement
AML with MECOM rearrangement

AML with BCR::ABL1 fusion
AML with mutated NPM1

AML with in-frame bZIP domain CEBPA mutation

≥10%

AML with mutated TP53
AML with myelodysplasia-related gene mutations
AML with myelodysplasia-related cytogenetic

abnormalities
AML not otherwise specified

≥20%
TABLE 1 WHO classification of AML and required blast cell proportion
for diagnosis.

WHO 5th edition classification of AML
Blast

percentage

AML with RUNX1::RUNX1T1 fusion
AML with CBFB::MYH11 fusion
AML with DEK::NUP214 fusion
AML with RBM15::MRTFA fusion
AML with KMT2A rearrangement
AML with MECOM rearrangement
AML with NUP98 rearrangement

AML with mutated NPM1
AML with other defined genetic alterations

No blast threshold

AML with BCR::ABL1 fusion
AML with biallelic CEBPA mutations

AML, myelodysplasia-related
AML with minimal differentiation

AML without maturation
AML with maturation

Acute basophilic leukemia
Acute myelomonocytic leukemia

Acute monocytic leukemia
Acute erythroid leukemia

Acute megakaryoblastic leukemia

≥20%
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FLT3 and NPM1 is often required for refined classification and risk

stratification (23).

Despite the increased diagnostic accuracy achieved through

multiple tests, several challenges remain in key steps.

Morphological evaluation of peripheral blood smears (PBS) and

bone marrow smears (BMS) depends heavily on experienced

physicians for manual interpretation, which is labor-intensive,

time-consuming, and prone to subjectivity (24). The diagnostic

error rate in morphological assessments can be as high as 40% (25).

Flow cytometry results may vary due to differences in detection

protocols, antibody panel configurations, and analytical standards

across laboratories, affecting reproducibility. Molecular testing,

meanwhile, often requires expensive equipment and specialized

reagents, with long turnaround times and high demands on data

interpretation (26). Moreover, diagnostic workflows differ across

clinical centers, and for AML patients, even a 24-hour delay in

initiating treatment can significantly impact prognosis (27).
4 Adjunctive diagnostic of AML based
on blood smear image data

4.1 Morphological analysis

Morphological examination of PBS and BMS is a fundamental

and indispensable step in the diagnostic workflow of AML (28) (see

Figure 2). Traditionally, this process relies on manual microscopic

evaluation by hematologists, who assess various cellular features such

as shape, size, color, and internal structures to determine the degree of

differentiation, maturation status, and pathological abnormalities of

blood cells (29). In AML, blood smears often reveal abnormal blast

cells that are typically characterized by increased cell size, a high

nucleocytoplasmic ratio, prominent nucleoli, reduced cytoplasmic

volume, and abnormal granule distribution (30). These

morphological abnormalities serve as critical indicators in the

diagnosis of AML. Additionally, in certain subtypes such as APL,

morphological cues may provide important subtype-specific

diagnostic clues.
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However, traditional morphological analysis is highly

dependent on the observer’s expertise and is inherently subjective.

The slide review process is labor-intensive and time-consuming

(31), and even among experienced hematologists, inter-observer

agreement on cell classification remains limited, with reported

consistency rates of only around 60% (32).

With the advancement of automated hematological analysis, AI-

driven models have been developed to automatically detect and

classify leukemic cells, thereby assisting in the diagnosis of AML

(33[preprint], 34). Recent studies have focused on the automated

identification of leukemic cell morphology in PBS and BMS, subtype

classification, and even the prediction of underlying genetic features.
4.2 Cell segmentation and feature
extraction

Accurate segmentation of individual blood cells from complex

smear backgrounds is a fundamental prerequisite for subsequent

classification tasks. Traditional image processing methods have

been widely employed for cell segmentation, including manual

color thresholding (31), Otsu thresholding combined with

morphological operations such as erosion and dilation for

cytoplasm and nucleus segmentation (35), and K-means

clustering for nucleus extraction (36). To address the challenge of

overlapping cells, the watershed distance transform algorithm has

proven effective for separating closely adherent leukocytes (37). In

addition, more advanced techniques such as active contour models

and fuzzy C-means clustering have been used to precisely delineate

the boundaries of leukemic cells (38).

Compared with traditional image processing techniques, deep

learning models are better equipped to handle complex

backgrounds and cellular heterogeneity, thereby achieving

superior performance in cell segmentation tasks. For example,

Mask R-CNN has been widely applied for object detection and

pixel-level segmentation of blood cells (39). introduced WBC-Net, a

hybrid architecture that combines UNet++ and ResNet,

significantly improving the precision of leukocyte boundary
FIGURE 2

Workflow of peripheral blood smear preparation and microscopic examination. Venous blood is applied to a glass slide, spread to form a thin
monolayer, air-dried, and stained (e.g., Wright–Giemsa) before microscopic review. This workflow yields the morphological cues used for AML
screening and triage and provides the reference labels that many AI systems learn from; its standardization (smear quality, staining, scanning) is
critical for model generalizability.
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detection (40). Similarly, Roy et al. developed a semantic

segmentation framework based on DeepLabv3+, which offers

enhanced accuracy in delineating cell contours (41). In addition,

some studies have proposed moment-based localization methods in

the CMYK color space for extracting regions of interest, effectively

balancing segmentation efficiency and accuracy (42).

Before inputting blood cell images into a classifier, it is

necessary to extract features that can effectively distinguish

between different cell types. Traditional approaches rely on

manually engineered features, including geometric, color, and

texture characteristics of the cells (43, 44). Geometric descriptors

typically include parameters such as area, perimeter,

nucleocytoplasmic ratio, and nuclear shape (45). Color features

involve statistical measures such as the mean and variance of RGB

or HSV color channels (46), while texture features describe the

spatial distribution of structural patterns, commonly using gray

level co-occurrence matrices and local binary patterns (LBP) (47).

In contrast, deep learning methods, particularly convolutional

neural networks (CNN), can automatically learn hierarchical and

task-specific representations directly from raw pixel data. For

example, LeuFeatx, based on a fine-tuned VGG16 model,

achieved a macro-average recall of 64.3% on an AML dataset,

outperforming manual feature extraction methods (48). Wang

et al. (49) utilized a ResNet model pretrained on ImageNet, which

proved effective in extracting complex and robust features from

medical images.
4.3 AML detection and subtype
classification

Increasing research attention has been directed toward

developing automated models based on image data to distinguish

leukocytes from AML patients and healthy individuals, and to

further perform AML detection and subtype classification (see

Table 3). For instance, Dinčić et al. (47) utilized support vector

machines (SVMs) to classify mature and immature leukocytes using

manually extracted morphological, fractal, and texture features,

achieving an average classification accuracy of 80%. Liu et al. (50)

analyzed bone marrow smear images obtained from the TCIA

database and extracted two morphological features, six radiomic

features, and one clinical feature. A random forest (RF) model was

then used to classify AML subtypes.

In the realm of deep learning, CNN have demonstrated strong

capabilities in automatically extracting high-dimensional

discriminative features from peripheral blood or bone marrow smear

images. These models have achieved sensitivity and specificity

exceeding 90% in AML morphological recognition tasks (33

[preprint]). For example, Shaheen et al. (34) used AlexNet to detect

AML from bone marrow images with a classification accuracy of 98%.

However, training end-to-end deep learning models often

requires large annotated datasets. To address this, several studies

(51–54) have applied transfer learning, where CNNs are pretrained

on large-scale general-purpose image datasets such as ImageNet

and then fine-tuned for specific medical imaging tasks. In addition,
Frontiers in Oncology 05
Venkatesh et al. (55) proposed a few-shot learning approach by

integrating a pretrained ResNet with meta-learning techniques,

enabling accurate AML classification from limited samples.

Model interpretability is also a critical concern, particularly in

clinical applications. Hehr et al. (24) introduced SCEMILA, an

interpretable AI model for AML subtype classification from blood

smears. The model’s highly attentive cells showed strong agreement

with diagnostically relevant cells annotated by experts. Remarkably,

SCEMILA could highlight subtype-specific cells and deconstruct blood

smear composition without requiring single-cell annotations, offering a

valuable example of explainable AI in hematologic diagnosis.

Furthermore, several studies have explored the use of image data

to predict AML-related molecular alterations. Cheng et al. (56

[preprint]) analyzed 60,000 bone marrow smear images from 205

AML patients and successfully predicted the presence of the RUNX1::

RUNX1T1 fusion gene, achieving a sensitivity of 95% and specificity

of 92% on the test set. Kockwelp et al. (57) trained a ResNet model

using single-cell images derived from BMS to predict mutations such

as CBFB::MYH11, NPM1, and FLT3-ITD, and employed sensitivity-

based heatmaps for phenotype-genotype interpretability. Eckardt

et al. (58) proposed a multi-step deep learning framework that

performed cell segmentation, AML classification, and NPM1

mutation prediction, achieving an AUC of 0.92.
4.4 Limitations and future considerations

Despite encouraging results in automated cell segmentation,

feature extraction, and classification, most blood smear studies

remain limited by small, single-center datasets and substantial

variability in staining protocols and imaging quality. Many

models rely on retrospective data and lack external validation

across institutions, raising concerns about generalizability (59).

While some efforts, such as interpretable frameworks (e.g.,

SCEMILA), demonstrate potential to enhance transparency, the

majority of CNN-based models still function as “black boxes.” (24).

In addition, there is little evidence of integration into clinical

workflows, where turnaround time, interpretability, and cross-

platform robustness are essential. These limitations highlight the

gap between promising algorithmic performance and actual clinical

applicability in hematopathology.

To overcome these issues, future efforts should prioritize the

development of large-scale, standardized, and cross-institutional

image databases, along with the design of inherently interpretable

network architectures to enhance both transparency and clinical

utility in AML diagnosis.
5 Adjunctive diagnostic of AML based
on flow cytometry

5.1 Flow cytometry

Flow cytometry is a critical technique for the diagnosis and

monitoring of AML (see Figure 3). By detecting specific surface and
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TABLE 3 Overview of research on adjunctive diagnosis of AML based on blood smear images.

Feature Classifier
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Bias
mitigation
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Clinical
endpoint
assessed
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Cell
classification

N
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Cell
classification

N

N
Y

(Class
balancing)

Cell
classification

N

N
Y

(Class
balancing)

Cell
classification

N

N

Y
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Annotation,
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ensemble
model)

Cell
classification

N

(Continued)

X
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10
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3
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2
5
.16

3
4
9
3
5
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n
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O
n
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g
y

fro
n
tie

rsin
.o
rg

0
6

Authors (year) N(train/val/test)
Multi-

institutional
Segmentation

method
extraction
method

(s)
employed

Result

Dasariraju et al.
(2020) (35)

12,74 images
(80/20 split)

N

Ostu
thresholding,
morphological
operations

Morphological
features

ML (RF)

Accuracy: 92.99%
Sensitivity:
95.41%

Specificity:
90.48%

AUC: 98%

Dinčić et al.
(2021) (47)

18,365 images
(8-fold CV)

N
ImageJ
software

Morphological
features,
textural

features, fractal
Character

ML (SVM) Precision: 80%

Rastogi et al.
(2022) (48)

18,365 images
(80/20 split)

N NR CNN (VGG)

ML (SVM,
XGBoost, RF,
extra trees
classifier)

Accuracy: 96.15%

Roy et al.
(2022) (54)

18,365 images
(80/20 split)

N NR
CNN

(ResNet, VGG,
GoogleNet)

CNN (ResNet,
VGG,

GoogleNet)

F1-Score: >91%
Precision: 95.74%

Badruzzaman et al.
(2023) (109)

961 individuals
(60/15/25 split)

N NR
CNN

(ResNet,
EfficientNet)

CNN
(ResNet,

EfficientNet)

Accuracy:
78.11%,
Precision:
71.94%,

Recall: 75.00%,
F1-Score: 73.03%

Elhassan et al.
(2023) (110)

200 individuals
(80/20 split)

N
CMYK-
Moment

Deep
convolutional
autoencoder,

CNN

Deep
convolutional
autoencoder,

CNN

Accuracy: 97%
Precision: 98%
Sensitivity: 97%
AUC: 99.7%

Park et al.
(2024) (111)

42,386 images
(80/20 split)

N NR
CNN

(EfficientNet)
CNN

(EfficientNet)
Accuracy: 88.58%
F1-Score: 73.61%
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TABLE 3 Continued

Feature Classifier
External
validation

Bias
mitigation

Scope
Clinical
endpoint
assessed

5%
N

Y
(Data

augmentation)

AML
classification

Diagnostic
classification of
APL vs non-APL

Y
Y

(Stain
normalization)

AML
classification

Diagnostic
classification

(APL diagnosis,
molecular ground-

truth)

8%
%

%

N
Y

(Feature
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classification

Diagnostic
classification of

AML subtypes (M1
vs M2)

% N

Y
(Data

cleaning, data
augmentation)
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AML genetic

subtypes (PML::
RARA, NPM1,
CBFB::MYH11,

RUNX1::
RUNX1T1) vs
healthy controls

% N

Y
(Feature

selection, stain
normalization)

AML
classification

Diagnostic
classification of
AML subtypes
(M2–M5) and
NRBC detection

% N

Y
(Data

augmentation,
class

balancing)

AML
classification

Diagnostic
classification of
AML genetic

subtypes (CBFB::
MYH11, RUNX1::
RUNX1T1, PML::
RARA, MLL::AF9)

vs healthy

8%
4%
.9%

N N
AML

detection

Diagnostic
classification: AML

vs non-AML

(Continued)

X
ie

e
t
al.
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.3
3
8
9
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n
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2
5
.16

3
4
9
3
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0
7

Authors (year) N(train/val/test)
Multi-

institutional
Segmentation

method
extraction
method

(s)
employed

Result

Ouyang et al.
(2021) (39)

13,504 images
(9,772/2,443/1,289)

N Mask R-CNN Mask R-CNN Mask R-CNN
Precision: 62
Recall: 84.1

Sidhom et al.
(2021) (112)

106 individuals
(82/24 split)

N NR CNN CNN AUC: 89%

Liu et al.
(2022) (50)

50 individuals
(3/1 split)

N Watershed

Morphological
features,
radiomics
features,

clinical feature

ML(RF),
ANN(BLS)

Accuracy: 99
Precision: 10
Recall: 99.6
AUC: 99.8

F1-Score: 99

Hehr et al.
(2023) (24)

189 individuals
(5-fold CV)

Y
Metafer
software

CNN
(ResNet)

Single-Cell
based

Explainable
Multiple
Instance
Learning
Algorithm

F1-Score: 86

Acharya et al.
(2023) (113)

1,500 images
(1000/500)

N
K-medoids,
watershed,
Transform

Shape features,
color features,

texture
features

ML (RF, DT,
KNN, Naive

Bayes)
Accuracy: 9

Mustapha et al.
(2025) (114)

81,214 images
(70/15/15 split)

N NR
CNN

(ConvNetXT)
CNN

(ConvNetXT)
Accuracy: 9

Shaheen et al. (2021) (34)
4,000 images
(70/30 split)

N NR
CNN

(AlexNet)
CNN

(AlexNet)

Accuracy: 98.
Precision: 87
Sensitivity: 88
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TABLE 3 Continued

Feature Classifier
External
validation

Bias
mitigation

Scope
Clinical
endpoint
assessed

N N
AML

detection

Diagnostic
classification of
AML vs normal
(image-level
detection)

Y
Y

(Data
augmentation)

AML
detection

Diagnostic
classification of AA,
MDS, and AML

from bone marrow
smears

Y
Y

(Data
augmentation)

AML
detection

Diagnostic
classification: binary
(cancer vs normal)
and three-class
(ALL vs AML vs

normal)

N
Y

(Few-shot
learning)

AML
detection

Diagnostic
classification of

AML vs normal vs
other leukocyte

classes (multi-class
WBC subtype
classification)

N

Y
(Data

augmentation,
class

balancing)

AML
detection

Diagnostic
classification of

malignant leukemia
subtypes (ALL,
AML, MM) from
microscopic smear

images

N
Y

(Data
augmentation)

AML
detection

Diagnostic
classification of
hematologic

neoplasms: normal
vs abnormal, and

subtype
identification (e.g.,

AML with
differentiation, APL,

ALL, CML-CP,

(Continued)

X
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e
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10
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3
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9
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2
5
.16

3
4
9
3
5

Fro
n
tie

rs
in

O
n
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lo
g
y

fro
n
tie

rsin
.o
rg

0
8

Authors (year) N(train/val/test)
Multi-

institutional
Segmentation

method
extraction
method

(s)
employed

Result

Ramya et al. (2021) (38)
18,365 images

(NR)
N

Active contour
−based model, Fuzzy
C−mean clustering

Image level
Features,
statistical
features.

ANN

Accuracy:96.56%
Precision: 97.2%
Recall: 97.9%

Sensitivity:96.9%
Specificity:97.81%

Wang et al. (2022) (49)
115 images
(70/30 split)

Y NR
CNN

(ResNet)
CNN

(ResNet)
Accuracy:92.9%
AUC:96.8%

Abhishek et al. (2022) (53)
500 images
(80/20 split)

N NR
LBP, HOG,

CNN
SVM, CNN Accuracy: 95%

Venkatesh et al. (2022) (55)
22,384 images

(NR)
Y NR

CNN
(ResNet)

CNN
(ResNet),
Meta-

Learning

Accuracy: 97%
Precision: 96.6%
Recall: 96.55%

F1-Score: 96.65%

Baig et al.
(2022) (115)

4,150 images
(70/30 split)

Y NR CNN

ML
(SVM,
Bagging
ensemble,
RuSBoost,
KNN)

Accuracy: 97.04%

Li et al.
(2023) (116)

12,466 individuals
(80/20 split)

N NR Faster R-CNN SVM

Accuracy: 97.16%
Sensitivity:
99.09%

Specificity: 92%
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TABLE 3 Continued

Feature Classifier
External
validation

Bias
mitigation

Scope
Clinical
endpoint
assessed

CLL, MM, MPN,
aplastic anemia)

N
Y

(Data
augmentation)

AML
detection

Diagnostic
classification of
leukemia (binary:
ALL vs normal;
multiclass: ALL,
AML, CLL, CML,

H)

N
Y

(Data
augmentation)

AML
detection

Diagnostic
classification of
leukemia types

(ALL, AML, CLL,
CML) vs normal

Y
Y

(Data
augmentation)

AML
detection

and
classification

Diagnostic
classification of
acute leukemia

lineage (APL, AML,
ALL vs infections/

controls)

N
Y

(Data
augmentation)

AML
detection

and
classification

Diagnostic
classification: APL
vs non-APL AML
vs healthy donors,

N
Y

(Data
augmentation)

AML
detection

and
classification

Diagnostic
classification of
AML vs healthy;
mutation status

prediction (NPM1
mut vs wt)

Y
Y

(Data
augmentation)

AML
molecular
prediction

Prediction of
therapy-relevant
genetics (NPM1,
FLT3-ITD, CBFB::
MYH11, MRC

cytogenetics, ELN
2017 favorable risk)
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rg

0
9

Authors (year) N(train/val/test)
Multi-

institutional
Segmentation

method
extraction
method

(s)
employed

Result

Haque et al.
(2024) (52)

35,114 images
(75/5/25 split)

Y NR CNN

ML (KNN,
MLP, RF,
SVM, SGD)

CNN
(AlexNet,
ResNet,

RetinaNet,
CenterNet,
Xception)

F1-Score: 95.89%

Al-Bashir et al.
(2024) (117)

670 images
(80/15/5 split)

Y NR
CNN (AlexNet,

DenseNet,
ResNet, VGG)

CNN
(AlexNet,
DenseNet,

ResNet, VGG)

Accuracy: 94%

Boldúa et al. (2021) (51)
16,450 images
(85/15 split)

Y NR
CNN
(VGG)

CNN (VGG)
Precision:93.7%
Sensitivity:100%
Specificity:92.3%

Eckardt et al.
(2022) (15)

1,335 individuals
(NR)

Y Faster R-CNN
CNN

(Xception)
ENN

AUC: 95.85%,
85.75%

Eckardt et al.
(2022) (58)

94,162 images
(4:1 split)

Y Faster R-CNN
Computer
vision

algorithms

CNN
(Xception,
ResNet)

AUC:96.99%,
92%

Kockwelp et al. (2024) (57)
408 individuals

(NR)
Y NR CNN(ResNet)

CNN
(ResNet)

AUC: 65%-93%
,
,
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intracellular antigen markers, it enables the identification of the

lineage, differentiation stage, and aberrant immunophenotype of

leukemic cells (60). MFC, which utilizes combinations of multiple

antibodies, allows for the simultaneous analysis of antigen

expression profiles in tens of thousands of cells. With single-cell

resolution, MFC can detect rare abnormal cell populations in bone

marrow, making it particularly valuable for MRD assessment (61).

Moreover, flow cytometry also contributes to guiding targeted

therapies. Antigens such as CD33 and CD123 serve not only as

diagnostic markers for AML but also as therapeutic targets for

antibody-based treatments (62). Compared to other techniques,

flow cytometry offers rapid immunophenotyping within a few hours

of sample processing and has the ability to distinguish viable cells

from debris and dead cells (63).

However, the widespread clinical application of flow cytometry

faces several challenges. Differences in antibody panels and data

interpretation protocols across institutions hinder cross-center

comparability and complicate standardization efforts. High-

sensitivity detection depends on advanced cytometers and

fluorescent-labeled antibodies, making individual assays relatively

expensive. In addition, traditional manual gating used for data

analysis is labor-intensive and subject to operator bias, especially

when handling large volumes of multidimensional data (64).
5.2 Cell population analysis

A wide range of supervised and unsupervised machine learning

algorithms have been applied to replace or assist the traditional

manual gating process in flow cytometry, significantly improving

the efficiency and accuracy of AML-related data analysis.

Unsupervised learning techniques, in particular, have shown great

value in dimensionality reduction and visualization. Nonlinear

techniques such as t-SNE and UMAP project high-dimensional

parameters into two-dimensional space, facilitating intuitive

identification of cell subpopulations (65). Clustering algorithms

like K-means and density-based methods (e.g., DBSCAN) have also

been widely employed for cell classification tasks involving

multiparametric data (66).

In recent years, self-organizing map (SOM) models have

attracted growing attention due to their capabilities in visualization

and adaptive pattern recognition. For example, one study combined

SOM with XGBoost to construct a hybrid model for AML diagnosis,

achieving 92.55% accuracy and 99.79% specificity on the validation

dataset (67). Porwit et al. (66) further applied the FlowSOM

algorithm to unsupervised clustering of erythroid precursor cells,

successfully identifying 18 potentially abnormal subpopulations that

provided new biological insights for diagnosis.
5.3 Automated diagnosis

In the field of AML diagnosis and subtype classification, several

studies have demonstrated high performance. Gupta et al. (68),

using 10-color flow cytometry data, integrated key markers such as
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CD2, CD13, and CD64 into a radar plot to distinguish typical and

variant APL, as well as NPM1-mutated AML, achieving 100%

accuracy in identifying typical APL. Bellos et al. (69) conducted a

large-scale study involving over 36,000 patients and built an AML

diagnostic model combining XGBoost and SVM, attaining 99.9%

accuracy in 82% of the cases, showcasing the potential of AI in

large-cohort settings.

In addition to traditional shallow machine learning approaches,

recent studies have increasingly explored multi-model fusion

strategies and statistical modeling techniques to improve the

extraction and classification of complex flow cytometry data. For

instance, Ko et al. (70) combined SVM with Gaussian mixture

models, achieving a classification accuracy of 92.4% in AML patient

samples. Monaghan et al. (71) further introduced a Fisher kernel-

based approach to extract multiparametric features, which were

then classified using SVM to distinguish APL from non-APL cases.

This method also identified key features associated with overall

survival, offering new insights into prognostic modeling.

Additionally, Cox et al. (72) structured cellular data into graph

representations, demonstrating the potential of graph-based

modeling techniques for detecting abnormal cell populations.

In terms of clinical translation, efforts have been made to

integrate these AI-based models into routine workflows.

Zuromski et al. (67) constructed a deployable AML diagnostic

platform using flow cytometry data as input, enabling automatic

report generation within hospital information systems. This work

provides a valuable paradigm for the clinical implementation of AI-

assisted diagnostic tools.
5.4 MRD detection and molecular feature
prediction

MRD detection is widely recognized as a key metric for

assessing treatment response and predicting relapse in AML.
Frontiers in Oncology 11
However, conventional flow-based MRD analysis requires high

sensitivity and standardization, which are often difficult to

maintain in routine practice. Recently, AI models have shown

potential to complement or even replace manual assessment.

The MAGIC-DR framework (73), which integrates UMAP for

dimensionality reduction and XGBoost for classification, achieved

strong concordance with manual MRD assessments in 25 validation

samples. Moreover, it identified immature monocytic populations

that were often overlooked in manual analysis, thus enhancing

overall detection sensitivity. Weijler et al. (74) proposed a semi-

supervised strategy based on UMAP to separate abnormal

populations in MRD samples, achieving an F1 score of 79.4%,

suggesting its applicability in heterogeneous clinical data.

At a higher level of application, some studies have utilized flow

cytometry data to predict molecular genetic features and patient

prognosis. Lewis et al. (75) developed a multi-instance learning

model with an attention mechanism using only flow cytometry data

as input. The model achieved an AUC of 0.96 for diagnostic

classification and was capable of predicting several WHO-defined

genetic abnormalities in AML, such as t (8;21), t(15;17), and NPM1

mutations. Couckuyt et al. (76) further integrated flow cytometry

data with machine learning algorithms to predict two-year survival,

revealing significant associations between immune subtypes, genetic

features, and patient outcomes.
5.5 Limitations and future considerations

AI-driven approaches to flow cytometry analysis have

significantly reduced the reliance on manual gating and improved

MRD detection. However, current studies are largely retrospective

and often conducted on heterogeneous panels and protocols,

reflecting the lack of international standardization. Only a few

reports demonstrate prospective or real-world clinical validation,

and cross-center reproducibility remains uncertain. Moreover, most
FIGURE 3

Workflow of flow cytometry for detecting cell surface and intracellular antigens. Cells are first suspended in buffer and stained with fluorescently
labeled antibodies. Surface antigens bind directly to the antibodies, while intracellular antigens require fixation and permeabilization to allow
antibody access to the cytoplasm or nucleus. After staining, cells pass through the flow cytometer, where lasers excite the bound fluorochromes.
Forward and side scatter, along with emitted fluorescence, are measured to analyze cellular characteristics. These readouts underpin AML diagnosis
and MRD assessment and are targets for AI systems that automate gating and rare-population detection; panel standardization and external
validation are critical for generalizability.
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machine learning models prioritize accuracy but do not adequately

address class imbalance, operator bias, or rare subpopulation

detection. While pilot platforms for automated reporting exist,

their clinical readiness is still low-to-moderate, requiring

regulatory approval, standardized antibody panels, and better

interpretability tools before widespread adoption.

Overall, AI-assisted workflows have demonstrated strong

consistency with expert assessments in various tasks, including

cell population analysis, AML classification, and MRD detection

(see Table 4). Future directions should focus on building

standardized, multi-center flow cytometry data platforms to

improve model generalizability. In addition, developing

interpretable models and enhancing visualization capabilities will

be critical for clinical integration, particularly in detecting rare

subpopulations and tracking dynamic changes in MRD.
6 Adjunctive diagnostic of AML based
on genetic data

6.1 Genetic analysis

Genetic analysis provides essential molecular insights that play

a pivotal role in disease classification, risk stratification, and

therapeutic decision-making in AML (77). Traditional approaches

such as karyotyping and fluorescence in situ hybridization (FISH)

have long been utilized in clinical diagnostics. In recent years, the

emergence of advanced genomic technologies, including next-

generation sequencing (NGS), single-cell sequencing, and

transcriptome analysis, has continuously propelled the

advancement of precision medicine in AML (78).

Karyotyping primarily uses G-banding to detect numerical and

structural chromosomal abnormalities, such as trisomies, deletions,

inversions, and translocations (79). FISH, on the other hand,

ut i l i zes fluorescent probes to ident i fy spec ific gene

rearrangements or chromosomal region abnormalities with higher

resolution. It is commonly used to detect fusion genes such as PML::

RARA and RUNX1::RUNX1T1 (26).

At the molecular level, NGS is a high-throughput sequencing

technology (80) (see Figure 4) that enables comprehensive analysis

of genomic or exonic mutations, insertions, and deletions, and has

been widely applied in AML subtyping and prognostic evaluation.

Single-cell sequencing allows the profiling of gene expression or

genomic variations at the single-cell level, enabling the

identification of leukemic subpopulations at different

differentiation stages and offering insights into key subclones and

relapse mechanisms (77). Transcriptome sequencing provides a

global gene expression profile of AML patients, helping to identify

expression signatures, dysregulated pathways, and prognostic

biomarkers associated with AML development (81).

Despite advances in genetic testing methodologies, challenges

remain. Traditional cytogenetic methods such as karyotyping and

FISH are limited in throughput, sensitivity, and turnaround time
Frontiers in Oncology 12
(82), while modern techniques like NGS and single-cell sequencing

are constrained by high costs, complex data interpretation, and a

heavy reliance on bioinformatics expertise (26). With ongoing

technological development, the integration of diverse genetic data

combined with AI and machine learning holds promise for

enhancing diagnostic accuracy and enabling more personalized

treatment strategies for AML.
6.2 Karyotyping and FISH

Karyotyping is a standard technique for detecting chromosomal

abnormalities. Traditionally, the interpretation of chromosome

images requires highly experienced cytogeneticists. To enhance

efficiency and reduce manual workload, recent studies have

explored the use of AI to automate metaphase image recognition

and chromosome classification (83), as well as to develop models for

automated chromosome segmentation and pairing (84). For

example, Hu et al. (85) proposed a multilayer CNN combined

with a Softmax classifier, achieving 93.8% accuracy in pairing and

identifying abnormal chromosomes. Similarly, Vajen et al. (86)

developed a CNN-based tool that achieved 98.8% accuracy in

chromosome classification and reduced manual analysis time by

up to 42%.

Most current AI systems for karyotyping depend on large

annotated datasets. To address this limitation, one study (87)

proposed a machine learning strategy to simulate abnormal

karyotype images from normal ones, combining this approach

with a ResNet classifier that achieved over 95% accuracy.

Furthermore, Shamsi et al. (88[preprint]) introduced the Vision

Transformer (ViT) architecture into karyotype analysis for the first

time, developing an end-to-end model that accurately identified

clinically significant abnormalities such as t(9;22) from metaphase

images. This approach significantly reduced the need for extensive

labeled data by employing pre-training and fine-tuning strategies.

FISH is another widely used technique for detecting

chromosomal number and structural abnormalities using DNA-

targeted probes. However, traditional FISH analysis is labor-

intensive and highly reliant on expert interpretation. To improve

throughput and consistency, researchers have applied AI-based

models to automate the FISH image analysis pipeline. Gudla et al.

(89[conference]) developed a CNN-based system for automated

detection of chromosomal abnormalities, achieving an accuracy

rate exceeding 98%. Xue et al. (90) constructed an end-to-end

detection model combining YOLOv3 with ResNet18 to assess gene

amplification status, reaching 85% classification accuracy on the test

set. Xu et al. (91) further proposed a multi-scale MobileNet-

YOLOv4 framework for rapid detection of genetic abnormalities

in circulating cells, achieving 93% accuracy and up to 500-fold

improvement in detection speed. In addition, Bouilhol et al. (92)

introduced DeepSpot, a deep learning tool designed to enhance the

detection of fluorescent signals in single-molecule FISH images,

attaining an accuracy of up to 97%.
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TABLE 4 Overview of research on adjunctive diagnosis of AML based on flow cytometry data.

Authors
(year)

N
(train/
val/
test)

Multi-
institutional

Method Result
External
validation

Bias
mitigation

Scope
Clinical endpoint

assessed

Patay et al.
(2021) (118)

203 flow
cytometry
Samples
(NR)

N
SOM, Neural
Networks

Accuracy:
99%

F1-Score:
98%

N
Y

(QC via
Bioconductor)

Cell
Classification

Cell viability and population
classification for AML
therapeutic discovery

platform

Vial et al.
(2021) (119)

59
individuals

(NR)
Y FlowSom

Sensitivity:
69%

Specificity:
85%

N

Y
(Backgating,
thresholds
optimized)

MRD
detection

MRD detection and
correlation with complete
remission, relapse, and

induction failure

Weijler
et al.

(2022) (74)

146
individuals

(NR)
Y UMAP

F1-Score:
79.4%

N

Y
(Marker pre-
filtering,

patient-level
CV)

MRD
detection

Clinical endpoint: MRD
detection in AML bone
marrow (flow cytometry,
blast identification vs

manual gating

Seheult et al.
(2023) (120)

70 flow
cytometry
samples

N PARC, UMAP
Consistency:

100%
N

Y
(FlowCut error

removal,

MRD
detection

MRD detection in AML
bone marrow by flow

cytometry, correlation with
manual gating and
molecular MRD

Shopsowitz
et al.

(2024) (73)

113
samples
(98/25)

Y XGBoost, UMAP AUC: 97% N
Y

(Ensemble
methods)

Cell
classification
and MRD
detection

AML MRD detection in
bone marrow/peripheral
blood; concordance with
conventional flow MRD

Gupta et al.
(2021) (68)

84
patients
(NR)

Y Radar plot
Accuracy:

90%
N

Y
(Standardized
panels, gating

strategy)

AML
classification

Differential diagnosis of APL
vs NPM1+ AML

Cox et al.
(2024) (72)

68
patients
(49/19)

N GNN
Accuracy:
100%

N

Y
(Preprocessing
of data, 15

random train/
val splits

AML
classification

Distinguishing APL vs other
AML

Bellos et al.
(2021) (69)

3,961
patients
(80/20
split)

Y
XGBoost, SVM,
AutoGluon

Precision:
99.8%

Recall: 99.8%
N

Y
(Feature

engineering)

AML
detection

Diagnostic classification of
hematologic neoplasms
(AML, ALL, MDS, MM,

NHL subtypes)

Monaghan
et al.

(2022) (71)

531
patients
(80/20
split)

Y
GMM, Fisher
kernel method,

SVM

Accuracy:
94.2%

AUC: 99.5%
N

Y
(Feature
selection)

AML
detection

Diagnostic classification:
APL vs AML/not APL vs
ALL vs nonneoplastic

cytopenias

Zhong et al.
(2022) (121)

727
samples
(500/227)

N

DeepFlow
software,

multidimensional
density–
phenotype
coupling

algorithm, RF

Consistency:
97.1%

N
Y

(QC filters)
AML

detection

Acute leukemia classification
(AML, B-ALL, T-ALL vs

non-leukemic)

Lu et al.
(2023) (122)

117
individuals

(NR)
N

DeepFlow
software

Accuracy:
94%

N

Y
(QC through

manual
comparison)

AML
detection

Classification of acute
leukemia (AML vs ALL vs

normal)

Lian et al.
(2024) (123)

453
samples
(70/30
split)

N CNN, GAN
Accuracy:

86%
N

Y
(Data

cleaning)

AML
detection

Diagnostic classification of
AL (Normal vs AML vs ALL
subtypes incl. BCP-ALL, T-

ALL)

(Continued)
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6.3 Molecular analysis and prognostic
prediction

Molecular genetics testing represents a core component of AML

diagnostics, providing critical insights that inform classification,

prognosis, and therapeutic decision-making. Mutations in genes

such as NPM1 and FLT3-ITD, as well as fusion events like PML::

RARA, are now incorporated into major clinical guidelines as

essential molecular indicators for diagnosis and risk

stratification (93).
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With the rapid advancement of NGS, these techniques have

increasingly been applied in clinical settings and have become

indispensable tools for molecular subtyping of AML. NGS

platforms can integrate whole-genome sequencing, exome

sequencing, and RNA sequencing to simultaneously analyze

hundreds of leukemia-related genes in a single assay, greatly

improving detection efficiency and data richness (94). Wurm

et al. (95) reported that the turnaround time for NGS-based

analysis of AML samples decreased from 22 days in 2013 to just

10 days in 2023, reflecting substantial improvements in clinical
TABLE 4 Continued

Authors
(year)

N
(train/
val/
test)

Multi-
institutional

Method Result
External
validation

Bias
mitigation

Scope
Clinical endpoint

assessed

Müller et al.
(2023) (124
[conference])

2,400
individuals

(NR)
Y XGBoost

Precision:
99%

Recall: 99%
N

Y
(Expert-
informed
features,

standardized
cytometer
processing)

AML
detection

Diagnostic classification
across hematologic

neoplasms (AML, ALL,
MDS, MM, B-/T-NHL)

Cheng et al.
(2024) (125)

241
patients
(80/20
split)

N ResNet
Sensitivity:
94.6%

N
Y

(Data
augmentation)

AML
detection

Diagnostic classification of
AML, B-ALL, T-ALL vs

normal/other,

Zuromski
et al.

(2025) (67)

18,379
samples
(13,566/
3,464/
1,349)

Y SOM, XGBoost

Precision:
92.55

Sensitivity:
76.99%

Specificity:
99.79%

N
Y

(Feature
selection)

AML
detection

AML detection in triage flow
cytometry panels

Couckuyt
et al.

(2025) (76)

122
patients
(NR)

N
FlowSoM,
XGBoost

Accuracy:
72%-88%

N
Y

(Feature
selection)

AML
prognosis
prediction

Relapse, 2-year survival,
ELN risk, NPM1 mutation,

inv(16) prediction

Lewis et al.
(2024) (75)

1,820
samples
(80/20
split)

Y
Attention-Based
Multi-Instance
Learning Models

Accuracy:
92.2%

AUC: 96.5%
N

Y
(5-fold CV,

class
balancing)

AML
detection

and
molecular
prediction

Diagnostic classification
(Acute leukemia vs non-
leukemia; AML vs ALL);
prediction of cytogenetic/
molecular variants (e.g.,
PML::RARA, RUNX1::
RUNX1T1, NPM1)
FIGURE 4

Schematic workflow of next-generation sequencing. Genomic DNA is extracted, fragmented, and ligated to adapters to build libraries, which are
sequenced on a high-throughput platform; reads are then aligned and variants are called and annotated. These steps generate the molecular
features used for AML diagnosis/risk stratification and for training AI models; pipeline harmonization (variant-calling/batch-effect control) and
external multi-cohort validation are essential for generalizable results.
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TABLE 5 Overview of research on adjunctive diagnosis of AML based on flow genetic data.

Authors
(Year)

N(train/
val/
test)

Multi-
institutional

Method Result
External
validation

Bias
Mitigation

Scope
Clinical endpoint

assessed

Shamsi
et al. (2025)

(88
[preprint])

45,815
karyograms
(42,049/
3736)

Y ViT AUC: 94% Y

Y
(Pretraining,
entropy

filtering, data
augmentation

Chromosome
classification

Detection of chromosomal
abnormalities (del(5q), t(9;22),

inv(16), inv(3), t(9;11), t
(11;19), PML::RARA) relevant
for AML, ALL, CML, MDS
diagnosis and prognosis

Fang et al.
(2024)
(126)

10,000
specimens

(NR)
Y Transformer

Accuracy:
100%

Y

Y
(Pretraining,

data
augmentation)

Chromosome
classification

Detection of chromosomal
aberrations (del(5q), inv(3), inv
(16), t(9;22), t(9;11), t(11;19))
relevant for AML, CML, MDS

diagnosis/prognosis

Nicora et al.
(2021)
(104)

1,051 cells
(705/946)

N SVM, LR
Accuracy:

80%
Y

Y
(Scanpy

preprocessing)

Cell
classification

Single-cell classification of
malignant vs benign cells in
AML bone marrow (scRNA-

seq)

Asimomitis
et al. (2023)

(105)

50,026 cells
(NR)

Y
Feedforward

Neural
Network

Accuracy:
98%

Precision:
98%

Recall: 99%
AUC:>96%

N

Y
(Scanpy

preprocessing,
normalization)

Cell
classification
and AML
Molecular
Prediction

Binary: malignant vs WT single
cells; Multi-label: prediction of
hotspot mutations (IDH1/2,
NRAS, KRAS, NPM1, SRSF2,
DNMT3A) and chromosomal

abnormalities

Shah et al.
(2023)
(127)

1,707
patients
(70/30
split)

Y
RF, XGBoost,

SVM

Accuracy:
99.58%

Precision:
95.77%

Sensitivity:
95.77%

Specificity:
99.78%

F1-Score: 96%

N

Y
(Feature
selection,

stratified CV)

AML
classification

Diagnostic classification of
pediatric AML molecular
subtypes (e.g., KMT2Ar,

NPM1, RUNX1::RUNX1T1,
CBFB::MYH11, etc.), aiding

risk stratification

Orgueira
et al. (2021)

(128)

699
patients
(562/137)

Y RF
C-index:
69.88%

Y

Y
(Rank-

normalization
of gene

expression,
variable

importance
pruning)

AML
prognosis
prediction

overall survival prediction,
stratification of high-risk AML
patients (e.g., TP53, RUNX1,

ASXL1)

Qin et al.
(2024)
(108)

527
patients
(129/398)

Y ML

C-index: 68%-
72%

AUC: 77%-
81%

Y

Y
(Rank-

normalization,
feature

selection)

AML
prognosis
prediction

overall survival prediction in
AML, prognostic stratification

for therapy guidance

Afroz et al.
(2024)
(101)

173
samples
(NR)

N GAN
AUC:
68.78%-
73.22%

N
Y

(Data
augmentation)

AML
prognosis
prediction

Predicted AML cancer
phenotype/outcomes, identified
significant genes, and screened

candidate drugs

Song et al.
(2025)
(100)

481
patients
(90/1,391)

Y

unsupervised
multi-omics
classification

system

C-statistic:
87%

Y
Y

(Batch effect
correction)

AML
classification

and
prognosis
prediction

Overall Survival, Event-Free
Survival, Complete Remission,

Drug sensitivity

Cheng et al.
(2022) (81)

655
patients
(NR)

Y

Enhanced
consensus
clustering,
AutoML

Accuracy:
95%

Y
Y

(Batch effect
correction)

AML
classification
and AML
prognosis

Overall Survival (OS)
prediction and risk
stratification in AML

(Continued)
F
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feasibility. Zhang et al. (96) combined targeted RNA sequencing

with a naïve Bayes classifier to perform differential diagnosis across

20 hematologic malignancies and 24 solid tumors, achieving an

AUC of 88% for AML classification.

In large-scale applications, the integration of transcriptomic

data with machine learning models has become an emerging trend

in the adjunctive diagnosis of AML. Warnat-Herresthal et al. (97)

integrated transcriptomic profiles from 12,029 samples across 105

studies and developed a machine learning model capable of

distinguishing AML, MDS, and other myeloid neoplasms,

achieving over 92% subtype classification accuracy across multiple

datasets. Similarly, Angelakis et al. (98 [preprint]) used a CatBoost

classifier on 12,708 transcriptomes from 5,052 individuals, reaching

an AUC above 99% in distinguishing AML from healthy controls

highlighting the synergy between big data and machine learning.

In the area of molecular subtyping and prognostic modeling,

Awada et al. (99) applied Bayesian unsupervised learning to

integrate mutation and immunophenotypic data, identifying four

novel subtypes with distinct biological and prognostic

characteristics. Song et al. (100) proposed an unsupervised multi-

omics integration approach that stratified AML into three major

subgroups using TCGA and clinical cohorts, showing strong

generalizability. Afroz et al. (101) introduced the omicsGAN

framework, which enhances predictive accuracy by synthesizing

gene activity and DNA methylation profiles.

Given the high clonal heterogeneity of AML, single-cell RNA

sequencing (scRNA-seq) has emerged as a powerful method to

resolve cellular subpopulations and microenvironmental

interactions (102). Galen et al. (103) combined scRNA-seq and
Frontiers in Oncology 16
genotyping data from 38,410 cells across 40 AML bone marrow

samples and used machine learning to successfully classify distinct

malignant subtypes and link them to specific genetic mutations.

Nicora et al. (104) and Asimomitis et al. (105) applied supervised

deep learning approaches to scRNA-seq data for cell state

prediction and mutation status classification, respectively. Their

models achieved classification AUCs of up to 98% and 84%,

highlighting the significant potential of integrating single-cell

omics with AI for clinically relevant analysis.

Recent studies (106) have further emphasized the role of

transcriptomic changes in identifying novel therapeutic targets in

AML, helping bridge the gap between genomic insights and clinical

application. For instance, Gimeno et al. (107) employed a

multidimensional module-optimized machine learning algorithm

using RNA-seq data to predict gene mutations and drug response,

providing valuable support for precision medicine. Qin et al. (108)

integrated bulk RNA-seq, single-cell expression profiles, and

matched clinicopathological data to construct a six-gene

programmed cell death index capable of predicting chemotherapy

resistance, drug sensitivity, and poor prognosis in AML patients.

With advances in high-throughput omics technologies and the

integration of AI, molecular diagnostics for AML are evolving from

single-marker identification toward a comprehensive, data-driven

precision framework (see Table 5). NGS enables broad and efficient

detection by combining genomic, exomic, and transcriptomic

information. Transcriptomic data, when coupled with machine

learning, have demonstrated exceptional performance in disease

classification, subtype distinction, and prognostic assessment.

Meanwhile, scRNA-seq offers unprecedented resolution of AML
TABLE 5 Continued

Authors
(Year)

N(train/
val/
test)

Multi-
institutional

Method Result
External
validation

Bias
Mitigation

Scope
Clinical endpoint

assessed

Wang et al.
(2024)
(129)

61 samples
(NR)

N
Clustering
algorithms

Kappa:
67.7%-68.2%

N

Y
(Rigorous

gating, blinded
operator
reading)

AML
classification
and AML
prognosis
prediction

MRD positivity as surrogate
endpoint for relapse-free
survival (RFS) and overall

survival (OS)

Lee et al.
(2021)
(130)

439
individuals
(12/427)

N SVM

Accuracy:
97.2%

Sensitivity:
99.5%

Specificity:
98.7%

Y

Y
(Leave-one-out

cross-
validation)

AML
detection

Diagnostic classification: AML
vs B-ALL vs MPAL; detection

of BCR-ABL1 and novel
MAP2K2 fusion; identification

of mutations

Zhang et al.
(2023) (96)

5,450
patients
(3,045/
1,415)

Y
Geometric
mean naïve
Bayesian

Accuracy:
88%

N

Y
(Leave-one-out

cross-
validation)

AML
detection

Differential diagnostic
classification across 47

hematologic & solid tumor
entities

Angelakis
et al. (2024)

(98
[preprint])

5,052
individuals
(80/20
split)

Y CatBoost AUC: 99% N

Y
(Feature

selection, class
balancing)

AML
detection

Diagnostic classification: AML
vs Healthy and AML vs
Healthy+Other diseases

Yeung et al.
(2024)
(131)

48 patients
(NR)

N

CytoTerra
cloud-based
analysis
platform

Concordance:
100%

N

Y
(QC of
libraries,
Blinded
analysis)

AML risk
stratification

Cytogenetic risk variants per
ELN 2022
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clonal heterogeneity and immune microenvironment features,

enriching our understanding of disease mechanisms. More

recently, the integration of omics data with drug response

modeling has laid a foundation for individualized therapy and

resistance prediction.
6.4 Limitations and future considerations

Genetic and transcriptomic studies represent one of the fastest-

growing areas, especially with the advent of NGS and single-cell

sequencing. Nonetheless, many published works face challenges of

small sample size, high-dimensional data with risk of overfitting, and

a heavy reliance on bioinformatics expertise. Several cited studies are

still preprints, reflecting the novelty but also the limited peer-

reviewed validation of these methods. External, multi-cohort

validation is rare, and clinical integration of AI-based omics

prediction frameworks is currently exploratory rather than routine.

Furthermore, the complexity of multi-omics integration and the lack

of interpretability hinder clinical decision-making.

Thus, omics-based AI models hold promise for risk

stratification and prognostication. Looking ahead, intelligent

clinical decision platforms that integrate omics, algorithmic

inference, and clinical workflows are poised to facilitate the

implementation of precision medicine in AML (78).
7 Conclusions and clinical integration

The pronounced heterogeneity of AML poses substantial

challenges for both diagnosis and prognostic assessment. In

recent years, AI has demonstrated remarkable potential to address

these challenges by integrating flow cytometry data, medical images,

and multi-omics information. Across diverse studies, AI models

have achieved strong performance in key tasks such as cell-

population identification, subtype classification, molecular-

mutation prediction, and prognostic stratification. Research has

also evolved from single-modal classification toward multimodal

data fusion and molecular feature modeling, with increasing

emphasis on interpretability and automated integration.

Despite these advances, AI still faces major barriers to clinical

translation, including data heterogeneity, limited model

generalizability, high annotation costs, and the scarcity of prospective

validation. Future work should prioritize building standardized data

platforms, enhancing model robustness and interpretability under real-

world variability, and enabling seamless integration of AI systems into

diagnostic and therapeutic processes. With continued innovation, AI is

expected to become a core component of precision AML care,

providing efficient and individualized decision support.

Clinical integration and workflow impact are essential for realizing

this potential. In practice, deep learningmodels must be embedded into

existing diagnostic and treatment pathways. During triage and

diagnosis, they can rapidly screen peripheral blood smears and

prioritize suspected AML cases, accelerating identification of high-

risk patients. For urgent subtypes such as APL, models can trigger
Frontiers in Oncology 17
seconds-level alerts to facilitate timely intervention. Automated analysis

substantially shortens morphological review time, a critical metric in

emergency leukemia management. In measurable residual disease

monitoring, sensitivity thresholds allow detection of very low

abnormal-cell fractions, while cross-validation with flow cytometry

or molecular assays reduces false positives and enhances longitudinal

reliability. Model outputs—including calibrated confidence scores and

visual heatmaps—should be standardized for interoperability with

hospital information systems, supporting efficient hematopathologist

review. When discrepancies arise between automated and manual

interpretations, conflict-resolution strategies such as double-blind

review, expert-panel adjudication, or weighted consensus voting

ensure quality control. Within this closed-loop framework, AI can

evolve into a “trustworthy, traceable, and controllable” collaborator that

augments clinical expertise without replacing it.
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43. Rodellar J, Alférez S, Acevedo A, Molina A, Merino A. Image processing and
machine learning in the morphological analysis of blood cells. Int J Lab Hematol.
(2018) 40:46–53. doi: 10.1111/ijlh.12818
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45. Merino A, Puigvı ́ L, Boldú L, Alférez S, Rodellar J. Optimizing morphology
through blood cell image analysis. Int J Lab Hematol. (2018) 40 Suppl 1:54–61.
doi: 10.1111/ijlh.12832

46. Tavakoli S, Ghaffari A, Kouzehkanan ZM, Hosseini R. New segmentation and
feature extraction algorithm for classification of white blood cells in peripheral smear
images. Sci Rep. (2021) 11:19428. doi: 10.1038/s41598-021-98599-0
frontiersin.org

https://doi.org/10.3322/caac.21708
https://doi.org/10.1186/s40364-024-00649-y
https://doi.org/10.1186/s40364-024-00649-y
https://doi.org/10.1007/s12015-021-10308-6
https://doi.org/10.1007/978-3-030-72676-8_6
https://doi.org/10.3322/caac.21387
https://doi.org/10.1002/ajh.26822
https://doi.org/10.1038/s41408-021-00425-3
https://doi.org/10.1016/S0140-6736(23)00108-3
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.3390/cancers14061524
https://doi.org/10.3389/fpubh.2023.1273253
https://doi.org/10.5051/jpis.2300160008
https://doi.org/10.1186/s12967-022-03364-0
https://doi.org/10.1093/bib/bbac191
https://doi.org/10.1186/s12885-022-09307-8
https://doi.org/10.1111/j.1365-2141.1976.tb03563.x
https://doi.org/10.1111/j.1365-2141.1976.tb03563.x
https://doi.org/10.1016/j.blre.2023.101156
https://doi.org/10.1016/j.jtct.2023.12.027
https://doi.org/10.1016/j.jtct.2023.12.027
https://doi.org/10.3390/cancers15133292
https://doi.org/10.3390/cancers15133292
https://doi.org/10.1111/ijlh.14082
https://doi.org/10.1111/ijlh.14082
https://doi.org/10.3390/cancers17050900
https://doi.org/10.3390/cancers17050900
https://doi.org/10.5001/omj.2021.108
https://doi.org/10.1007/s11033-023-08680-2
https://doi.org/10.1371/journal.pdig.0000187
https://doi.org/10.4103/2228-7477.150428
https://doi.org/10.4103/2228-7477.150428
https://doi.org/10.1055/s-0043-1768052
https://doi.org/10.1002/cncr.34894
https://doi.org/10.1111/ijlh.12651
https://doi.org/10.1111/ijlh.14330
https://doi.org/10.1159/000101709
https://doi.org/10.1016/j.bbe.2019.01.005
https://doi.org/10.1016/j.bbe.2019.01.005
https://doi.org/10.1111/j.1365-2141.2010.08366.x
https://doi.org/10.3389/fdata.2024.1402926
https://doi.org/10.1155/2021/6658192
https://doi.org/10.3390/bioengineering7040120
https://doi.org/10.4103/2228-7477.186885
https://doi.org/10.1051/matecconf/201815401041
https://doi.org/10.1007/s11760-021-01976-5
https://doi.org/10.1016/j.cca.2020.10.039
https://doi.org/10.1016/j.asoc.2020.107006
https://doi.org/10.1016/j.bspc.2020.102385
https://doi.org/10.1016/j.bspc.2020.102385
https://doi.org/10.1109/ACCESS.2022.3149637
https://doi.org/10.1111/ijlh.12818
https://doi.org/10.1136/jclinpath-2017-204389
https://doi.org/10.1136/jclinpath-2017-204389
https://doi.org/10.1111/ijlh.12832
https://doi.org/10.1038/s41598-021-98599-0
https://doi.org/10.3389/fonc.2025.1634935
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xie et al. 10.3389/fonc.2025.1634935
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51. Boldú L, Merino A, Acevedo A, Molina A, Rodellar J. A deep learning model
(ALNet) for the diagnosis of acute leukemia lineage using peripheral blood cell images.
Comput Methods Programs BioMed . (2021) 202:105999. doi: 10.1016/
j.cmpb.2021.105999

52. Haque R, Al Sakib A, Hossain MF, Islam F, Ibne Aziz F, Ahmed MR, et al.
Advancing early leukemia diagnostics: A comprehensive study incorporating image
processing and transfer learning. BioMedInformatics. (2024) 4:966–91. doi: 10.3390/
biomedinformatics4020054

53. Abhishek A, Jha RK, Sinha R, Jha K. Automated classification of acute leukemia
on a heterogeneous dataset using machine learning and deep learning techniques.
BioMed Signal Process Control. (2022) 72:103341. doi: 10.1016/j.bspc.2021.103341

54. Roy RM, Ameer PM. Identification of white blood cells for the diagnosis of acute
myeloid leukemia. Intl J Imaging Sys Tech. (2022) 32(4):1307–17. doi: 10.1002/
ima.22702

55. Venkatesh K, Pasupathy S, Raja SP. Acute myeloid leukemia multi-classification
using enhanced few-shot learning technique. Scalable Comput Pract Exp. (2022)
23:377–88. doi: 10.12694/scpe.v23i4.2048

56. Cheng H, Ding J, Wang J, Xiao Y, Jin X, Zhang Y, et al. Predicting RUNX1::
RUNX1T1 genetic abnormalities in acute myeloid leukemia from bone marrow smears:
Can artificial intelligence do better? iScience. (2025) 28(7):109388. doi: 10.21203/rs.3.rs-
4019004/v1

57. Kockwelp J, Thiele S, Bartsch J, Haalck L, Gromoll J, Schlatt S, et al. Deep
learning predicts therapy-relevant genetics in acute myeloid leukemia from
Pappenheim-stained bone marrow smears. Blood Adv. (2024) 8:70–9. doi: 10.1182/
bloodadvances.2023011076

58. Eckardt J-N, Middeke JM, Riechert S, Schmittmann T, Sulaiman AS, Kramer M,
et al. Deep learning detects acute myeloid leukemia and predicts NPM1 mutation status
from bonemarrow smears. Leukemia. (2022) 36:111–8. doi: 10.1038/s41375-021-01408-w

59. Aby AE, Salaji S, Anilkumar KK, Rajan T. A review on leukemia detection and
classification using Artificial Intelligence-based techniques. Comput Electr Eng. (2024)
118:109446. doi: 10.1016/j.compeleceng.2024.109446

60. Robinson JP. Flow cytometry: past and future. BioTechniques. (2022) 72:159–69.
doi: 10.2144/btn-2022-0005

61. Cai Q, Lan H, Yi D, Xian B, Zidan L, Li J, et al. Flow cytometry in acute myeloid
leukemia and detection of minimal residual disease. Clin Chim Acta. (2025)
564:119945. doi: 10.1016/j.cca.2024.119945

62. Li W, Morgan R, Nieder R, Truong S, Habeebu SSM, Ahmed AA. Normal or
reactive minor cell populations in bone marrow and peripheral blood mimic minimal
residual leukemia by flow cytometry. Cytometry B Clin Cytom. (2021) 100:590–601.
doi: 10.1002/cyto.b.21968

63. Brooimans RA, van der Velden VHJ, Boeckx N, Slomp J, Preijers F, te Marvelde
JG, et al. Immunophenotypic measurable residual disease (MRD) in acute myeloid
leukemia: Is multicentric MRD assessment feasible? Leuk Res. (2019) 76:39–47.
doi: 10.1016/j.leukres.2018.11.014

64. Manohar SM, Shah P, Nair A. Flow cytometry: principles, applications and
recent advances. Bioanalysis. (2021) 13:181–98. doi: 10.4155/bio-2020-0267

65. Ferrer-Font L, Mayer JU, Old S, Hermans IF, Irish J, Price KM. High-
dimensional data analysis algorithms yield comparable results for mass cytometry
and spectral flow cytometry data. Cytometry A. (2020) 97:824–31. doi: 10.1002/
cyto.a.24016

66. Porwit A, Violidaki D, Axler O, Lacombe F, Ehinger M, Béné MC. Unsupervised
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