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Background: We aimed to identify the most effective machine learning model for
predicting the differential diagnosis of lymph nodes (LNs) in lung cancer using
dynamic and static '®F-fluorodeoxyglucose (FDG) positron emission
tomography/computed tomography (PET/CT) imaging.

Methods: A total of 279 pathologically confirmed LNs from 74 patients with lung
cancer were retrospectively analyzed. These were randomly divided into a
training group (n = 196) and a test group (n = 83) at a ratio of 7:3. The
radiomics features of the images were extracted from CT, dynamic PET (dPET),
and static PET (sPET) images and were screened for the most predictive value.
Support vector machine (SVM), logistic regression (LR), and random forest (RF)
machine learning models were built using the optimal radiomics features. The
best quantitative prediction model was suggested using SUV ..« and K; based on
LNs. A composite model was built combining the best machine learning model
and the quantitative model. Receiver operating characteristic (ROC) curves were
used to evaluate the predictive ability of the machine learning, quantitative, and
composite models for LN metastasis in lung cancer.

Results: Of the three machine learning models, the RF model demonstrated the
greatest predictive efficacy in both the training [area under the curve (AUC) =
0.823] and test groups (AUC = 0.819). The quantitative model based on K;
showed good predictive efficacy in both the training (AUC = 0.772) and test
groups (AUC = 0.805). A composite model based on both the RF machine
learning model and the quantitative model demonstrated superior predictive
efficacy. The AUCs in the training and test groups were 0.844 and 0.835,
respectively. Decision curve analysis showed that the composite model had
better net benefit and clinical value.
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Conclusion: A composite model based on an RF model of PET/CT+K; images
combined with dynamic quantitative K; is highly effective in differentiating FDG-
avid LN metastasis in lung cancer. This model provides greater net benefit and

clinical value.

lung cancer, ¥F-FDG, PET/CT, dynamic, radiomics model

Introduction

Lung cancer is the leading cause of both morbidity and
mortality (1). Accurate N staging is essential for individualized
treatment planning and prognosis in lung cancer (2). Patients
diagnosed with stage N3 not only lose the chance of undergoing
surgery, but the 5-year survival also drops to 6% (3). Consequently,
improving the accuracy of the lung cancer N staging is one of the
current clinical concerns.

'8F-fluorodeoxyglucose (FDG) positron emission tomography/
computed tomography (PET/CT) is commonly used for lung cancer
staging (4). A previous meta-analysis (5) showed FDG PET/CT for
the mediastinal staging of patients with non-small cell lung cancer
(NSCLC) to have a sensitivity of 0.81 (0.70-0.89) and a specificity of
0.79 (0.70-0.87). The semi-quantitative metabolic parameter
known as standard uptake value (SUV,,,,) is affected by various
factors, which reduces the specificity of FDG PET/CT for N staging.
The presence of lung cancer alongside infectious lung diseases such
as tuberculosis, infection, and granulomatous inflammation, in
particular, reduces the specificity of FDG PET/CT for precise
staging by approximately 16%-25% (6-8).

Dynamic PET (dPET) involves the continuous acquisition of
imaging data over a period of time. The extracted fully quantitative
metabolic parameters (e.g., K;) provide a more accurate
characterization of the different metabolic phases of FDG, thereby
reflecting the pathophysiological mechanisms of the disease (9-11).
In recent years, the clinical application of dPET in tumor diagnosis
and treatment has also become a popular area of research. We have
previously carried out a study on the clinical value of dPET in lung
cancer (12-15). It was concluded that dPET has good value in the
differential diagnosis, N staging, and prediction of the epidermal
growth factor receptor (EGFR) status in lung cancer; in particular, the
K; can improve specificity (12-15). The results of the lung cancer N-
staging study concluded that, compared with SUV .y, there is good
specificity in the differential diagnosis of FDG-avid lymph nodes
(LNs) when the K; cutoff value is 0.022 ml g~* min™" (0.918 vs. 0.388)
(15). A validation study has also shown that, when the SUV,,,,x and K;
are used in combination for diagnosis, the diagnostic efficacy is
further improved (12). Therefore, dynamic metabolic parameters
are expected to reliably indicate the N stage of lung cancer.

To our knowledge, there are no studies reporting on the
predictive value of radiomic features based on dPET for the N
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staging of lung cancer. In this study, we investigated the predictive
value of radiomics models, quantitative models, and combined
models based on dPET and FDG PET/CT images for the
differential diagnosis of FDG-avid LNs in lung cancer.

Materials and methods
Patients

The study was approved by the Ethics Committee of X Hospital
(KYLH2022-1). Written informed consent was obtained from all
patients before dPET and FDG PET/CT imaging.

A total of 323 patients underwent dPET (chest, 65 min) and
static FDG PET/CT (sPET/CT) imaging (whole body, 10-20 min)
from May 2021 to December 2024. All patients had lung nodules or
masses identified on a chest CT scan, and none of the patients
received anti-infective or antitumor therapy prior to undergoing a
dPET+sPET/CT scan. Of these patients, 261 had lung cancer
confirmed by puncture and/or surgical pathology.

We retrospectively collected 279 FDG-avid LNs from 74 patients
with pathologically confirmed lung cancer. The 74 patients were
selected from 261 lung cancer patients. On the sPET/CT scan,
mediastinal or pulmonary hilar region LNs were considered FDG-
avid LNs if their FDG uptake exceeded the mediastinal blood pool.
All 279 FDG-avid LNs were confirmed by pathology, and the LNs
were included according to their distribution and size on the sPET/
CT scan after a one-to-one correspondence with the pathological
findings. The locations of the LNs according to the International
Association for the Study of Lung Cancer (IASLC) are shown on the
LN map (16). The time interval between the dPET+sPET/CT scan
and receipt of the pathology results was less than 2 weeks.

We collected the dPET+sPET/CT scans and the clinical features
of FDG-avid LNs. The dPET+sPET/CT scan features included the
primary focus site, the primary focus SUV ., the FDG-avid LN
zoning, the LN short and long diameters, the LN-SUV .., and the
LN-K;. The clinical characteristics included gender, age, primary
lung cancer pathology, and LN pathology.

Based on the pathological findings, of the 279 FDG-avid LN,
161 (57.71%) were metastatic and 118 (42.29%) were non-
metastatic. The participants were randomly divided into two
groups: a training group (n = 196) and a test group (n = 83).
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dPET and sPET/CT data acquisition and
image reconstruction

Both the dPET and sPET/CT scans were performed using a
Discovery MI PET/CT (GE Healthcare, Milwaukee, WI, USA).
Figure 1 illustrates the dPET and sPET/CT examination
processes, including data acquisition, image reconstruction, and
metabolic parameter acquisition.

Dynamic K; images and quantitative metabolic values were
obtained based on a two-tissue irreversible compartment model.
In this model, it was assumed that '°F-FDG was taken up
unidirectionally (i.e., ky = 0) and was irreversibly trapped in tissue
as "®F-FDG-6-PO (17). The image-derived input function (IDIF)
was extracted from the ascending aorta by drawing a region of
interest (ROI) with a diameter of 10 mm on six consecutive slices in
an image obtained by combining early time frames (0-60 s), in
which the effects of motion and partial volume are less pronounced
than that in the left ventricle. Two experienced nuclear medicine
physicians used the ITK-snap software (version 4.9) to display the
3D volume of interest (VOI) for each LN in the K; images and to
calculate the quantitative values.

Two experienced nuclear medicine physicians independently
reviewed the static images. Based on the distribution of the LNs in
the puncture and/or pathological findings, the LN long and short
diameters were measured on 5-mm CT scans according to the one-
to-one correspondence principle, and the LN site and LN-SUV .«
were recorded on the sPET/CT scan.

10.3389/fonc.2025.1637366

Pathological evaluation

The diagnosis was based on two factors: the appearance under
the microscope and the immunohistochemical results. Two
experienced pathologists made the diagnosis independently.

Radiomics feature extraction

Figure 1 illustrates the radiomics feature extraction process. All
of the patients’ 2.79-mm PET, 3.75-mm chest CT, and 2.79-mm K;
images were exported to DICOME from the PET/CT workstation.
The DICOM format files were then imported into the radiomics
version of the uAl Research Portal (version 3.0.1; https://
pyradiomics.readthedocs.io/en/) to create outlines and to extract
the radiomics features. A junior physician performed manual
delineation of the VOI layer-by-layer on the PET (SUV threshold
of 40%), CT, and K; images in a blinded fashion using a software
annotation tool. The results outlined by the VOI were then reviewed
by another senior doctor.

Prior to the radiomics feature extraction, the distribution of the
image voxels in all segmented VOIs was standardized using mean
normalization. A total of 4,362 radiomics features were extracted
based on the CT, PET, and K; images, 1,454 of which were CT
features, 1,454 were PET features, and 1,454 were K; features. These
radiomics features included: first-order statistics and shape features,
gray-level co-occurrence matrix (GLCM) features, gray-level run
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FIGURE 1

Dynamic positron emission tomography (dPET) and static PET (sPET) acquisition process and model screening and establishment in each group.
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length matrix (GLRLM) features, gray-level size zone matrix
(GLSZM) features, neighboring gray tone difference matrix
(NGTDM) features, and gray-level dependence matrix (GLDM)
features. Advanced features were achieved using five filters: original,
Laplacian of Gaussian (LoG), mean, box mean, and additive
Gaussian noise. The parameters were as follows: for original,
native image intensities were used without any spatial filtering;
for LoG, edge enhancement was performed using 3D LoG filtering
with a Gaussian kernel (o = 3.0 mm); for the mean, uniform mean
filtering was applied with a 3 x 3 x 3 voxel smoothing kernel; for the
box mean, cubic mean filtering was implemented usinga 5 x5 x 5
voxel kernel; and for additive Gaussian noise, a zero-mean Gaussian
noise (10% of the VOI standard deviation) was introduced to

simulate acquisition noise.

Radiomics feature screening and modeling

Figure 1 shows the radiomics feature screening and modeling
processes. The extracted radiomics features were then put through a
process of Z-score normalization. This was performed so that any
differences in the dimensions of the index could be managed.
Subsequently, Student’s t-test was used on the training set to
compare the features that conformed to a normal distribution in
order to distinguish between FDG-avid LN metastasis and non-
metastasis. For features that did not follow a normal distribution,
the Mann-Whitney U test was used for the initial feature selection.
Among these features, Pearson’s correlation coefficient was
calculated between each feature-label pair that follows a normal
distribution, and features with |r| > 0.6 were selected. LASSO (least
absolute shrinkage and selection operator) logistic regression was
used to select the radiomics features and to calculate the radiomics
score (Rad-score), which was then iteratively validated using 10-
fold cross-validation. Three machine learning models were
constructed according to the radiomics features of the images:
support vector machine (SVM), random forest (RF) classifier, and
logistic regression (LR) models.

Machine learning modeling, quantitative
modeling, and composite model building
and assessment

For the construction of the quantitative model, one-way logistic
regression analyses were first performed for SUV ., and K;. The
correlated features were then further incorporated into the
multifactor logistic regression to determine the risk predictors.
For the construction of the PET/CT+K; machine learning model,
after comparing the efficacy of three machine learning models (i.e.,
RF, SVM, and LR), the machine learning model with the best overall
prediction efficacy was selected to obtain the PET/CT+K; machine
learning model. For the construction of the composite model, a
PET/CT+K;+quantitative composite model was obtained by
applying logistic regression analysis to the PET/CT+K;
+quantitative composite model after averaging the weights of the
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predicted values of the PET/CT+K; optimal machine learning
model and the quantitative model. Figure 1 shows the machine
learning modeling, quantitative modeling, and composite model
development and evaluation processes.

Statistical analysis

Statistical analyses and model construction were carried out
using the R statistical software package (version 4.1.1) and Python
programming language (version 3.7). The groups were compared
using the Wilcoxon rank-sum test or the independent-samples t-
test. Single-factor and LASSO logistic regression were used to
determine the significant risk predictors and radiomics features,
as well as the calibration curves. The predictive ability of the model
was assessed using receiver operating characteristic (ROC) curves,
the area under the curve (AUC), and calibration curves. DeLong’s
test was used to determine whether the difference in the efficacy
between the models was statistically significant.

Results
Patient and lesion features

The patient and LN features are shown in Table 1. This study
included a total of 279 LNs from 74 patients with lung cancer, of
whom 51 (70.83%) were men and 23 (31.93%) were women, with
an average age of 61.8 £ 10.0 years. Of the 279 LNs that were
pathologically confirmed, 118 (42.29%) were non-metastatic and
161 (57.71%) were metastatic. The enrolled LNs were randomly
divided into a training group and a test group in a 7:3 ratio.
There were 196 LNs in the training group and 83 LNs in the
test group.

Radiomics feature screening

Figure 2 shows the process and the results of the screening for
radiomics features. A total of 4,362 radiomics features were
extracted from the CT, PET, and K; images: 1,454 from CT, 1,454
from PET, and 1,454 from K;. A total of 319 radiomics features were
selected using Student’s f-test or the Mann-Whitney U test and
Pearson’s correlation analysis. The six most significant radiomics
features were subsequently selected using LASSO logistic regression.
These included one feature for CT (GLCM), three features for PET
(GLRLM, GLCM, and GLSZM), and one feature for K; (GLDM).
The final PET/CT+K; radiomics feature score formula was
calculated by summing the coefficients for the retained radiomics
features, which were weighted according to their importance.

Radscore = —0.1979*CTlog_glcm_log.sigma.2.0.mm.3D.
InverseVariance+-0.0843*pet_wavelet_glrlm_wavelet. HLH.
ShortRunLowGrayLevelEmphasis+-0.08257*pet_wavelet_
glrlm_wavelet. HHL.ShortRunLowGrayLevelEmphasis+-0.07745*
pet_wavelet_glecm_wavelet.LLL.Correlation+0.035966%*pet_
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TABLE 1 Patient and lymph node (LN) characteristics.

Training group (N = 196)

Clinical characteristic Non-metastatic

(n = 83) (n = 113)

Metastatic

10.3389/fonc.2025.1637366

Test group (N = 83)

Metastatic
(n = 48)

Non-metastatic
(n = 35)

RUL 33 (39.8%) 22 (19.5%) 21 (60.0%) 8 (16.7%)
RML 10 (12.0%) 8 (7.1%) 4(11.4%) 2 (4.2%)
Lu“fi f::fzz alzir::ary RLL 5 (6.0%) 16 (14.2%) 0.007 2 (5.7%) 7 (14.6%) <0.001
LUL 20 (24.1%) 39 (34.5%) 7 (20.0%) 17 (35.4%)
LLL 15 (18.1%) 28 (24.8%) 1 (2.9%) 14 (29.2%)
scc 17 (20.5%) 16 (14.2%) 11 (31.4%) 4(8.3%)
AC 63 (75.9%) 71 (62.8%) 22 (62.9%) 38 (79.2%)
LN pathology type 0.002 0.007
scLC 2 (2.4%) 15 (13.3%) - 3 (6.2%)
Other 1(1.2%) 11 (9.74%) 2 (5.71%) 2 (6.25%)
1 - 1.(0.9%) - 4(8.33%)
2 6 (7.2%) 3 (2.7%) 1 (2.9%) 1(2.1%)
3A 1(12%) 5 (4.4%) 1 (2.9%) 1(2.1%)
4 4(4.8%) 14 (12.4%) 13 (37.14%) 16 (33.33%)
5 16 (19.3%) 19 (16.8%) 1 (2.9%) 3 (6.2%)
6 2 (2.4%) 6 (5.3%) - 1(21%)
LN zoning - -
7 3 (3.6%) 7 (6.2%) 4 (11.4%) 6 (12.5%)
8 9 (10.8%) 20 (17.7%) - -
9 1(1.2%) 2 (1.8%) - -
10 13 (15.66%) 3 (2.66%) 5 (14.29%) 1(2.1%)
11 28 (33.74%) 28 (24.78%) 10 (28.57%) 10 (20.83%)
12 - 4 (3.5%) - 1(21%)
Long diameter (cm) 1.20 (1.00-1.50) 1.40 (1.00-2.00) 0,008 130 (1.05-1.40) 160 (1.17-2.02) 0.027
Short diameter (cm) 0.80 (0.70-1.00) 1.00 (0.80-1.40) <0.001 1.00 (0.80-1.00) 1.10 (1.00-1.40) 0.001
SUV mar 4,00 (2.80-6.00) 6.70 (4.50-10.00) <0.001 3.70 (3.00-5.75) 7.00 (4.62-10.65) <0.001
K 0.01 (0.01-0.02) 0.02 (0.01-0.04) <0.001 0.01 (0.01-0.02) 0.03 (0.02-0.05) <0.001

RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; SCC, squamous cell carcinoma; AC, adenocarcinoma carcinoma; SCLC, small cell

lung cancer.

wavelet_glszm_wavelet. HLL.SmallAreaLowGrayLevelEmphasis+
0.057188*KI_log_gldm_log.sigma.4.0.mm.3D.DependenceNon
UniformityNormalized.

Predictive value of the radiomics features
in the differential diagnosis of FDG-avid
LNs

Three machine learning models (i.e, SVM, RF, and LR) were
constructed using six radiomics features. Figure 3 shows the
predictive performance of the three machine learning models for
the differential diagnosis of FDG-avid LNs in lung cancer. The ROC
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curve analysis showed that the RF model had better predictive efficacy
in both the training (AUC = 0.823) and test groups (AUC = 0.819).
The DeLong’s test showed that, in the training group, there was a
statistical difference between LR and RF (p < 0.01), but no statistical
difference between LR and SVM or RF and SVM (p = 0.158 and p =
0.058) (Figure 4). There were no statistical differences between LR
and RF, LR and SVM, or RF and SVM in the test group (p = 0.671,
0.554, and 0.447, respectively). Table 2 shows the predictive efficacy of
the three models. For the RF model, the respective values for AUC,
sensitivity, specificity, and accuracy were 0.823 (0.766-0.877), 0.69,
0.819, and 0.745 in the training group and 0.818 (0.727-0.898), 0.667,
0.800, and 0.723 in the test group. Therefore, the RF model was
included as a predictive model for the PET/CT+K; radiomics features.
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Process and results of the screening for radiomics features. 1, CTlog_glcm_log.sigma.2.0.mm.3D.InverseVariance; f2,
pet_wavelet_glcm_wavelet.LLL.Correlation; 3, pet_wavelet_glrlm_wavelet. HLH.ShortRunLowGrayLevelEmphasis; 4,
pet_wavelet_glrlm_wavelet. HHL.ShortRunLowGrayLevelEmphasis; f5, pet_wavelet_glszm_wavelet.HLL.SmallAreaLowGraylLevelEmphasis; f6,
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Composite modeling and effectiveness
assessment

The quantitative model included SUV ,,x and K;. In the training
group, the results of the single-factor logistic regression showed that
both the SUV .., and K; were statistically different in the metastatic
and non-metastatic groups (p < 0.01, respectively). Multifactor
logistic regression analysis showed that K; differed significantly
between the metastatic and non-metastatic groups (p = 0.001),
whereas the SUV .., did not (p = 0.917), as shown in Table 3.
Therefore, K; was included in the quantitative prediction model.
Using ROC curve analysis (Figure 5), the AUCs of the quantitative
model were 0.772 (0.701-0.831) and 0.805 (0.711-0.893) in the
training and test groups, respectively.

A composite prediction model was created based on the RF
model and the quantitative model, which was named the PET/CT

+Kj+quantitative composite model. According to the ROC curve
analysis (Figure 5), the AUC, the sensitivity, the specificity, and the
accuracy were respectively 0.844 (0.787-0.894), 0.611, 0.928, and
0.745 in the training group and 0.835 (0.745-0.911), 0.604, 0.943,
and 0.747 in the test group. The DeLong’s test showed that, in the
training group, the quantitative and composite models had a
statistical difference (p = 0.002), while the quantitative and RF
models, as well as the RF and composite models, did not (p = 0.120
and p = 0.101) (Figure 4). There were no statistical differences
between the quantitative model and the RF model, the quantitative
model and the composite model, or the RF model and the
0.750, p = 0.278, and p = 0.382,
respectively). Table 4 shows the predictive efficacy of the

composite model (p =

three models.
Figure 6 shows a nomogram of the composite model, which was
constructed based on the machine learning model and the

TABLE 2 Summary of the efficacy of three predictive models in the differential diagnosis of ‘F-fluorodeoxyglucose (FDG)-avid lymph nodes (LNs).

AUC (95%Cl) Sensitivity Specificity Accuracy
Training 0.823 (0.766-0.877) 0.69 0.819 0.745
RF
Test 0.818 (0.727-0.898) 0.667 0.80 0723
Training 0.792 (0.728-0.847) 0.673 0.782 0719
SVM
Test 0.797 (0.695-0.888) 0.854 0.714 0.795
Training 0.775 (0.712-0.836) 0.664 0.771 0.709
LR
Test 0.810 (0.717-0.893) 0.833 0.714 0.783

RF, random forest; SVM, support vector machine; LR, logistic regression.
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machine (SVM) models in the differential diagnosis of *®F-fluorodeoxyglucose (FDG)-avid lymph nodes (LNs).

TABLE 3 Summary of the single-factor and multifactor logistic regression results for the quantitative values.

Single-factor logistic regression

Quantitative value

Multifactor logistic regression

OR 95%Cl p-value OR 95%Cl p-value
K 2511 1.779-3.765 <0.001 2464 1.54-4.274 0.001
SUV pax 1.293 1.165-1.461 <0.001 1.009 0.854-1.191 0917

quantitative K; prediction scores. Agreement between the predicted
and the actual values on the nomogram was evaluated. The results
of the Hosmer-Lemeshow goodness-of-fit test for both the training

and test groups showed no statistical significance (p = 0.978 for the

training group and p = 0.227 for the test group), indicating that the

predictions of the nomogram constructed in this study were

unbiased and a perfect fit, as shown in Figure 7. The curves

demonstrated that the values predicted by the composite model

are in close alignment with the actual values.

Decision curve analysis

Figure 8 shows the decision curve analysis of the composite
model in predicting the differential diagnosis of FDG-avid LNs in

Discussion

diagnosis of FDG-avid LNs in lung cancer.

lung cancer. According to the decision curve analysis, the composite
model has a better net benefit and clinical value in the differential

This study investigated the value of a composite model based on

the radiomics features from CT, FDG PET, and K; images combined

with quantitative parameters for predicting the differential diagnosis

of FDG-avid LNs in lung cancer. This study concludes that, among
the machine learning models, the RF model based on PET/CT+Ki has
a high diagnostic value (the training and test group AUCs were 0.823

TABLE 4 Summary of the efficacy of the quantitative model, the random forest (RF) model, and the composite model.

and 0.818, respectively). In the quantitative model, K; had better
predictive efficacy (the training and test group AUCs were 0.772 and

AUC (95%ClI) Sensitivity Specificity Accuracy

Training 0.772 (0.701-0.831) 0.708 0.747 0.724

Quantitative model
Test 0.805 (0.711-0.893) 0.583 0.914 0.723
Training 0.823 (0.765-0.872) 0.690 0.819 0.745

RF model

Test 0.818 (0.709-0.902) 0.667 0.800 0.723
Training 0.844 (0.787-0.894) 0.611 0.928 0.745

Composite model
Test 0.835 (0.745-0.911) 0.604 0.943 0.747
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0.805, respectively). As a result, our PET/CT+K;+quantitative
composite model had a higher predictive performance (the training
and test group AUCs were 0.844 and 0.835, respectively). The clinical
decision curves demonstrated that the predicted values of the
composite model aligned well with the actual values.

N staging is a key factor in predicting how lung cancer will
progress and is vital in developing personalized treatment plans
(18). Previous studies by our team on dPET and lung cancer have
shown that the dynamic quantitative metabolic parameter K; is

Net Benefit
0.2 0.3 0.4 0.5 0.6

0.1

effective in diagnosing lung cancer and in determining the N stage
and EGFR status, particularly in improving the specificity of the
differential diagnosis (12-15). In particular, the addition of the
dynamic metabolic parameter K; reduces the false-positive rate of
FDG-avid LNs and improves the accuracy of N staging (12). The
combination of dPET and sPET/CT is expected to be an effective
tool for the accurate staging of lung cancer.

Radiomics enables the noninvasive identification of solid tumors,
as well as the determination of their spatial and temporal consistency,

Quantitative model
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FIGURE 8

Decision curve analysis of the composite model in predicting the differential diagnosis of *¥F-fluorodeoxyglucose (FDG)-avid lymph nodes (LNs).
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using radiomics features such as pixel density and spatial distribution
(19-21). This provides a more complete description of the lesion
status. Consequently, radiomics has attracted growing interest in
studies related to tumor invasiveness, pathological grading,
treatment response, and prognosis prediction. In recent years, there
have been reports of studies using radiomics and deep learning in the
N staging of lung cancer (19-22). To our knowledge, there are no
studies on the use of dynamic imaging for the N staging of lung cancer
based on imaging radiomics features.

A previous meta-analysis showed an AUC of 0.90 for predicting
LN metastasis in lung cancer using CT and PET radiomics models
(23). The CT-based radiomics model demonstrated high sensitivity
(0.840), whereas the PET-based radiomics model exhibited a higher
specificity (0.860).

Yin et al. (24) concluded that the SVM model based on the FDG
PET/CT images is more effective than the RF model in predicting
metastatic LNs in lung cancer, with respective AUCs of 0.82 and
0.81. Xie et al. (25) concluded that the combined SUV,,,, and CT
radiomics model has better efficacy in the preoperative N staging of
lung cancer compared with the SUV .« and short diameter, with
AUCs of 0.849 and 0.828 for the combined model in the training
and test groups, respectively. Our results showed that the diagnostic
efficacy of the PET/CT+K;-based RF model is higher than that of the
SVM and LR models. Our results differ from those of previous
studies in that we considered the following two factors to be
relevant. Firstly, we selected a sample size of FDG-avid LNs on
sPET/CT. Secondly, in the current study, we added the imaging
group learning feature of dynamic image K; to obtain the joint
imaging group model PET/CT+K;.

Yoo et al. (26) concluded that the diagnostic efficacy of the
combined FDG PET/CT+clinical information model (AUC =
0.810) is better than that of the physician (AUC = 0.768) or the
combined FDG-PET/CT+quantitative values model (AUC = 0.798).
Qiao et al. concluded that the PET/CT+tumor location composite
model demonstrates high diagnostic efficacy in predicting occult LN
metastasis in NSCLC, with a training group AUC of 0.884 (0.826-
0.941) and a test group AUC of 0.881 (0.803-0.959) (27). Therefore,
it is expected that a comprehensive predictive model combining
quantitative values, radiomics features, and clinical information will
further improve the accuracy of N staging in lung cancer.

Our previous study showed that K; has a higher specificity
(0.918 vs. 0.388) but a lower sensitivity than SUV ;. (0.395 vs.
0.826) in the differential diagnosis of FDG-avid LNs in lung cancer,
which may play a complementary role (15). In a subsequent
validation study, it was also concluded that SUV,,,+K; could
have a higher diagnostic efficacy, with AUC, sensitivity,
specificity, and accuracy of 0.907 (0.842-0.951), 84.3%, 94.6%,
and 88.89%, respectively (12). Our previous study well established
the advantages of K; in the N staging of lung cancer, particularly in
improving the specificity. In this study, we developed a quantitative
prediction model based on K.

In this study, our composite model had a higher predictive
value for FDG-avid LN metastasis in lung cancer (AUC = 0.844
vs. 0.835). The clinical decision curves showed that the
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composite model had better net benefit and clinical value. In
this study, we established a composite model that included a
machine learning model based on K; images and dynamic
metabolic parameters. Therefore, our composite model is
expected to be a noninvasive and a reliable imaging method
for the accurate N staging of lung cancer, providing clinicians
with reliable imaging evidence to guide the development of
individualized treatment plans.

This study has several limitations. Firstly, it is based on a single-
center image database. A large, multicenter dataset will be required
at a later stage to validate the stability and reproducibility of the
constructed model. Secondly, based on the results of the
preliminary experiments, only three-modality imaging features
based on CT, PET, and K; were retained in the design of this
experiment, and single- or dual-modality CT, PET, or K; were not
compared. In our subsequent research, we will expand the sample
size further and explore comparisons of single-, dual-, and three-
modality imaging based on CT, PET, and K;. Thirdly, due to the
limited number of articles related to K;-based radiomics,
particularly those concerning the differential diagnosis of LNs, it
was not possible to conduct a horizontal comparison in our
discussion. In the future, we intend to conduct more relevant
studies based on our institution’s dynamic dataset in order to
further explore the clinical value of the radiomics features of K; in
lung cancer. Finally, the clinical factors in our composite model
only included quantitative values (SUV ,,x and K;). The value of the
remaining combined clinical information (e.g., age, gender, and
pathology type, among others) will be further explored in
later studies.

Conclusions

A composite model created based on the RF model of PET/CT
+K; images combined with dynamic quantitative K; has high
diagnostic efficacy for the differential diagnosis of FDG-avid LNs
in lung cancer and has better net benefit and clinical value. The
developed composite model is expected to be an effective tool for
accurate lung cancer N staging, providing clinicians with reliable
imaging evidence to guide the development of individualized
treatment plans.
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