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Background: Bladder urothelial carcinoma (BUC) remains a highly recurrent and

heterogeneous malignancy. Accurate postoperative risk stratification is crucial to

guide adjuvant therapy decisions. We hypothesized that integrating Uroplakin III

(UPK3A protein)protein expression with systemic inflammation markers and

demographic factors could improve prognostic prediction through advanced

machine learning(ML) models.

Methods: This retrospective study analyzed 1,032 BUC patients who underwent

radical cystectomy. Clinical, pathological, and serological data, including

immunohistochemical UPK3A protein expression, were collected. Least

Absolute Shrinkage and Selection Operator (LASSO) regression with l=0.009
(determined via 10-fold cross-validation) was used for feature selection. Nine ML

models were trained and validated. Model performance was assessed using Area

Under the Receiver Operating Characteristic Curve (AUC-ROC), calibration

curves, decision curve analysis (DCA), and clinical impact curves (CIC). Model

interpretability was evaluated with SHapley Additive exPlanations (SHAP).

Results: Light Gradient Boosting Machine(LightGBM), Random Forest(RF), and

Extreme Gradient Boosting (XGBoost) models demonstrated superior

performance (AUCs: 0.894/0.754 for RF in training/test sets). SHAP analysis

highlighted vascular invasion, tumor necrosis, and UPK3A protein as key

predictors. CIC demonstrated strong clinical utility. Integrating UPK3A protein

with inflammatory and demographic variables outperformed traditional models.

Conclusions: The combination of UPK3A protein expression with multimodal

features significantly enhances prognostic modeling in BUC. This approach offers

a promising clinical decision support tool to stratify risk and guide postoperative

management. Future studies should incorporate transcriptomic/proteomic data

to further validate these findings.
KEYWORDS

BUC, UPK3A protein, prognostic prediction, ML, serum inflammatory markers, risk
stratification, shap, multimodal data
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1 Introduction

BUC is one of the most prevalent malignancies in the urinary

system, with high recurrence, progression rates, and significant

variability in prognosiss (1). While radical cystectomy remains the

standard treatment for muscle-invasive bladder cancer (MIBC) and

high-risk non-muscle invasive bladder cancer (NMIBC), a

substantial proportion of patients experience recurrence or

metastasis after surgery, leading to marked differences in

outcomes (2). Hence, precise postoperative risk prediction is

critical for tailoring patient management and informing adjuvant

therapy decisions.

Traditional prognostic assessments primarily rely on tumor

staging, pathological grading, vascular invasion, and lymph node

metastasis. However, such models often overlook the combined

impact of tumor molecular characteristics and host-specific factors

(3). Recently, UPK3A, a structural protein specifically expressed on

the membrane of urothelial cells, has gained widespread use in

bladder cancer diagnostic research. Increasing evidence suggests

that UPK3A protein expression not only holds significant

diagnostic value but may also be closely associated with the

invasiveness, progression, and prognosis of bladder cancer (4, 5).

Additionally, serum markers (such as white blood cell count,

albumin levels, and urine analysis parameters) reflect the host’s

systemic inflammatory state and immune response, which are also

recognized to play critical roles in bladder cancer prognosis (6–8).

Demographic factors, including age, gender, and smoking history,

as basic clinical information, also influence tumor development and

patient survival outcomes (9, 10).

In recent years, ML techniques have demonstrated powerful

capabilities in constructing medical prediction models by

integrating multidimensional, complex data features and

capturing underlying patterns that traditional statistical methods

may miss (11, 12). Tree-based algorithms, such as XGBoost,

random forest (RF), and LightGBM, have shown superior

performance in cancer prognosis prediction (13–15).However,

there is a lack of comprehensive prognostic models based on the

integration of UPK3A protein, serum markers, and demographic

features, and systematic studies on their clinical application value

and interpretability remain limited.
Abbreviations: ADC, Antibody–Drug Conjugate; AUC, Area Under the Curve;

AR, Androgen Receptor; BUC, Bladder Urothelial Carcinoma; CIC, Clinical

Impact Curve; CK5/6, Cytokeratin 5/6; CK7, Cytokeratin 7; CK20, Cytokeratin

20; DCA, Decision Curve Analysis; DT, Decision Tree; GBM, Gradient Boosting

Machine; GATA3, GATA Binding Protein 3; HER2, Human Epidermal Growth

Factor Receptor 2; KNN, K-Nearest Neighbors; LASSO, Least Absolute Shrinkage

and Selection Operator; LightGBM, Light Gradient Boosting Machine; LR,

Logistic Regression; ML, Machine Learning; MLP, Multilayer Perceptron;

MIBC, Muscle-Invasive Bladder Cancer; NMIBC, Non-Muscle-Invasive

Bladder Cancer; P63, Tumor Protein 63; P53, Tumor Protein 53; PD-L1,

Programmed Death Ligand-1; RF, Random Forest; ROC, Receiver Operating

Characteristic; SVM, Support Vector Machine; SHAP, SHapley Additive

exPlanations; TN, True Negative; TP, True Positive; UPK3A, Uroplakin III;

XGBoost (XGB), Extreme Gradient Boosting.
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Therefore, this study was conducted using a large cohort of

bladder cancer patients from two affiliated hospitals of Kunming

Medical University. We systematically collected data on UPK3A

protein expression levels, serum markers, and demographic features,

and employed LASSO regression for feature selection. A personalized

prognostic prediction model was developed using various ML

algorithms, including XGBoost, RF, and LightGBM. Model

performance was evaluated through ROC curves, calibration plots,

DCA, and CIC, with SHAP analysis enhancing model interpretability.

The aim of this study was to explore the potential value of UPK3A

protein combined with multiple parameters for predicting prognosis

in BUC, facilitating precise postoperative risk assessment and the

development of individualized management strategies.
2 Materials and methods

The methodology consists of three components: data

preprocessing and feature extraction (Section 2.1), model

construction and validation (Section 2.2), and reproducibility

documentation and implementation environment (Section 2.3).
2.1 Data collection and processing

We collected inpatient data from 1,764 patients diagnosed with

bladder cancer and undergoing radical cystectomy at the First

Affiliated Hospital and the Second Affiliated Hospital of Kunming

Medical University between 2014 and 2024. The dataset included

demographic characteristics (gender, age, ethnicity, weight,

smoking, alcohol consumption, etc.) , medical history

(hypertension, diabetes, hematuria, frequency, urgency, dysuria,

difficulty in urination, and previous surgeries), tumor

morphological features (tumor shape, diameter, location, number,

presence of a base, boundary clarity, color, texture, presence of

necrosis, bleeding, and cystic lesions), as well as pathological

features assessed by immunohistochemistry, including UPK3A,

GATA Binding Protein 3 (GATA3), Cytokeratin 20 (CK20),

Cytokeratin 7 (CK7), Cytokeratin 5/6 (CK5/6), Tumor Protein 63

(P63), Tumor Protein 53 (P53), Androgen Receptor (AR),

Programmed Death-Ligand 1 (PD-L1), microsatellite stability,

Human Epidermal Growth Factor Receptor 2 (HER2), nerve

invasion, vascular invasion, pathological staging, grading, positive

surgical margins, and histological types such as squamous,

glandular, neuroendocrine, and sarcomatoid.

Inclusion criteria for participants were as follows: (1) patients

aged over 18 years; (2) diagnosis of bladder cancer according to the

WHO Classification of Tumors of the Urinary and Male Genital

Systems (4th Edition), and receipt of radical cystectomy; (3)

complete clinical data, including blood count, biochemical tests,

pathological parameters, and immunohistochemistry; (4) detailed

treatment history with complete follow-up data and results; (5) no

prior radiotherapy, chemotherapy, or immunotherapy.

Patients who met any of the following criteria were excluded

from the study: (1) patients who underwent partial bladder tumor
frontiersin.org
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resection; (2) post-operative pathology confirmed non-urothelial

carcinoma; (3) incomplete clinical data or lost to follow-up with no

available prognostic data; (4) preoperative radiotherapy,

chemotherapy, or immunotherapy; (5) other malignancies

metastasized to the bladder; (6) patients under 18 years of age;

(7) patients with survival time less than 1 month. The study was

approved by the Ethics Committees of the First Affiliated Hospital

and the Second Affiliated Hospital of Kunming Medical University,

with informed consent obtained from all patients.

To minimize the impact of missing data on model construction,

we used the K-Nearest Neighbors (KNN) Imputer method to

impute missing data (less than 20% missing), while data with

more than 20% missing were excluded. The primary endpoint

was the response to postoperative adjuvant therapy, as recorded

in the patients’ follow-up treatment records. Missing values were

imputed using the `KNNImputer` algorithm (version 0.24.2, scikit-

learn), with the number of neighbors set to 5. Variables with more

than 20% missing data were excluded from model construction to

reduce bias. Continuous variables were standardized using z-score

normalization, and categorical variables were encoded using one-

hot encoding prior to model input.
2.2 Statistical analysis and model
construction and validation

Categorical variables are presented as percentages (%) and

compared between groups using Pearson’s chi-square test. Due to

the imbalance in the dependent variable categories, an

undersampling method was applied to resample the data and

balance the distribution. A five-fold cross-validation was used to

split the dataset into training and internal validation sets. In the case

of high-dimensional features, LASSO regression was employed for

feature selection. This method applies L1 regularization to shrink

regression coefficients, reducing dimensionality, selecting the most

informative variables, and eliminating redundant features.

Nine ML algorithms were used for predictive modeling,

including XGBoost, support vector machine (SVM), multilayer

perceptron (MLP), KNN, logistic regression, LASSO, decision tree

(DT), gradient boosting machine (GBM), and RF. All models

incorporated the features selected by LASSO. A single cross-

validation was performed to ensure model stability. Grid search

optimization was applied to fine-tune hyperparameters, and the

model with the highest area under the AUC-ROC curve was

selected as the optimal model. The final model was constructed

on the training set and validated on both internal and external

validation sets. Model performance was evaluated using AUC-ROC,

sensitivity, specificity, recall, F1 score, and accuracy. All machine

learning models were implemented using Python 3.8 with `scikit-

learn` (v0.24.2), `xgboost` (v1.5.0), `lightgbm` (v3.3.1), and `shap`

(v0.41.0). LASSO regression for feature selection was performed

using `LassoCV` from `scikit-learn`, with 10-fold cross-validation

to determine the optimal lambda value (l = 0.009), minimizing
Frontiers in Oncology 03
binomial deviance. Model hyperparameters (e.g., learning_rate,

n_estimators, max_depth) were tuned using `GridSearchCV` with

five-fold cross-validation. The hyperparameter configurations for

each model are provided in Supplementary Table S1.

Additionally, to assess the real clinical utility of the model, DCA

and calibration curves were plotted. To identify the optimal clinical

decision threshold, a clinical impact curve (CIC) was constructed to

visually assess the most effective decision threshold. The threshold

was derived using the “surv_cutpoint” function in the survminer R

package to maximize survival difference. To analyze the impact of

the selected features on the model predictions, SHAP analysis was

used. SHAP summary plots were generated to show the

contribution of each feature to the prediction results, and specific

cases were evaluated using SHAP to illustrate the degree of impact

of selected features on the predictions. All statistical analyses were

conducted in Python, with two-sided p-values < 0.05 considered

statistically significant.

(The flowchart of this research is shown in Figure 1)
2.3 Model reproducibility and technical
implementation

All computational procedures were implemented using Python

3.8. Machine learning models, including LightGBM, XGBoost,

Random Forest, SVM, and others, were built using the scikit-

learn (v0.24.2), xgboost (v1.5.0), and lightgbm (v3.3.1) packages.

Data imputation was performed using KNNImputer with default

parameters (n_neighbors=5), and variables with more than 20%

missing data were excluded. Continuous variables were

standardized using z-score normalization, and categorical

variables were transformed by one-hot encoding.

LASSO regression for feature selection was conducted using

LassoCV from scikit-learn with 10-fold cross-validation to

determine the optimal penalty parameter (l = 0.009), based on

minimum binomial deviance. Model hyperparameters were

optimized via GridSearchCV with five-fold internal cross-

validation. The detailed hyperparameter settings for each model

are provided in Supplementary Table S1.

Model performance was evaluated using metrics such as

accuracy, sensitivity, specificity, precision, negative predictive

value (NPV), F1-score, Youden index, and AUC-ROC. All

metrics were computed using functions from scikit-learn.metrics.

To interpret feature contributions, SHAP (SHapley Additive

exPlanations) values were calculated using the TreeExplainer

module from the shap Python package (v0.41.0). Both global

summary plots and individual force plots were generated to

visualize model decision logic and feature importance.

All analytical pipelines, including data preprocessing, model

training, evaluation, and SHAP analysis, were version-controlled

and archived. The complete source code and training-validation

splits are available from the corresponding author upon reasonable

request, ensuring full reproducibility.
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3 Result

3.1 Lasso regression for key variable
selection and optimization of BUC
prognostic prediction model

The complete analytical process of this study is illustrated in

Figure 1. In this study, based on data from 1,674 bladder cancer

patients at two affiliated hospitals of Kunming Medical University, a

final cohort of 1,032 eligible cases was included. These cases were

randomly divided into a training cohort (N=412) and a validation

cohort (N=620) in a 4:6 ratio. Univariate analysis identified clinical

features associated with patient outcomes, including age, urinary

urgency, dysuria, tumor necrosis, perineural invasion, vascular

invasion, tumor diameter, tumor location, tissue texture, as well

as several blood and urine markers (such as creatinine, neutrophil

count, and leukocyte esterase), which showed significant differences

between outcome groups (P<0.05) (Table 1).

Table 1: Baseline UPK3A, Serum and Demographic Date in

Bladder cancer (Please refer to the attached file (Table 1. DOCX)

for details).
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Subsequently, clinical variables with statistical significance were

selected through univariate analysis, and LASSO regression was

applied for further feature selection. The LASSO path plot

(Figure 2A) shows that as the regularization parameter l increases,

the regression coefficients of some features gradually converge to zero.

The cross-validation curve (Figure 2B) determined that the optimal l
value was 0.009, whichminimized the binomial deviance of the model.

The final selected features included age, smoking history, positive

urine bacterial culture, perineural invasion, vascular invasion, muscle

layer invasion (M stage), UPK3A expression, tumor number, tumor

boundary characteristics, and necrosis (Figure 2C). These features

provided an essential foundation for subsequent model construction.

Among these factors, smoking history, urine leukocytes, and

vascular invasion were considered key prognostic factors for BUC,

as these features are likely closely related to the mechanisms of

cancer development and progression. For example, smoking, a

known risk factor for bladder cancer, may contribute to the

malignant transformation of urothelial cells through the

accumulation of carcinogens, while an increase in urine

leukocytes may suggest the role of inflammatory responses in

tumor progression.
FIGURE 1

Workflow of model development and validation.
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TABLE 1 Baseline Uroplakin III, serum and demographic date in bladder.

Characteristic 0 N = 4101 1 N = 6241 p-value2

Gender 0.7

1 347 (85%) 534 (86%)

2 63 (15%) 90 (14%)

Age 230 (56%) 310 (50%) 0.043

Ethnicity 63 (15%) 77 (12%) 0.2

Smoking 215 (52%) 292 (47%) 0.076

History of Prior Surgery 88 (21%) 106 (17%) 0.071

Alcohol Consumption 128 (31%) 187 (30%) 0.7

Diabetes 44 (11%) 69 (11%) 0.9

Frequent Urination 146 (36%) 196 (31%) 0.2

Urinary Urgency 115 (28%) 171 (27%) 0.8

Dysuria 76 (19%) 86 (14%) 0.040

Pain 91 (22%) 109 (17%) 0.060

Urinary Hesitancy 65 (16%) 83 (13%) 0.3

Red Blood Cells in Urine 393 (96%) 592 (95%) 0.5

White Blood Cells in Urine 383 (93%) 580 (93%) 0.8

Epithelial Cells in Urine 143 (35%) 232 (37%) 0.5

Crystals in Urine 15 (3.7%) 28 (4.5%) 0.5

Urinary Cytology 46 (11%) 49 (7.9%) 0.067

Bacteria in Urine 24 (5.9%) 87 (14%) <0.001

Perineural Invasion 187 (46%) 108 (17%) <0.001

Vascular Invasion 251 (61%) 163 (26%) <0.001

M 62 (15%) 12 (1.9%) <0.001

CIS 44 (11%) 46 (7.4%) 0.061

Surgical Margins 51 (12%) 43 (6.9%) 0.002

Urop0III 270 (66%) 505 (81%) <0.001

Number of Tumors 144 (35%) 284 (46%) <0.001

Well-defined Borders 143 (35%) 304 (49%) <0.001

Necrosis 172 (42%) 143 (23%) <0.001

Hemorrhage 106 (26%) 141 (23%) 0.2

Cystic Degeneration 12 (2.9%) 14 (2.2%) 0.5

Duration of dringking 0.8

0 282 (69%) 437 (70%)

1 33 (8.0%) 56 (9.0%)

2 25 (6.1%) 35 (5.6%)

3 70 (17%) 96 (15%)

Blood Pressure 0.7

0 309 (75%) 474 (76%)

(Continued)
F
rontiers in Oncology
 05
TABLE 1 Continued

Characteristic 0 N = 4101 1 N = 6241 p-value2

1 84 (20%) 117 (19%)

2 12 (2.9%) 20 (3.2%)

3 5 (1.2%) 13 (2.1%)

Hematuria 0.047

0 77 (19%) 89 (14%)

1 12 (2.9%) 32 (5.1%)

2 321 (78%) 503 (81%)

Duration of Smoking 0.2

0 195 (48%) 332 (53%)

1 51 (12%) 80 (13%)

2 63 (15%) 78 (13%)

3 101 (25%) 134 (21%)

Total Protein 0.6

0 163 (40%) 261 (42%)

1 241 (59%) 357 (57%)

2 6 (1.5%) 6 (1.0%)

Albumin >0.9

0 144 (35%) 214 (34%)

1 266 (65%) 409 (66%)

2 0 (0%) 1 (0.2%)

Globulin 0.11

0 227 (55%) 360 (58%)

1 108 (26%) 131 (21%)

2 75 (18%) 133 (21%)

Albumin/
Globulin Ratio

0.2

0 147 (36%) 194 (31%)

1 258 (63%) 418 (67%)

2 5 (1.2%) 12 (1.9%)

Total Bilirubin 0.12

0 299 (73%) 417 (67%)

1 4 (1.0%) 7 (1.1%)

2 107 (26%) 200 (32%)

Urea 0.013

0 264 (64%) 432 (69%)

1 24 (5.9%) 53 (8.5%)

2 122 (30%) 139 (22%)

(Continued)
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TABLE 1 Continued

Characteristic 0 N = 4101 1 N = 6241 p-value2

Creatinine <0.001

0 280 (68%) 470 (75%)

1 8 (2.0%) 26 (4.2%)

2 122 (30%) 128 (21%)

Uric Acid 0.12

0 321 (78%) 464 (74%)

1 25 (6.1%) 60 (9.6%)

2 64 (16%) 100 (16%)

White Blood Cells 0.004

0 282 (69%) 485 (78%)

1 17 (4.1%) 24 (3.8%)

2 111 (27%) 115 (18%)

Neutrophils 0.010

0 248 (60%) 432 (69%)

1 8 (2.0%) 14 (2.2%)

2 154 (38%) 178 (29%)

Lymphocytes 0.5

0 292 (71%) 459 (74%)

1 112 (27%) 160 (26%)

2 6 (1.5%) 5 (0.8%)

Monocytes >0.9

0 357 (87%) 545 (87%)

1 16 (3.9%) 24 (3.8%)

2 37 (9.0%) 55 (8.8%)

Hemoglobin 0.045

0 130 (32%) 245 (39%)

1 271 (66%) 365 (58%)

2 9 (2.2%) 14 (2.2%)

Platelets 0.5

0 285 (70%) 454 (73%)

1 26 (6.3%) 33 (5.3%)

2 99 (24%) 137 (22%)

Occult Blood
in Urine

0.061

0 34 (8.3%) 37 (5.9%)

1 36 (8.8%) 52 (8.3%)

2 86 (21%) 101 (16%)

3 254 (62%) 434 (70%)

(Continued)
F
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TABLE 1 Continued

Characteristic 0 N = 4101 1 N = 6241 p-value2

Ketones in Urine 0.2

0 398 (97%) 590 (95%)

1 9 (2.2%) 26 (4.2%)

2 3 (0.7%) 8 (1.3%)

Nitrites in Urine 0.6

0 391 (95%) 588 (94%)

1 10 (2.4%) 16 (2.6%)

2 9 (2.2%) 20 (3.2%)

Urine Protein 0.7

0 101 (25%) 153 (25%)

1 171 (42%) 274 (44%)

2 138 (34%) 197 (32%)

Leukocyte Esterase
in Urine

<0.001

0 350 (85%) 452 (72%)

1 28 (6.8%) 78 (13%)

2 22 (5.4%) 61 (9.8%)

3 9 (2.2%) 30 (4.8%)

4 1 (0.2%) 3 (0.5%)

Glucose in Urine 0.9

0 391 (95%) 595 (95%)

1 8 (2.0%) 15 (2.4%)

2 4 (1.0%) 6 (1.0%)

3 2 (0.5%) 4 (0.6%)

4 5 (1.2%) 4 (0.6%)

Urobilinogen in Urine 0.2

0 396 (97%) 607 (97%)

1 12 (2.9%) 10 (1.6%)

2 2 (0.5%) 7 (1.1%)

N <0.001

0 253 (62%) 546 (88%)

1 75 (18%) 49 (7.9%)

2 45 (11%) 18 (2.9%)

3 37 (9.0%) 11 (1.8%)

Tumor Diameter 0.005

1 20 (4.9%) 43 (6.9%)

2 151 (37%) 285 (46%)

3 145 (35%) 191 (31%)

4 94 (23%) 105 (17%)

(Continued)
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3.2 Construction and performance
evaluation of a machine learning-based
prognostic prediction model for BUC

This study constructed multiple ML models (KNN, RF,

XGBoost (XGB),SVM, Logistic Regression (LR), MLP, LightGBM,

LASSO, and DT to predict the prognosis of BUC. The models’

performance was systematically evaluated using ROC curves,

Calibration Curves, and DCA to identify the optimal

predictive model.

Our results indicate that in both the training and validation sets,

LightGBM, RF, and XGB models demonstrated excellent predictive

performance. The training set AUCs were 0.894, 0.894, and 0.872,

respectively (Figure 3A, Table 2), and the validation set AUCs were

0.741, 0.754, and 0.751, respectively (Figure 3B, Table 2). LightGBM

and RF also outperformed other models in terms of Accuracy,

Recall, and F1-Score. The confusion matrix (Table 3) further

validated the stability of the models in classifying true positives

(TP) and true negatives (TN).

The calibration performance of the models was assessed

through Calibration Curves, and most models, particularly

LightGBM and RF, showed good agreement between predicted

probabilities and actual observations in both the training and

validation sets (Figures 3C, D). DCA (Figures 3E, F) further
Frontiers in Oncology 07
demonstrated that LightGBM, RF, and XGB models provided

higher net clinical benefits at various probability thresholds,

suggesting that these models have substantial potential for

practical clinical application.

In summary, this study constructed and validated a series of

machine learning-based prognostic prediction models for BUC.

XGBoost and LightGBM exhibited superior performance in

classification (AUC), calibration (accuracy of predicted

probabilities), and clinical DCA, making them suitable for

prognostic prediction and personalized risk assessment in BUC

patients. These results provide clinicians with effective risk

stratification tools, helping to more accurately identify high-risk

patients and formulate individualized treatment strategies.
3.3 Clinical application evaluation of the
prognostic model for BUC based on CIC

The clinical application value of different ML models in

predicting the prognosis of BUC was further evaluated using CIC.

CIC primarily illustrates the number of patients predicted as high-

risk at various risk thresholds and the number of those who actually

experience the target event (e.g., disease recurrence or progression).

The analysis in this study shows that the LightGBM,RF, and

XGBoost models were able to accurately identify a higher number of

high-risk patients across various risk thresholds. Furthermore, the

proportion of actual events (e.g., disease recurrence or progression)

occurring among those predicted as high-risk was higher, with the

curve trends closely mirroring the actual event occurrence curve,

indicating their higher clinical application value. In contrast, the

KNN and DT models showed considerable deviation from the

actual results at medium and low-risk thresholds, with

lower accuracy.

Overall, both RF and LightGBM models maintained a good

balance between sensitivity and specificity across all risk thresholds,

demonstrating the optimal clinical net benefit. These findings

support the use of RF and LightGBM as the preferred models for

prognostic risk stratification in BUC patients (Figure 4).
3.4 Feature contribution assessment of the
prognostic model for BUC based on SHAP
values

To enhance the interpretability of the model, SHAP analysis

was applied in this study. This method quantifies the contribution

of each feature to the model’s decision-making process, further

exploring its clinical significance. SHAP values reflect the direction

and magnitude of each variable’s impact on the model’s output,

where positive SHAP values indicate that the variable increases the

probability of predicting a high-risk outcome, and negative SHAP

values reduce this probability.

The analysis revealed that, in the RF model, features such as

vascular invasion, perineural invasion, muscle layer infiltration (M

stage), tumor necrosis, tumor boundary clarity, urine leukocyte
TABLE 1 Continued

Characteristic 0 N = 4101 1 N = 6241 p-value2

Location 0.005

0 84 (20%) 119 (19%)

1 25 (6.1%) 20 (3.2%)

2 16 (3.9%) 26 (4.2%)

3 141 (34%) 175 (28%)

4 144 (35%) 284 (46%)

Tumor Shape 0.091

0 278 (68%) 468 (75%)

1 33 (8.0%) 37 (5.9%)

2 35 (8.5%) 41 (6.6%)

3 64 (16%) 78 (13%)

Color 0.6

0 211 (51%) 303 (49%)

1 97 (24%) 159 (25%)

2 102 (25%) 162 (26%)

Texture/Consistency <0.001

0 69 (17%) 158 (25%)

1 252 (61%) 395 (63%)

2 89 (22%) 71 (11%)
1n (%).
2Pearson's Chi-squared test; Fisher's exact test.
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esterase positivity, and white blood cell count had the greatest

impact on the model’s predictions. The direction of change in

feature values was strongly correlated with the predicted risk levels

(Figure 5). These findings not only enhance the biological

interpretability of the model but also provide a theoretical basis

for the postoperative management of bladder cancer patients in

the future.
4 Discussion

In this study, we developed and validated an interpretable ML–

based prognostic model for BUC, integrating UPK3A protein

expression with systemic inflammatory markers and demographic

data. Our findings support the utility of a multimodal approach to

enhance the predictive power of postoperative survival and guide

personalized treatment decisions.

In this study, UPK3A protein expression was evaluated at the

protein level via immunohistochemical analysis, reflecting its

established application in pathological diagnosis rather than gene

expression profiling.UPK3A is a transmembrane glycoprotein that

plays a pivotal role in maintaining urothelial barrier integrity.

Traditionally recognized as a diagnostic marker of urothelial

differentiation, recent evidence increasingly supports its role in

cancer progression. Several studies have demonstrated that
Frontiers in Oncology 08
elevated expression of UPK3A protein is associated with

advanced tumor stages, aggressive phenotypes, and shorter

survival in BUC patients (16–18). In our study, UPK3A protein

overexpression, assessed via immunohistochemistry, was

independently associated with poor overall survival. These results

suggest a potential oncogenic role of UPK3A, possibly via

dysregulation of p53 signaling, enhanced proliferation, or

immune escape mechanisms.

The prognostic implications of UPK3A may be subtype-

specific. In luminal bladder cancer subtypes, UPK3A protein

overexpression has been correlated with distinct transcriptional

programs and increased resistance to chemotherapy or

immunotherapy (19). While UPK3A protein is not yet an

established therapeutic target, its cell surface localization renders

it an attractive candidate for antibody–drug conjugates (ADCs).

Although the current ADC landscape in BUC predominantly

focuses on HER2, Nectin-4, and Trop-2, the concept is extensible

to other surface proteins such as UPK3A. Recent multicenter real-

world studies, including those by Zeng et al. and Zhao et al., have

demonstrated promising outcomes using neoadjuvant ADCs (e.g.,

RC48) in combination with immunotherapy for MIBC (20, 21).

These findings highlight the translational potential of surface

glycoproteins in guiding targeted therapies.

Beyond molecular markers, we incorporated systemic

inflammatory indices such as neutrophil count and leukocyturia.
FIGURE 2

Identification of predictive features using LASSO regression and construction of the nomogram model. (A) LASSO coefficient profiles: Displays how
the coefficients of 26 features shrink with increasing penalty, identifying key predictors associated with treatment response. (B) Cross-validation plot:
The optimal lambda (l = 0.009) was selected using 10-fold cross-validation to minimize binomial deviance. (C) Nomogram model: A predictive
nomogram was developed based on selected clinical, pathological, and molecular features to estimate individual response probabilities.
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FIGURE 3

(A, B) ROC curves: RF, LightGBM, and XGBoost models achieved superior AUCs, indicating excellent classification performance. (C, D) Calibration
curves: Good agreement was observed in the training set, while the test set showed greater variability. (E, F) DCA: RF and LightGBM consistently
provided the highest net benefit across decision thresholds.
TABLE 2 Comparison of prediction performance of nine ML models.

Comparison of results across models

Train

KNN RF XGB SVM LR MLP LightGBM Lasso DT

Accuracy 0.752 0.824 0.801 0.739 0.726 0.765 0.826 0.77 0.783

PPV 0.776 0.827 0.802 0.735 0.771 0.766 0.827 0.767 0.781

Recall 0.752 0.824 0.801 0.739 0.726 0.765 0.826 0.77 0.783

F1_score 0.727 0.825 0.794 0.727 0.683 0.754 0.821 0.765 0.781

AUC 0.823 0.894 0.872 0.785 0.817 0.819 0.894 0.824 0.86

(Continued)
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These parameters reflect the host’s systemic immune state and are

often indicative of a protumor inflammatory microenvironment.

Elevated neutrophil-to-lymphocyte ratio and leukocyturia have

been linked to poor prognosis in BUC and may represent

surrogates for tumor-promoting inflammation or suppressed

antitumor immunity (22–24). Our inclusion of these routinely

available laboratory indices adds pragmatic value to the model

and facilitates integration into real-world clinical settings.

Model development followed a rigorous pipeline. LASSO regression

was used for feature selection with l = 0.009, followed by ensemble

learning using LightGBM, XGBoost, and RF classifiers. All models

achieved robust performance with AUCs above 0.74 in validation
Frontiers in Oncology 10
cohorts. DCA and CIC confirmed clinical utility, and SHAP values

revealed that UPK3A protein expression, vascular invasion, and

perineural infiltration contributed most to outcome prediction. This

interpretability enhances clinical acceptability and transparency, aligning

with the growing emphasis on explainable AI in medicine (25, 26).

Importantly, our model adheres to current ESMO

recommendations advocating for multi-dimensional risk

assessment in urothelial carcinoma (27–29). By integrating tumor

biology, host immunity, and clinicopathological variables, our

approach surpasses conventional staging systems in granularity

and predictive accuracy. Moreover, it supports the vision of

precision medicine and data-driven oncology.
TABLE 2 Continued

Comparison of results across models

Specificity 0.418 0.799 0.615 0.513 0.315 0.535 0.67 0.604 0.678

NPV 0.851 0.752 0.812 0.714 0.887 0.772 0.836 0.74 0.728

Youden Index 0.17 0.623 0.416 0.251 0.041 0.3 0.496 0.375 0.461

Kappa 0.415 0.631 0.555 0.411 0.333 0.468 0.614 0.493 0.532

Test

KNN RF XGB SVM LR MLP LightGBM Lasso DT

Accuracy 0.678 0.72 0.701 0.714 0.659 0.695 0.688 0.707 0.656

PPV 0.699 0.722 0.703 0.72 0.691 0.701 0.689 0.709 0.653

Recall 0.678 0.72 0.701 0.714 0.659 0.695 0.688 0.707 0.656

F1_score 0.654 0.721 0.693 0.704 0.623 0.682 0.68 0.701 0.65

AUC 0.736 0.754 0.751 0.757 0.761 0.766 0.741 0.755 0.663

Specificity 0.401 0.701 0.54 0.533 0.328 0.489 0.526 0.555 0.518

NPV 0.753 0.676 0.712 0.745 0.763 0.728 0.692 0.717 0.634

Youden Index 0.08 0.421 0.241 0.247 -0.012 0.184 0.214 0.262 0.174

Kappa 0.314 0.435 0.377 0.401 0.264 0.358 0.351 0.392 0.288
fro
TABLE 3 Comparison of confusion matrix outputs for nine ML models in the training and testing sets.

Comparison of confusion matrix results across models

Train Test

TN FP FN TP TN FP FN TP

KNN 114 159 20 430 KNN 55 82 18 156

RF 218 55 72 378 RF 96 41 46 128

XGB 168 105 39 411 XGB 74 63 30 144

SVM 140 133 56 394 SVM 73 64 25 149

LR 86 187 11 439 LR 45 92 14 160

MLP 146 127 43 407 MLP 67 70 25 149

LightGBM 183 90 36 414 LightGBM 72 65 32 142

Lasso 165 108 58 392 Lasso 76 61 30 144

DT 185 88 69 381 DT 71 66 41 133
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Nonetheless, certain limitations must be acknowledged. First, the

retrospective design and single-region cohort may limit

generalizability. Second, immunohistochemistry does not capture

post-translational modifications or alternative splicing variants of

UPK3A, which may influence functional outcomes. Third, although

UPK3A expression was assessed via immunohistochemistry, the

manuscript did not explicitly define the scoring criteria used. In

our study, UPK3A staining was semi-quantitatively evaluated using

the H-score system, which considers both staining intensity and the

percentage of positive cells. However, inter-observer variability

remains an inherent limitation of immunohistochemistry-based

assessment. Although all immunohistochemistry slides were

reviewed independently by two experienced pathologists, no inter-

rater concordance coefficient (e.g., kappa statistic) was calculated.

Future studies should standardize UPK3A scoring protocols and

incorporate digital image analysis or automated quantification to

reduce observer-related measurement bias. Fourth, while the model is
Frontiers in Oncology 11
robust, external multicenter validation in larger cohorts is warranted

to confirm reproducibility. Future work should incorporate spatial

transcriptomics, single-cell RNA sequencing, and proteogenomic

profiling to unravel UPK3A-driven oncogenic networks and

treatment resistance (30–32). Additionally, functional studies

investigating UPK3A silencing or antibody-mediated blockade may

provide critical insights into its therapeutic potential. Finally, our

study complements and extends prior real-world research on

neoadjuvant therapies in BUC. Zeng et al. and Zhao et al. provided

compelling clinical evidence supporting the integration of ADCs and

immune checkpoint inhibitors in MIBC (20, 21). Our findings

suggest that UPK3A, a luminal lineage marker, may serve as a

future therapeutic candidate, particularly in cases unresponsive to

conventional therapies. Our comprehensive analysis highlights the

multifaceted role of UPK3A in bladder cancer pathogenesis and

underscores the importance of incorporating molecular,

inflammatory, and clinical data to refine prognostic modeling.
FIGURE 4

CIC analysis showed that RF, LightGBM, and XGBoost models consistently identified high-risk patients with better accuracy and clinical utility across
both training and testing cohorts.
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In summary, this study proposes a clinically interpretable and

biologically informed prognostic model that underscores the prognostic

significance of UPK3A overexpression in BUC. By integrating systemic

inflammation, pathological features, and molecular markers, our findings
Frontiers in Oncology 12
extend previous real-world evidence and offer a foundation for stratified

patient management and therapeutic innovation. These results support

the future incorporation of UPK3A-guided algorithms into routine

prognostic assessment, pending further prospective validation.
FIGURE 5

SHAP summary plot illustrating the contribution of each feature to model output. Each dot represents a SHAP value for an individual patient, with
color indicating the original feature value (red: high, blue: low). Features are ranked by their mean absolute SHAP values, reflecting their relative
importance in predicting prognosis. UPK3A expression, key serum biomarkers (e.g., White Blood Cell), and demographic variables (e.g., Age,
Smoking) were among the top contributors. The direction and magnitude of each feature’s impact are visualized, providing insight into how
individual predictors influence model decisions.
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5 Conclusion

This study presents an interpretable, multimodal prognostic

model for postoperative BUC by integrating UPK3A protein

expression, systemic inflammatory markers, and clinicopathological

features. The model demonstrated favorable predictive accuracy and

clinical utility across both internal training and validation cohorts,

with LightGBM, Random Forest, and XGBoost achieving optimal

performance. Evaluation via AUC-ROC, calibration, DCA, and CIC

confirmed its robustness and applicability in clinical decision-

making. Notably, the independent prognostic relevance of UPK3A

overexpression highlights its potential role as both a biomarker and

therapeutic target. While derived from a single-center retrospective

cohort, the model offers a pragmatic framework for individualized

risk stratification in BUC. Future validation in multi-center,

prospective cohorts and incorporation of dynamic and molecular

data streams will be essential to further refine and clinically

implement this approach.
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