
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Michael N. Kammer,
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Objective: This study explores the feasibility of using breathomic biomarkers

analyzed by machine learning as a non-invasive diagnostic tool to differentiate

between benign and malignant thoracic lesions, aiming to enhance early

detection of thoracic cancers and inform clinical decision-making.

Methods: This study enrolled 132 participants with confirmed diagnosis of lung

cancer, esophageal cancer, thymoma, and benign diseases. Exhaled breath

samples were analyzed by thermal desorption-gas chromatography-mass

spectrometry. A logistic regression algorithm was employed to construct a

classification model for benign and malignant thoracic lesions. This model was

trained on a subset of 80 cases and subsequently validated in a separate set

comprising 52 samples.

Results: A logistic regression model based on thirteen exhaled volatile organic

compounds (VOCs) was developed to differentiate benign and malignant

thoracic lesions. The 13-VOC model achieved an AUC of 0.85 (0.72, 0.96),

accuracy of 0.79 (0.66, 0.88), sensitivity of 0.82 (0.67, 0.91), and a specificity of

0.71 (0.45, 0.88). It correctly classified 80% of lung cancer, 80% of thymoma, and

100% of esophageal cancer cases, distinguishing 71.4% of benign lesions. For

lung cancer, the model achieved an AUC of 0.79 (0.57, 0.98), sensitivity of 0.80

(0.63, 0.91), and specificity of 0.63 (0.31, 0.86), with 81.8% accuracy in detecting

early-stage (Stage 0 + I + II) disease. The model outperformed a 4-serum tumor

marker panel in sensitivity (0.90 vs. 0.39, p < 0.001). Additionally, in a cohort of 58

cancer patients, model-predicted risk significantly decreased post-surgery (p <

0.01), indicating a strong correlation with disease burden reduction.
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Conclusion: This study demonstrates the feasibility of utilizing breathomics

biomarkers for developing a non-invasive machine learning model for the early

diagnosis of thoracic malignancies. These findings provide a foundation for

breath analysis as a promising tool for early cancer detection, potentially

facilitating improved clinical decision-making and enhancing patient outcomes.
KEYWORDS

breathomics, volatile organic compounds, exhaled breath, thoracic cancer, machine
learning, early diagnosis, thermal desorption-gas chromatography-mass spectrometry,
postoperative monitoring
GRAPHICAL ABSTRACT

This ML-based breathomics study employs TD-GC-MS to analyze 13 exhaled VOCs, achieving superior sensitivity to 4 serum markers in distinguish-
ing lung/thymoma/esophageal cancers from benign conditions. Post-surgical risk reduction confirmed VOC biomarkers' correlation with disease
burden.
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Introduction

Thoracic malignancies, particularly lung and esophageal

cancers, represent a significant global health burden. Lung cancer

is the leading cause of cancer-related deaths worldwide, with nearly

2.5 million new cases and over 1.8 million fatalities in 2022 (1).

Despite treatment advancements, the five-year survival rate remains

below 20%, primarily due to diagnoses at advanced stages (2).

Similarly, the prognosis for esophageal cancer is also bleak, with a

five-year survival rate below 20% (3), mirroring the situation for

lung cancer, as evidenced by 511,000 new cases and 445,000 deaths

attributed to the disease worldwide in 2022 (1). Thymomas, though

rare, can lead to serious complications like myasthenia gravis. While

their global incidence is between 0.13 and 0.26 per 100,000

individuals (4), their impact on patients’ quality of life is

significant. These factors underscore the urgent need for

improved diagnostic modalities for thoracic malignancies.

Current diagnostic approaches, including imaging and invasive

procedures like biopsy, the gold standard for thoracic tumor

diagnosis, face limitations such as the imprecision to reliably

differentiate benign from malignant lesions and the risk of

complications associated with invasive procedures (5, 6).

Particularly, the limited sensitivity of conventional blood-based

tumor marker assays is underscored by the fact that 60-70% of

cases are diagnosed at late stages, primarily due to these methods’

inability to detect early biological changes and distinguish between

overlapping clinical features, thereby delaying timely intervention

(4, 7, 8). Therefore, there is an urgent need to develop more precise,

non-invasive, and highly sensitive tools to improve the early

detection and diagnostic accuracy of thoracic tumors.

Exhaled breath volatile organic compounds (VOCs) are carbon-

based molecules, primarily derived from endogenous metabolic

processes and systemic circulation. Over 3,000 VOCs have been

identified, reflecting the complex metabolic activity within the

human body (9–12). Disease processes (e.g., oxidative stress,

inflammation) or pathogens (e.g., bacteria and viruses), can

perturb normal metabolic pathways, including lipid peroxidation,

amino acid metabolism, and carbohydrate metabolism, leading to

unique alterations in the VOC profile, creating disease-specific

signatures (13). These VOCs, diffusing from blood into breath,

serve as dynamic biomarkers, enabling the detection of subtle

changes associated with disease onset and progression. Breath

analysis of these VOC profiles thus offers a non-invasive, real-

time method for early disease detection (14). Previous studies have

demonstrated the potential of breath VOCs as biomarkers in

identification of a variety of cancers, including lung cancer (15–

18), breast cancer (19), and gastrointestinal malignancies (20–22).

Gordon et al. were pioneers in using gas chromatography-mass

spectrometry (GC-MS) to identify alkenes in the breath of lung

cancer patients (23). Kumar et al. reported that a panel of 12 VOCs

detected using a profile-3 selected ion flow tube mass spectrometry

instrument could distinguish esophageal cancer from normal

controls, achieving an AUC of 0.97 in the initial analysis and 0.92
Frontiers in Oncology 03
± 0.01 in the validation set (24). However, research efforts have

predominantly focused on distinguishing cancer patients from

healthy controls, with limited emphasis on differentiating between

benign diseases and cancer patients. Furthermore, to the best of our

knowledge, no studies have investigated the use of VOCs as

biomarkers for identifying thymomas so far. This distinction is

particularly important in thoracic tumors, where benign diseases

such as granulomas or hamartomas may mimic malignancies on

medical imaging, leading to diagnostic uncertainty and potentially

unnecessary invasive procedures.

This study introduces a novel machine learning model that

employs a comprehensive panel of breath-derived VOC biomarkers

analyzed using GC-MS to achieve simultaneous early detection of

lung cancer, esophageal cancer, and thymoma—the first

breathomics-based strategy for multi-thoracic cancer diagnosis.

By evaluating pre/postoperative predictions, we will assess its

potential for real-time postoperative monitoring. Notably, we will

also compare the sensitivity of this breath-based approach with

conventional blood-based tumor markers, with the goal of

providing a non-invasive solution for early detection and

postoperative monitoring of thoracic cancers.
Methods

Study design and participants

This cross-sectional study, conducted from November 2021 to

January 2022 at the East Division of the First Affiliated Hospital of

Sun Yat-sen University in Guangzhou, China, received approval

from the Ethics Committee of the First Affiliated Hospital of Sun

Yat-sen University (No. 2022-016). All subjects provided signed

informed consent. Inclusion criteria were adult participants aged

18–80 years with clinical suspicion of malignant thoracic tumors,

supported by imaging evidence (CT/PET-CT) and a

multidisciplinary team (MDT) assessment prior to histological

confirmation. Eligible participants encompassed treatment-naïve,

newly diagnosed thoracic cancer patients scheduled for surgical

resection for diagnostic evaluation, and patients with a history of

treated or recurrent thoracic malignancy, provided comprehensive

treatment records were available. Exclusion criteria encompassed

individuals who were unwilling or unable to provide in-person

informed consent, those with unqualified breath samples, patients

with relapsed diseases and incomplete treatment histories,

individuals suffering from other malignant tumors, those with

severe bronchial asthma or confirmed tuberculosis, and those

with severe liver damage or kidney diseases. Each participant had

undergone resection surgery and was pathologically confirmed to

be categorized into one of the following groups: lung cancer,

thymoma, esophageal cancer, and benign disease controls.

Demographic and clinical information were meticulously

recorded and collected. This study was registered in the Chinese

Clinical Trial Registry (Registration No.: ChiCTR2200061264).
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Exhale breath collection

All samples were collected following the same standardized

procedure. Prior to collection, subjects were asked to rinse their

mouths with purified water and rest for 15 minutes to stabilize their

respiratory patterns. All subjects were required to abstain from food

and beverages except water and smoking for at least 12 hours before the

collection. To minimize the influence of diurnal metabolic variations,

all collections were scheduled between 7:00 AM and 9:00 AM.

Subjects were instructed to remain seated and breathe normally

through a mask for 3 minutes. During exhalation, breath samples were

concurrently drawn through a breath sampler (CXBC-Alpha, ChromX

Health Co., Ltd) containing an internal sampling pump and a flow

control module (Figure 1). 900 mL of breath samples were collected at a

rate of 300 mL/min and directed into thermal desorption tubes. These

tubes, pre-conditioned with 99.9% nitrogen gas to ensure a clean and

inert environment, contained Carbopack X andCarbopack B for sample

enrichment, concentrating the target compounds for later analysis. All

collected samples were sealed with inert end caps immediately and

stored at -20°C to maintain their integrity and analyzed by thermal

desorption-gas chromatography-mass spectrometry (TD-GC-MS)

within 7 days to ensure timely and accurate results.
TD-GC-MS analysis

Breath samples were analyzed by TD-GC-MS using a system

incorporating a high-throughput autosampler, a thermal desorber

(TD100-xr, MARKES), and an 7890B-5977A GC/MSD (Agilent

Technologies). Separation was performed on an HP-5MS capillary

column with nitrogen carrier gas. The mass spectrometer operated

in electron ionization (EI) mode at 70 eV, acquiring data in full scan

mode (m/z 33-450). Detailed instrument parameters are provided

in Supplementary Materials.
GC-MS quantification and pre-analysis
quality control

Raw GC-MS data were processed using MSDial v5.4 for peak

detection, quantification, and alignment. The software generated
Frontiers in Oncology 04
matrices of peak area (VOC area matrix) and signal-to-noise ratio

(SNR matrix). Prior to statistical analysis, a data preprocessing and

filtering protocol was implemented in Python 3.9.18 to ensure data

robustness. Firstly, the signal-to-noise ratio (SNR) matrix was used

to assess response reliability. A VOC measurement was classified as

valid if its SNR value exceeded 10; measurements below this

threshold were excluded due to significant noise interference. For

individual samples, the response rate was calculated as the

percentage of valid VOC measurements relative to the total

measurements in the sample. Samples with a response rate ≥80%

were retained for further analysis. Similarly, compound-specific

response rates were determined for each VOC by calculating the

proportion of valid measurements across all samples. To ensure

analytical robustness, only VOCs with a response rate ≥50% were

included in the validated dataset, which was designated as the “valid

VOC area matrix”. Secondly, the valid VOC area matrix was then

log10-transformed to address heteroscedasticity, followed by

normalization to account for variations in instrument response

and sample loading. These steps enabled meaningful comparison of

VOC abundances across samples.
Dataset partition

A dataset of 132 participants with malignant or benign thoracic

lesions was used in this study, comprising 97 malignant and 35

benign samples. For biomarker discovery and model development,

the dataset was randomly split into a discovery set (60%, n = 79; 59

malignant, 20 benign) and a testing set (40%, n = 53; 38 malignant,

15 benign). The discovery set (training set) was used for feature

selection and model training, while the testing set served for

independent model evaluation.
Biomarker screening

To identify VOCs differentially expressed between malignant

and benign thoracic lesions, two complementary approaches were

employed. First, the Wilcoxon rank-sum test was used to assess the

distribution of individual VOCs across the two groups, generating
FIGURE 1

Exhaled breath collection device. The images depicted the schematic diagram (A) and sectional view (B) of the exhaled breath collection device.
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corresponding p-values. Second, orthogonal partial least squares-

discriminant analysis (OPLS-DA) was performed to evaluate the

collective contribution of VOCs to group classification and to

calculate variable importance in projection (VIP) scores (25).

VOCs meeting both criteria of a p - value < 0.05 and a VIP

score > 1 were selected as candidate biomarkers.

Putative biomarker identification was subsequently conducted

using Agilent MassHunter Qualitative Analysis 10.0 software and the

NIST 17 mass spectral library. Finally, metabolic pathway-associated

VOCs reported in the literature were selected as candidate

biomarkers for inclusion in diagnostic model development.
Machine learning algorithms selection and
evaluation

Given the complexity inherent in omics data, it is essential to

identify the most suitable model for the dataset at hand. To this end,

five commonly used machine learning algorithms were

systematically evaluated: logistic regression (LR) (26), random

forest (RF) (27), k-nearest neighbors (KNN) (28), eXtreme

Gradient Boosting (XGBoost) (29), and support vector machine

(SVM) (30). Among these, logistic regression algorithm

demonstrated the highest robustness and effectiveness, based on

its superior performance across both the discovery and testing

datasets. Consequently, logistic regression model was deployed for

diagnostic prediction.
Feature selection

To minimize overfitting, a progressive feature selection

approach was employed. Biomarkers were ranked by their area

under the receiver operating characteristic curve (ROC-AUC)

scores. A logistic regression model was trained using 5-fold cross-

validation with stratified sampling, iteratively adding one feature at

a time, starting with the highest-ranked biomarker. This process

continued until no further significant improvement in model

performance was observed.
Hyperparameter optimization

With the optimal feature subset identified, logistic regression

hyperparameters were tuned using grid search with stratified

sampling. The following hyperparameters were considered:

regularization method, regularization strength, early stopping

criteria, and class weights. The parameter combination that

yielded the highest AUC score was selected for final model training.
Final model evaluation

The final logistic regression model, incorporating the optimized

feature subset and hyperparameters, was trained on the training
Frontiers in Oncology 05
dataset. The model was then finalized, and a classification threshold

was determined using the Youden index. Subsequently, the model’s

performance was evaluated independently on the validation dataset.

Performance was assessed using five metrics: F1-score, accuracy,

sensitivity, specificity, and AUC, along with their respective

confidence intervals. Further analyses were performed using this

finalized model.
Statistical analysis

Statistical analyses were performed using Python (version

3.9.18). Continuous variables are presented as mean ± standard

deviation or median [min, max], as appropriate. Categorical

variables are presented as counts and percentages. The Wilcoxon

rank-sum test was used to compare continuous variables between

independent groups (e.g., malignant vs. benign). The Chi-square

test was used to compare categorical variables. ROC analysis was

performed using scikit-learn python (v1.5.1). 95% confidence

intervals (95% CI) for AUC, F1-score, sensitivity, specificity, and

accuracy were calculated using a binomial distribution. All

statistical tests were two-sided, with a significant level of a = 0.05,

unless otherwise stated.
Results

Study population

145 participants were enrolled in this study. Exclusion criteria

were applied to exclude individuals outside the age range of 18 to 80

years, those who declined participation, and those who provided

invalid breath samples, resulting in a final cohort of 132 eligible

participants for analysis. Among these, 77 were diagnosed with lung

cancer, 13 with thymoma, 7 with esophageal cancer, and 35 had

benign diseases, as confirmed by pathological results (Figure 2). The

demographic and clinical data of these participants are presented in

Table 1. Statistical comparisons between the case and control

groups were conducted on basic demographic characteristics,

including age, gender, body mass index (BMI), smoking and

alcohol consumption status, and family cancer history. As

detailed in Table 1, no significant difference was observed in

these factors.
VOC identification and feature selection

Initial statistical screening using the Wilcoxon rank-sum test

and OPLS-DA revealed twenty-seven VOCs that exhibited

differential abundance (p < 0.05) and high VIP scores (VIP > 1)

when comparing exhaled breath samples from malignant and

benign groups. These candidate VOCs then underwent

compound identification and further refinement to exclude those

associated with drug metabolism, environmental contaminants, or

unrelated to the disease pathology. This rigorous filtering process
frontiersin.org
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ultimately yielded a final set of 18 potentially disease-relevant VOCs

(Supplementary Table S1).
Diagnostic model selection and feature
optimization

To identify the optimal diagnostic model for differentiating

benign from malignant thoracic lesions, five machine learning

algorithms including logistic regression, SVM, random forest,

KNN, and XGBoost were trained using the pre-selected panel of

18 VOCs. Comparison of the models revealed that logistic

regression demonstrated robust performance in both the training

and validation sets, achieving AUCs of 0.85 (95% CI: 0.82, 0.89) and
Frontiers in Oncology 06
0.83 (0.80, 0.89), respectively (Figure 3A; Supplementary Table S2).

The DeLong test indicated that logistic regression significantly

outperformed the KNN, XGBoost, and SVM models in both

datasets (p < 0.05). Furthermore, when compared to the random

forest model, logistic regression demonstrated superior

performance in the validation set (p < 0.01). Consequently, the

logistic regression model was selected for further analysis and

performance evaluation.

Final feature selection was conducted using the logistic

regression algorithm to optimize model performance. Analysis of

the AUC as a function of the number of top features revealed

diminishing returns beyond 13 features. As incorporating

additional features did not substantially improve the AUC, the

top 13 features were selected for model development (Figure 3B).
FIGURE 2

Schematic representations of the research framework.
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TABLE 1 Patient demographic and clinical characteristics.

Characteristics Training set (n = 80) Validation set (n = 52) Total (n = 132)

Gender
Male 34 (42.50%) 18 (34.62%) 52 (39.39%)

Female 46 (57.50%) 34 (65.38%) 80 (60.61%)

Age, year
Median [Min, Max] 58 [24, 81] 53 [13, 76] 57 [13, 81]

Mean (SD) 56.58 (12.22) 52.48 (14.67) 54.92 (13.36)

BMI Mean (SD) 23.9 (2.74) 22.49 (3.62) 23.28 (3.22)

Smoking

Never 40 (50.00%) 35 (67.31%) 75 (56.82%)

Ever 4 (5.00%) 1 (1.92%) 5 (3.79%)

Current 4 (5.00%) 2 (3.85%) 6 (4.55%)

Unknown 32 (40.00%) 14 (26.92%) 46 (34.85%)

Drinking

Never 44 (55.00%) 38 (73.08%) 82 (62.12%)

Ever 2 (2.50%) 0 (0.00%) 2 (1.52%)

Current 2 (2.50%) 0 (0.00%) 2 (1.52%)

Unknown 32 (40.00%) 14 (26.92%) 46 (34.85%)

Family cancer

Yes 2 (2.50%) 6 (11.54%) 8 (6.06%)

No 45 (56.25%) 32 (61.54%) 77 (58.33%)

Unknown 33 (41.25%) 14 (26.92%) 47 (35.61%)

Lesion size

< 10 mm 16 (20.00%) 9 (17.31%) 25 (18.94%)

10–20 mm 25 (31.25%) 22 (42.31%) 47 (35.61%)

20–30 mm 19 (23.75%) 7 (13.46%) 26 (19.70%)

> 30 mm 17 (21.25%) 11 (21.15%) 28 (21.21%)

Unknown 3 (3.75%) 3 (5.77%) 6 (4.55%)

Histopathology
Malignant 59 (73.75%) 38 (73.08%) 97 (73.48%)

Benign 21 (26.25%) 14 (26.92%) 35 (26.51%)

Malignant subgroup

LC 47 (58.75%) 30 (57.69%) 77 (79.38%)

Thymoma 8 (10.00%) 5 (9.62%) 13 (13.40%)

EC 4 (5.00%) 3 (5.77%) 7 (7.22%)

Benign subgroup
Benign nodules 12 (15.00%) 8 (15.38%) 20 (57.14%)

Benign others 9 (11.25%) 6 (11.54%) 15 (42.86%)

Benign histopathology

Hamartoma 2 (16.67%) 0 (0.00%) 2 (10.00%)

Inflammation 5 (41.67%) 5 (62.50%) 10 (50.00%)

Tuberculosis 1 (8.33%) 0 (0.00%) 1 (5.00%)

Other nodule 4 (33.33%) 3 (37.50%) 7 (35.00%)

Mediastinal cyst 2 (22.22%) 3 (60.00%) 5 (35.71%)

Thymic hyperplasia 1 (11.11%) 0 (0.00%) 1 (7.15%)

Thymolipoma 1 (11.11%) 0 (0.00%) 1 (7.15%)

Esophageal hiatal hernia 0 (0.00%) 1 (20.00%) 1 (7.14%)

Others 5 (55.56%) 1 (20.00%) 6 (42.86%)

LC histopathology Adenocarcinoma 39 (82.98%) 27 (90.00%) 66 (85.71%)

(Continued)
F
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These identified compounds represent a diverse range of

hydrocarbons, including methyl-cyclohexane, camphene, and d-

limonene, as well as oxygenated species such as butanal, 1-butanol,

propanoic acid, and p-cresol. Table 2 provides a comprehensive list

of these compounds and their corresponding discriminant values.

Analysis of the scaled VOC peak area (Figure 3C) demonstrated

that all 13 VOCs were present at elevated levels in the malignant

group (p < 0.05). A representative chromatogram of the 13 VOCs in

malignant and benign samples was shown in Figure 3D.
Model performance in distinguishing
benign from malignant thoracic lesions

In the training set (n = 80), the 13-VOC model demonstrated

excellent performance with an AUC of 0.86 (0.83, 0.90), an accuracy

of 0.83 (0.73, 0.89), a sensitivity of 0.86 (0.76, 0.93), and a specificity

of 0.71 (0.50, 0.86). In the validation set (n = 52), the 13-VOC

model achieved an AUC of 0.85 (0.81, 0.90), an accuracy of 0.79

(0.66, 0.88), a sensitivity of 0.82 (0.67, 0.91), and a specificity of 0.71

(0.45, 0.88), confirming its generalizability and clinical applicability

(Figure 4A; Supplementary Table S3).

To further evaluate the performance of the detection model for

individual cancer types, a subgroup analysis was conducted across

various malignant thoracic lesions. Thymoma (n=13) and

esophageal cancer (n=7) analyses are exploratory due to limited

sample size and serve as hypothesis-generating observations. In the

training set, the AUCs for lung cancer, thymoma, and esophageal

cancer were 0.88 (0.85, 0.90), 0.81 (0.75, 0.88), and 0.80 (0.70, 0.96),

respectively. In the validation set, corresponding AUCs were 0.84

(0.80, 0.90) for lung cancer, 0.86 (0.79, 1.00) for thymoma, and 0.91

(0.83, 0.95) for esophageal cancer (Figures 4B–D). To further

visualize the model’s performance, prediction values for each

participant were plotted against their actual disease status (lung
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cancer/thymoma/esophageal cancer vs. benign). Using a

classification threshold of 0.64, the model achieved a high

accuracy in the training set, correctly identifying 87.2% (75-94%)

of lung cancer, 87.5% (53-98%) of thymoma, and 75% (30-95%) of

esophageal cancer cases (Figure 4E). In the validation set, the model

maintained high accuracy, correctly classifying 80% (63-91%) of

lung cancer, 80% (38-96%) of thymoma, and 100% (44-100%) of

esophageal cancer cases (Figure 4F). Additionally, the model

demonstrated good specificity for benign lesions, correctly

identifying 71.4% (50-86%, 45-88%) of such cases in both the

training and validation sets (Figures 4E–F). These findings

emphasize the model’s robust performance and generalized

applicability in detecting various malignant thoracic lesions.

Importantly, its ability to differentiate benign lesions underscores

its potential to minimize unnecessary interventions and

overtreatment, supporting its use in clinical practice.
Model performance in differentiating
pulmonary lesions and across different
lung cancer AJCC stages

Building upon previous findings, we further investigated the

model’s ability to differentiate malignant and benign pulmonary

lesions. In the training set (n = 59), the 13-VOC model achieved an

AUC of 0.82 (0.68, 0.95), sensitivity of 0.89 (0.77, 0.95), and

specificity of 0.58 (0.32, 0.81). In the validation set (n = 38), the

model exhibited an AUC of 0.79 (0.57, 0.98), sensitivity of 0.80

(0.63, 0.91), and specificity of 0.63 (0.31, 0.86) (Figure 4G;

Supplementary Table S3).

Early detection of lung cancer is critical in clinical practice,

allowing for timely interventions and curative resections that

substantially increase patient survival rates. To assess our model’s

efficacy in diagnosing early lung cancer, we used the model to
TABLE 1 Continued

Characteristics Training set (n = 80) Validation set (n = 52) Total (n = 132)

Squamous carcinoma 4 (8.51%) 2 (6.67%) 6 (7.79%)

Others 4 (8.51%) 1 (3.33%) 5 (5.19%)

EC histopathology Squamous carcinoma 4 (100%) 3 (100%) 7 (100%)

Thymoma histopathology

Type B2 6 (75.00%) 4 (80.00%) 10 (76.92%)

Type B3 1 (12.5%) 1 (20.00%) 2 (15.38%)

Type AB 1 (12.5%) 0 (0%) 1 (7.69%)

AJCC stages

Stage 0 2 (2.50%) 2 (3.85%) 4 (3.03%)

Stage I 34 (42.5%) 23 (44.23%) 57 (43.18%)

Stage II 10 (12.5%) 3 (5.77%) 13 (9.85%)

Stage III 2 (2.50%) 5 (9.62%) 7 (5.30%)

Stage IV 8 (10.00%) 5 (9.62%) 13 (9.85%)

Unknown 24 (30.00%) 14 (26.92%) 38 (28.79%)
BMI, body mass index; EC, esophageal cancer; LC, lung cancer.
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differentiate between various lung cancer stages and benign

nodules. The predictive performance of the model was graphically

demonstrated by plotting individual participant predictions against

their corresponding ground truth classifications (lung cancer stages

or benign nodule). With a predetermined classification cut-off at

0.64, the 13-VOC model demonstrated strong performance in

identifying early-stage lung cancer, achieving high accuracy for

stage 0 + I + II lung cancer (85.7% [70.6-93.7%]) and stage III + IV
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lung cancer (88.9% [56.5-98%]) in the training set, though the

accuracy for benign nodules was comparatively lower at 58.3% (32-

80.7%) (Figure 4H). In the validation set, the model maintained

robust performance for stage 0 + I + II lung cancer (81.8% [61.5-

92.7%]) and improved accuracy for benign nodules (66.7% [35.4-

87.9%]), though there was a slight decrease in accuracy for stage III

+IV lung cancer (71.4% [35.9-91.8%]) (Figure 4I). These findings

highlight the model’s potential for early detection and timely
FIGURE 3

VOC identification and feature selection. (A) ROC curves display the classification performance of the VOC-models using five machine learning
algorithms including LR, RF, KNN, XGBoost, and SVM. (B) the graph shows AUC values (y-axis) against the number of features (x-axis) in the
VOC-model training set. (C) box plots comparing the scaled peak area of 13 VOCs in benign and malignant patients. y-axis: scaled VOC peak area
by log-transformation and z-score normalization. Significance levels are denoted as follows: * p < 0.05, ** p < 0.01 (Rank-sum test). (D)
representative chromatograph of 13 selected VOCs in malignant vs. benign patients. Scaled Total Ion Chromatogram TIC (Real TIC/1M).
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treatment of lung cancer, as well as its capacity to reduce

unnecessary interventions and overtreatment—an essential

consideration in clinical decision-making. However, further

optimization is necessary to enhance its ability to accurately

differentiate benign nodules and address variability in diagnosing

advanced-stage lung cancer.
Comparison of the diagnostic performance
of the VOC model with traditional methods
using serum tumor biomarkers

To determine whether the model represents an advancement in

tumor diagnosis, we compared its predictive accuracy against that

of four established clinical tumor biomarkers: CA125, ProGRP,

CEA, and CFRA21-1. Among the 36 lung cancers patients, the

discriminative sensitivities of CA125, ProGRP, CEA, and CFRA21–

1 were 0.061, 0.121, 0.152 and 0.242 respectively, while the 13-

VOCs model showed a paired discriminative sensitivity of 0.895

(p < 0.001) (Figures 5A–D, F). Given the common clinical practice

of combining these four biomarkers to enhance specificity, we

hypothesized that classifying individuals as positive for lung
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cancer if any of the serum tumor biomarkers fell outside the

normal range (i.e., CA125: 0–35 KU/L, ProGRP: 0–46 ng/L, CEA:

0-5mg/L, CFRA21-1: 0–3 ng/L) could yield improved sensitivity. Of

particular note, our 13-VOCs model significantly outperformed the

4-serum tumor marker panel, achieving a sensitivity of 0.895

compared to 0.394 (p < 0.001) (Figures 5E, F). Importantly, this

superior performance was not attributable to an elevated false

positive rate (Figure 4). These findings suggested that the 13-

VOCs model represents a more robust diagnostic tool, potentially

offering particular advantages for early detection, an area where

traditional serum biomarkers have limited utility.
Model performance for postoperative
monitoring and follow-up

To assess whether the model accurately reflects dynamic

changes in disease status and further validate that the features it

captures are closely associated with disease activity or burden, we

analyzed and compared the model’s score changes between

preoperative assessments and postoperative timepoints, 7 days to

1 month after surgery. Among the cancer patients (n = 54),
TABLE 2 13 VOCs identified for model development.

VOC ID
Average
retention
time (min)

VOC name P value VIP AUC
Literature reported
associated with
cancers

Possible biological
origin(s)

70 2.738 Butanal 0.039 2.132 0.634 EC (46, 47, 49)

114 3.498 1-Butanol 0.033 2.153 0.632 LC (31)
Alcohol metabolism,
microbial fermentation

157 4.115 Propanoic acid 0.007 2.792 0.651 LC (32)
Lipid peroxidation,
aldehyde metabolism

182 4.551 Methyl-cyclohexane 0.043 1.962 0.614 LC (33, 34), CRC (41)
Hydrocarbon metabolism,
environmental exposure

206 5.115 Sec-Butyl acetate 0.036 1.774 0.602 LC (33)
Esterification of alcohol
and acetic acid

226 5.57 Isobutyl acetate 0.018 2.804 0.622 Unknown
potential lipid
peroxidation or
microbial origin

242 5.779 Trans-1,2-Cyclopentanediol 0.034 2.04 0.612 Unknown
possibly microbial or
environmental

309 6.626 Trans-2-Decenal 0.036 2.162 0.611 LC (39, 40)
Lipid peroxidation,
oxidative stress

355 7.585 Cis-2-Hexen-1-ol, (Z)- 0.049 2.925 0.61 Unknown
Lipid peroxidation, plant-
derived compounds

467 9 Camphene 0.025 2.259 0.611 LC (35) Terpenoid metabolism

525 9.882 6-methyl-5-Hepten-2-one 0.049 1.9 0.584 GC (43–45), CRC (42), LC (37)
Fatty acid oxidation,
isoprenoid metabolism

581 10.581 D-Limonene 0.039 1.473 0.612 LC (35, 36)
Terpene metabolism,
dietary intake

663 11.661 p-Cresol 0.029 1.658 0.642 LC (38), EC/GC (50, 69–72)
Microbial metabolism
(gut/oral), hepatic
metabolism
AUC, area under curve; CRC, colorectal cancer; EC, esophageal cancer; GC, gastric cancer; LC, lung cancer; VOCs, volatile organic compounds; VIP, variable importance in the projection.
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postoperative predicted probabilities were significantly lower than

preoperative probabilities (p < 0.01), indicating a measurable

decrease in predicted disease burden following surgical

intervention (Figure 6A). Subgroup analysis confirmed this trend

in both lung cancer (p < 0.05) (Figure 6C) and thymoma (p < 0.05)

(Figure 6D), with postoperative scores remaining consistently lower

across these malignancies. The postoperative reduction in

esophageal cancer was not statistically significant (p > 0.05)

(Figure 6E), possibly due to the limited sample size. Notably,

there was no significant difference in predicted probabilities

between the postoperative and preoperative groups in cases of

benign disease (p > 0.05) (Figure 6B). Collectively, these findings
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demonstrate that the model effectively reflects the reduction in

disease burden following lung cancer surgery, highlighting its

potential utility for assessing the completeness of resection and

detecting early signs of postoperative recurrence.
Discussion

This study aimed to develop and validate a novel machine

learning model for the early diagnosis of thoracic malignancies

using exhaled VOCs as biomarkers. To our knowledge, our findings

demonstrate for the first time the feasibility of employing a single
FIGURE 4

Model performance in distinguishing benign from malignant thoracic lesions. (A–D, G), ROC curves for the 13-VOCs model in distinguishing
malignant (A) vs. benign, lung cancer (B) vs. benign all, thymoma (C) vs. benign all, esophageal cancer (D) vs. benign all, and lung cancer (G) vs.
benign nodules. (E, F), Scatter plot depicting the relationship between VOC model prediction scores and the first principal component (PC1) in the
training (E) and validation (F) sets, respectively. Each point represents an individual sample. The vertical red dashed line indicates the VOC model
cutoff score of 0.64 used to discriminate between malignant and benign groups. (H, I), VOC model prediction scores for individual samples
(SampleID) across lung cancer and benign nodule groups in the training (H) and validation (I) sets, respectively. Samples are color-coded by
category. The red dashed horizontal line represents the VOC model cutoff score of 0.64 used to distinguish between groups. Thymoma (n=13) and
esophageal cancer (n=7) analyses are exploratory (limited sample size) and serve as hypothesis-generating observations.
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panel of VOC profiles to differentiate between benign and

malignant thoracic lesions, particularly lung, esophageal, and

thymic tumors.

To determine the optimal classifier for metabolomics data

analysis, we evaluated five machine learning algorithms: logistic

regression, random forest, k-nearest neighbor, XGBoost, and

support vector machine, on training and validation datasets.

Logistic regression demonstrated robust performance on both

sets, making it the ideal choice for the baseline model. While

algorithms like Random Forest and XGBoost showed some

promise, they were not pursued due to their increased complexity

and computational demands, without significant improvement in

testing set performance. Given its simplicity, interpretability,

efficiency, and strong generalization, logistic regression emerged

as the optimal model for metabolomics data analysis. The 13-VOC

model constructed by logistic regression algorithm achieved high

accuracy in classifying thoracic tumors, with an AUC of 0.85,

sensitivity of 82%, and specificity of 71%, representing a clinically
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significant advancement over existing clinical markers, which only

achieved a sensitivity of 39.4%. Notably, the model exhibited robust

performance in distinguishing early-stage lung cancer, suggesting

its potential as a non-invasive screening tool.

Thirteen VOCs were identified as potential biomarkers for

distinguishing malignant from benign thoracic lesions, many of

which have established or emerging links to various cancer

metabolism and pathogenesis. Several VOCs, including 1-butanol

(31), propanoic acid (32), methyl-Cyclohexane (33, 34), sec-Butyl

acetate (33), camphene (35), D-Limonene (35, 36), 6-methyl-5-

Hepten-2-one (37), and p-cresol (38), have been previously

reported as elevated in lung cancer and other malignancies.

Emerging evidence suggests that these VOCs may reflect key

metabolic alterations characteristic of cancer pathogenesis. Trans-

2-Decenal (39, 40), an alkenal mutagen found in cooking oil fumes,

has been shown to promote oxidative DNA damage through

reactive oxygen species formation, a well-established mechanism

implicated in lung carcinogenesis, suggesting increased risk for
FIGURE 5

Comparison of the diagnostic performance of the 13-VOCs model with clinical serum tumor biomarkers among lung cancer patients.
(A–E), diagnostic prediction of the lung cancer patients using the 13-VOCs model and clinical markers CA125, ProGRP, CEA, CFRA21-1, and the
4-serum tumor marker panel respectively. The blue vertical dashed line represents the clinical serum tumor biomarkers at various cutoffs, while the
red horizontal dashed line indicates the VOC model cutoff score at 0.64. Each point corresponds to an individual lung cancer sample (n=36).
(F), comparison of the four individual serum tumor marker, 4-serum tumor marker panel and 13-VOCs models’ detection sensitivity in predicting
lung cancer patients. Sensitivity differences between the 13-VOC model, each individual serum tumor marker, and the 4-serum tumor marker panel
were evaluated using McNemar’s test. Significance is denoted as follows: ***, p < 0.001.
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individuals with frequent exposure (39). Methyl-cyclohexane,

which has also been implicated in distinguishing colorectal cancer

from healthy controls, may indicate broader metabolic

reprogramming in malignancy (41). 6-methyl-5-Hepten-2-one,

potentially linked to increased fatty acid oxidation (42), a

hallmark of cancer cell metabolism, was reported to be elevated

in various gastrointestinal cancers, including colorectal (42) and

gastric cancer (43–45).

Butanal, elevated in esophagogastric cancer (46), may accumulate

due to genetic dysregulation of its metabolic pathways or as a

byproduct of lipid peroxidation—a process often amplified by

chronic inflammation in the tumor microenvironment. This aligns

with the recognized role of oxidative stress in cancer progression

(47, 48). Furthermore, alterations in the gut microbiome, frequently

observed in esophageal cancer, can modulate butanal production and

metabolism (49), highlighting the interplay between host metabolism

and microbial communities in cancer.

p-Cresol, with its complex metabolism influenced by gut and oral

microbiota, hepatic processes, and disease state, has been identified as

a potential breath biomarker in various cancers, including

esophageal, gastric, thyroid, breast, oral, and lung cancers, and even

in some non-malignant conditions (50, 51). This broad association

suggests p-cresol and other VOCs may serve as general indicators of

metabolic dysregulation or malignancy.
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In contrast, isobutyl acetate, trans-1,2-Cyclopentanediol, and

cis-2-Hexen-1-ol currently lack well-established links to cancer

pathogenesis. Isobutyl acetate has been primarily reported as a

marker for microbial (specifically Candida albicans) activity,

particularly in respiratory infections (52). It may also indirectly

contribute to metabolic disorders like obesity and diabetes through

oxidative stress and neuroinflammation (53), and potentially to

cardiovascular disease via ROS-mediated metabolic dysregulation

(54). Further studies should include metabolomic and pathway

enrichment analyses, such as KEGG, to elucidate their metabolic

origins and explore potential sources like lipid peroxidation or

microbial dysbiosis.

The observation that several VOCs are associated with multiple

cancer types suggests they may serve as general indicators of

malignancy or reflect shared metabolic pathways. Combining

these VOCs into a diagnostic model is justified by their diverse

origins and links to various cancer-related pathways, including

genetic dysregulation, oxidative stress, lipid peroxidation, and

microbiome alterations, enabling the capture of a more

comprehensive metabolic fingerprint of thoracic malignancies,

potentially improving diagnostic accuracy. Nevertheless, further

mechanistic studies are needed to elucidate how these VOCs

specifically relate to cancer pathogenesis and to validate their

clinical utility as biomarkers.
FIGURE 6

Model performance for postoperative monitoring and follow-up. (A–E), Comparison of VOC model prediction scores before (PreOp) and after
(PostOp) surgery in the overall malignant group (A), benign group (B), lung cancer group (C), thymoma group (D), and esophageal cancer group
(E), respectively. Each line represents an individual patient’s change in score, color-coded by the magnitude of change. Boxplots show the median
and interquartile range. Comparisons in VOC prediction by scores postoperatively were performed using a paired t-test. Significance is denoted as
follows: *p < 0.05, **p < 0.01, ns = not significant (p ≥ 0.05).
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Furthermore, the model’s ability to track changes in VOC

profiles over time, as demonstrated by the significant decrease in

predicted risk following surgery, highlights its potential for

monitoring disease progression and treatment response. Wang

et al. demonstrated the feasibility of using perioperative dynamic

breathomics to identify a panel of VOCs as potential biomarkers for

lung cancer (55). By comparing VOC profiles before and after

surgery, they identified 16 VOCs that were significantly altered in

lung cancer patients, and a machine learning model based on these

VOCs achieved high accuracy of 86.9% in differentiating between

lung cancer patients and healthy controls. Nardi-Agmon et al.

explored the potential of breath analysis for monitoring the

response to anticancer treatment in patients with advanced lung

cancer (56). By utilizing a panel of three VOCs identified as

significant indicators of treatment outcomes, this approach may

provide a rapid and non-invasive method for assessing treatment

response, potentially enabling earlier detection of treatment failure

compared to conventional imaging techniques. These findings

highlight the growing evidences supporting breath analysis as a

valuable tool for lung cancer management, with the ability to detect

dynamic changes in VOC profiles pre- and post-treatment

suggesting its potential as a complementary approach to existing

diagnostic and monitoring strategies.

However, several limitations of this study should be

acknowledged. Firstly, although our cohort was prospectively

enrolled, the sample size (n=132) and subtype distribution (lung

cancer 79.4%, thymoma 13.4%, esophageal cancer 7.2%) reflect the

underlying epidemiology of thoracic malignancies (1, 3, 4). This

distribution enabled robust differentiation between malignant and

benign lesions, but the small numbers for rarer subtypes limit the

strength of conclusions for thymoma and esophageal cancer. These

analyses are exploratory and serve as preliminary, hypothesis-

generating observations. External validation in larger, multi-center

cohorts, particularly through collaboration with international

consortia for rare thoracic tumors, is essential to confirm these

findings and support broader clinical application. Secondly, the

reliance on GC-MS for VOC analysis presents challenges for

clinical implementation. GC-MS is a complex, time-consuming,

and expensive technique that requires specialized equipment and

expertise, making it less feasible for routine clinical use (57). To

address this, future research should focus on validating these

findings using point-of-care testing (POCT) devices, such as

micro-GC systems (58–65), electronic noses (66), or wearable

VOC sensors (67), which offer real-time, bedside breath analysis

for rapid clinical decision-making. However, challenges remain,

including achieving sufficient sensor sensitivity and selectivity,

minimizing sensor drift and environmental interference, and

standardizing protocols. Progress in materials science and AI-

driven data analysis, along with interdisciplinary collaboration, will

be crucial to address these issues. Pilot studies in clinical settings are

also needed to assess practicality, cost-effectiveness, and user

acceptance, ultimately supporting the adoption of breath analysis
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in routine healthcare. Large-scale validation studies using such

technologies could pave the way for the widespread adoption of

breath analysis in clinical practice (58–63). Thirdly, this study

focused only on lung cancer, thymoma, and esophageal cancer,

limiting its applicability to other thoracic malignancies. Future

research should include mesothelioma, mediastinal tumors, and

other rare thoracic cancers to develop a more comprehensive

model, which could improve breath analysis for diagnosis and

monitoring across the entire spectrum of thoracic oncology.

Fourthly, while the study demonstrates the potential of VOC

analysis, further research is needed to elucidate the underlying

biological mechanisms and to address the technical challenges

associated with breath sample collection and analysis. Finally,

although LDCT is widely used for lung cancer screening, it carries

high costs and a notable false-positive rate, which can lead to

unnecessary follow-up tests and increased patient anxiety (68). In

contrast, breath-based VOC analysis offers a non-invasive,

radiation-free, and potentially more cost-effective screening

approach. However, our current methodology relies on GC-MS,

which is not yet feasible for large-scale screening due to its expense

and complexity. The development of portable, point-of-care VOC

detection platforms may help overcome these limitations, enabling

broader clinical implementation and possibly reducing the economic

and logistical burden associated with current screening methods.

Future studies should directly compare the clinical and economic

outcomes of VOC-based POCT and existing modalities such as

LDCT to determine the most effective and sustainable strategies for

early cancer detection. Despite these limitations, this study provides

a strong foundation for the development of breath analysis as a

valuable tool for the early detection, diagnosis, and monitoring of

thoracic cancers.
Conclusion

This study establishes the effectiveness of a breath-derived VOC

model in distinguishing malignant and benign thoracic lesions,

demonstrating its capability for multi-cancer detection and early-

stage diagnosis. By pioneering breathomics for simultaneous

identification of multiple thoracic malignancies and exploring its

potential for postoperative monitoring, this work introduces a novel

integration of non-invasive diagnostics with therapeutic

surveillance. Compared to traditional serum biomarkers, the

approach demonstrates superior sensitivity while eliminating

invasive sampling, offering a patient-friendly alternative with

clinical scalability. The methodology holds promise for improving

early cancer detection and real-time postoperative evaluation,

potentially enhancing clinical decision-making and personalized

patient management. Future efforts should prioritize validation in

broader populations, refinement of the predictive model, and

development of point-of-care devices to facilitate clinical

translation and improve patient outcomes.
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