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Background:We aimed to identify themost effective machine learningmodel for

predicting the differential diagnosis of lymph nodes (LNs) in lung cancer using

dynamic and static 18F-fluorodeoxyglucose (FDG) positron emission

tomography/computed tomography (PET/CT) imaging.

Methods: A total of 279 pathologically confirmed LNs from 74 patients with lung

cancer were retrospectively analyzed. These were randomly divided into a

training group (n = 196) and a test group (n = 83) at a ratio of 7:3. The

radiomics features of the images were extracted from CT, dynamic PET (dPET),

and static PET (sPET) images and were screened for the most predictive value.

Support vector machine (SVM), logistic regression (LR), and random forest (RF)

machine learning models were built using the optimal radiomics features. The

best quantitative prediction model was suggested using SUVmax and Ki based on

LNs. A composite model was built combining the best machine learning model

and the quantitative model. Receiver operating characteristic (ROC) curves were

used to evaluate the predictive ability of the machine learning, quantitative, and

composite models for LN metastasis in lung cancer.

Results: Of the three machine learning models, the RF model demonstrated the

greatest predictive efficacy in both the training [area under the curve (AUC) =

0.823] and test groups (AUC = 0.819). The quantitative model based on Ki

showed good predictive efficacy in both the training (AUC = 0.772) and test

groups (AUC = 0.805). A composite model based on both the RF machine

learning model and the quantitative model demonstrated superior predictive

efficacy. The AUCs in the training and test groups were 0.844 and 0.835,

respectively. Decision curve analysis showed that the composite model had

better net benefit and clinical value.
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Conclusion: A composite model based on an RF model of PET/CT+Ki images

combined with dynamic quantitative Ki is highly effective in differentiating FDG-

avid LN metastasis in lung cancer. This model provides greater net benefit and

clinical value.
KEYWORDS

lung cancer, 18F-FDG, PET/CT, dynamic, radiomics model
Introduction

Lung cancer is the leading cause of both morbidity and

mortality (1). Accurate N staging is essential for individualized

treatment planning and prognosis in lung cancer (2). Patients

diagnosed with stage N3 not only lose the chance of undergoing

surgery, but the 5-year survival also drops to 6% (3). Consequently,

improving the accuracy of the lung cancer N staging is one of the

current clinical concerns.
18F-fluorodeoxyglucose (FDG) positron emission tomography/

computed tomography (PET/CT) is commonly used for lung cancer

staging (4). A previous meta-analysis (5) showed FDG PET/CT for

the mediastinal staging of patients with non-small cell lung cancer

(NSCLC) to have a sensitivity of 0.81 (0.70–0.89) and a specificity of

0.79 (0.70–0.87). The semi-quantitative metabolic parameter

known as standard uptake value (SUVmax) is affected by various

factors, which reduces the specificity of FDG PET/CT for N staging.

The presence of lung cancer alongside infectious lung diseases such

as tuberculosis, infection, and granulomatous inflammation, in

particular, reduces the specificity of FDG PET/CT for precise

staging by approximately 16%–25% (6–8).

Dynamic PET (dPET) involves the continuous acquisition of

imaging data over a period of time. The extracted fully quantitative

metabolic parameters (e.g., Ki) provide a more accurate

characterization of the different metabolic phases of FDG, thereby

reflecting the pathophysiological mechanisms of the disease (9–11).

In recent years, the clinical application of dPET in tumor diagnosis

and treatment has also become a popular area of research. We have

previously carried out a study on the clinical value of dPET in lung

cancer (12–15). It was concluded that dPET has good value in the

differential diagnosis, N staging, and prediction of the epidermal

growth factor receptor (EGFR) status in lung cancer; in particular, the

Ki can improve specificity (12–15). The results of the lung cancer N-

staging study concluded that, compared with SUVmax, there is good

specificity in the differential diagnosis of FDG-avid lymph nodes

(LNs) when the Ki cutoff value is 0.022 ml g−1 min−1 (0.918 vs. 0.388)

(15). A validation study has also shown that, when the SUVmax and Ki

are used in combination for diagnosis, the diagnostic efficacy is

further improved (12). Therefore, dynamic metabolic parameters

are expected to reliably indicate the N stage of lung cancer.

To our knowledge, there are no studies reporting on the

predictive value of radiomic features based on dPET for the N
02
staging of lung cancer. In this study, we investigated the predictive

value of radiomics models, quantitative models, and combined

models based on dPET and FDG PET/CT images for the

differential diagnosis of FDG-avid LNs in lung cancer.
Materials and methods

Patients

The study was approved by the Ethics Committee of X Hospital

(KYLH2022-1). Written informed consent was obtained from all

patients before dPET and FDG PET/CT imaging.

A total of 323 patients underwent dPET (chest, 65 min) and

static FDG PET/CT (sPET/CT) imaging (whole body, 10–20 min)

from May 2021 to December 2024. All patients had lung nodules or

masses identified on a chest CT scan, and none of the patients

received anti-infective or antitumor therapy prior to undergoing a

dPET+sPET/CT scan. Of these patients, 261 had lung cancer

confirmed by puncture and/or surgical pathology.

We retrospectively collected 279 FDG-avid LNs from 74 patients

with pathologically confirmed lung cancer. The 74 patients were

selected from 261 lung cancer patients. On the sPET/CT scan,

mediastinal or pulmonary hilar region LNs were considered FDG-

avid LNs if their FDG uptake exceeded the mediastinal blood pool.

All 279 FDG-avid LNs were confirmed by pathology, and the LNs

were included according to their distribution and size on the sPET/

CT scan after a one-to-one correspondence with the pathological

findings. The locations of the LNs according to the International

Association for the Study of Lung Cancer (IASLC) are shown on the

LN map (16). The time interval between the dPET+sPET/CT scan

and receipt of the pathology results was less than 2 weeks.

We collected the dPET+sPET/CT scans and the clinical features

of FDG-avid LNs. The dPET+sPET/CT scan features included the

primary focus site, the primary focus SUVmax, the FDG-avid LN

zoning, the LN short and long diameters, the LN-SUVmax, and the

LN-Ki. The clinical characteristics included gender, age, primary

lung cancer pathology, and LN pathology.

Based on the pathological findings, of the 279 FDG-avid LNs,

161 (57.71%) were metastatic and 118 (42.29%) were non-

metastatic. The participants were randomly divided into two

groups: a training group (n = 196) and a test group (n = 83).
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dPET and sPET/CT data acquisition and
image reconstruction

Both the dPET and sPET/CT scans were performed using a

Discovery MI PET/CT (GE Healthcare, Milwaukee, WI, USA).

Figure 1 illustrates the dPET and sPET/CT examination

processes, including data acquisition, image reconstruction, and

metabolic parameter acquisition.

Dynamic Ki images and quantitative metabolic values were

obtained based on a two-tissue irreversible compartment model.

In this model, it was assumed that 18F-FDG was taken up

unidirectionally (i.e., k4 = 0) and was irreversibly trapped in tissue

as 18F-FDG-6-PO (17). The image-derived input function (IDIF)

was extracted from the ascending aorta by drawing a region of

interest (ROI) with a diameter of 10 mm on six consecutive slices in

an image obtained by combining early time frames (0–60 s), in

which the effects of motion and partial volume are less pronounced

than that in the left ventricle. Two experienced nuclear medicine

physicians used the ITK-snap software (version 4.9) to display the

3D volume of interest (VOI) for each LN in the Ki images and to

calculate the quantitative values.

Two experienced nuclear medicine physicians independently

reviewed the static images. Based on the distribution of the LNs in

the puncture and/or pathological findings, the LN long and short

diameters were measured on 5-mm CT scans according to the one-

to-one correspondence principle, and the LN site and LN-SUVmax

were recorded on the sPET/CT scan.
Frontiers in Oncology 03
Pathological evaluation

The diagnosis was based on two factors: the appearance under

the microscope and the immunohistochemical results. Two

experienced pathologists made the diagnosis independently.
Radiomics feature extraction

Figure 1 illustrates the radiomics feature extraction process. All

of the patients’ 2.79-mm PET, 3.75-mm chest CT, and 2.79-mm Ki

images were exported to DICOME from the PET/CT workstation.

The DICOM format files were then imported into the radiomics

version of the uAI Research Portal (version 3.0.1; https://

pyradiomics.readthedocs.io/en/) to create outlines and to extract

the radiomics features. A junior physician performed manual

delineation of the VOI layer-by-layer on the PET (SUV threshold

of 40%), CT, and Ki images in a blinded fashion using a software

annotation tool. The results outlined by the VOI were then reviewed

by another senior doctor.

Prior to the radiomics feature extraction, the distribution of the

image voxels in all segmented VOIs was standardized using mean

normalization. A total of 4,362 radiomics features were extracted

based on the CT, PET, and Ki images, 1,454 of which were CT

features, 1,454 were PET features, and 1,454 were Ki features. These

radiomics features included: first-order statistics and shape features,

gray-level co-occurrence matrix (GLCM) features, gray-level run
FIGURE 1

Dynamic positron emission tomography (dPET) and static PET (sPET) acquisition process and model screening and establishment in each group.
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length matrix (GLRLM) features, gray-level size zone matrix

(GLSZM) features, neighboring gray tone difference matrix

(NGTDM) features, and gray-level dependence matrix (GLDM)

features. Advanced features were achieved using five filters: original,

Laplacian of Gaussian (LoG), mean, box mean, and additive

Gaussian noise. The parameters were as follows: for original,

native image intensities were used without any spatial filtering;

for LoG, edge enhancement was performed using 3D LoG filtering

with a Gaussian kernel (s = 3.0 mm); for the mean, uniform mean

filtering was applied with a 3 × 3 × 3 voxel smoothing kernel; for the

box mean, cubic mean filtering was implemented using a 5 × 5 × 5

voxel kernel; and for additive Gaussian noise, a zero-mean Gaussian

noise (10% of the VOI standard deviation) was introduced to

simulate acquisition noise.
Radiomics feature screening and modeling

Figure 1 shows the radiomics feature screening and modeling

processes. The extracted radiomics features were then put through a

process of Z-score normalization. This was performed so that any

differences in the dimensions of the index could be managed.

Subsequently, Student’s t-test was used on the training set to

compare the features that conformed to a normal distribution in

order to distinguish between FDG-avid LN metastasis and non-

metastasis. For features that did not follow a normal distribution,

the Mann–Whitney U test was used for the initial feature selection.

Among these features, Pearson’s correlation coefficient was

calculated between each feature–label pair that follows a normal

distribution, and features with |r| > 0.6 were selected. LASSO (least

absolute shrinkage and selection operator) logistic regression was

used to select the radiomics features and to calculate the radiomics

score (Rad-score), which was then iteratively validated using 10-

fold cross-validation. Three machine learning models were

constructed according to the radiomics features of the images:

support vector machine (SVM), random forest (RF) classifier, and

logistic regression (LR) models.
Machine learning modeling, quantitative
modeling, and composite model building
and assessment

For the construction of the quantitative model, one-way logistic

regression analyses were first performed for SUVmax and Ki. The

correlated features were then further incorporated into the

multifactor logistic regression to determine the risk predictors.

For the construction of the PET/CT+Ki machine learning model,

after comparing the efficacy of three machine learning models (i.e.,

RF, SVM, and LR), the machine learning model with the best overall

prediction efficacy was selected to obtain the PET/CT+Ki machine

learning model. For the construction of the composite model, a

PET/CT+Ki+quantitative composite model was obtained by

applying logistic regression analysis to the PET/CT+Ki

+quantitative composite model after averaging the weights of the
Frontiers in Oncology 04
predicted values of the PET/CT+Ki optimal machine learning

model and the quantitative model. Figure 1 shows the machine

learning modeling, quantitative modeling, and composite model

development and evaluation processes.
Statistical analysis

Statistical analyses and model construction were carried out

using the R statistical software package (version 4.1.1) and Python

programming language (version 3.7). The groups were compared

using the Wilcoxon rank-sum test or the independent-samples t-

test. Single-factor and LASSO logistic regression were used to

determine the significant risk predictors and radiomics features,

as well as the calibration curves. The predictive ability of the model

was assessed using receiver operating characteristic (ROC) curves,

the area under the curve (AUC), and calibration curves. DeLong’s

test was used to determine whether the difference in the efficacy

between the models was statistically significant.
Results

Patient and lesion features

The patient and LN features are shown in Table 1. This study

included a total of 279 LNs from 74 patients with lung cancer, of

whom 51 (70.83%) were men and 23 (31.93%) were women, with

an average age of 61.8 ± 10.0 years. Of the 279 LNs that were

pathologically confirmed, 118 (42.29%) were non-metastatic and

161 (57.71%) were metastatic. The enrolled LNs were randomly

divided into a training group and a test group in a 7:3 ratio.

There were 196 LNs in the training group and 83 LNs in the

test group.
Radiomics feature screening

Figure 2 shows the process and the results of the screening for

radiomics features. A total of 4,362 radiomics features were

extracted from the CT, PET, and Ki images: 1,454 from CT, 1,454

from PET, and 1,454 from Ki. A total of 319 radiomics features were

selected using Student’s t-test or the Mann–Whitney U test and

Pearson’s correlation analysis. The six most significant radiomics

features were subsequently selected using LASSO logistic regression.

These included one feature for CT (GLCM), three features for PET

(GLRLM, GLCM, and GLSZM), and one feature for Ki (GLDM).

The final PET/CT+Ki radiomics feature score formula was

calculated by summing the coefficients for the retained radiomics

features, which were weighted according to their importance.

Radscore = −0.1979*CTlog_glcm_log.sigma.2.0.mm.3D.

InverseVariance+-0.0843*pet_wavelet_glrlm_wavelet.HLH.

ShortRunLowGrayLevelEmphasis+-0.08257*pet_wavelet_

glrlm_wavelet.HHL.ShortRunLowGrayLevelEmphasis+-0.07745*

pet_wavelet_glcm_wavelet.LLL.Correlation+0.035966*pet_
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wavelet_glszm_wavelet.HLL.SmallAreaLowGrayLevelEmphasis+

0.057188*KI_log_gldm_log.sigma.4.0.mm.3D.DependenceNon

UniformityNormalized.
Predictive value of the radiomics features
in the differential diagnosis of FDG-avid
LNs

Three machine learning models (i.e., SVM, RF, and LR) were

constructed using six radiomics features. Figure 3 shows the

predictive performance of the three machine learning models for

the differential diagnosis of FDG-avid LNs in lung cancer. The ROC
Frontiers in Oncology 05
curve analysis showed that the RFmodel had better predictive efficacy

in both the training (AUC = 0.823) and test groups (AUC = 0.819).

The DeLong’s test showed that, in the training group, there was a

statistical difference between LR and RF (p < 0.01), but no statistical

difference between LR and SVM or RF and SVM (p = 0.158 and p =

0.058) (Figure 4). There were no statistical differences between LR

and RF, LR and SVM, or RF and SVM in the test group (p = 0.671,

0.554, and 0.447, respectively). Table 2 shows the predictive efficacy of

the three models. For the RF model, the respective values for AUC,

sensitivity, specificity, and accuracy were 0.823 (0.766–0.877), 0.69,

0.819, and 0.745 in the training group and 0.818 (0.727–0.898), 0.667,

0.800, and 0.723 in the test group. Therefore, the RF model was

included as a predictive model for the PET/CT+Ki radiomics features.
TABLE 1 Patient and lymph node (LN) characteristics.

Clinical characteristic

Training group (N = 196) Test group (N = 83)

pNon-metastatic
(n = 83)

Metastatic
(n = 113)

p
Non-metastatic

(n = 35)
Metastatic
(n = 48)

Lung cancer primary
focus location

RUL 33 (39.8%) 22 (19.5%)

0.007

21 (60.0%) 8 (16.7%)

<0.001

RML 10 (12.0%) 8 (7.1%) 4 (11.4%) 2 (4.2%)

RLL 5 (6.0%) 16 (14.2%) 2 (5.7%) 7 (14.6%)

LUL 20 (24.1%) 39 (34.5%) 7 (20.0%) 17 (35.4%)

LLL 15 (18.1%) 28 (24.8%) 1 (2.9%) 14 (29.2%)

LN pathology type

SCC 17 (20.5%) 16 (14.2%)

0.002

11 (31.4%) 4 (8.3%)

0.007
AC 63 (75.9%) 71 (62.8%) 22 (62.9%) 38 (79.2%)

SCLC 2 (2.4%) 15 (13.3%) – 3 (6.2%)

Other 1 (1.2%) 11 (9.74%) 2 (5.71%) 2 (6.25%)

LN zoning

1 – 1 (0.9%)

–

– 4 (8.33%)

–

2 6 (7.2%) 3 (2.7%) 1 (2.9%) 1 (2.1%)

3A 1 (1.2%) 5 (4.4%) 1 (2.9%) 1 (2.1%)

4 4 (4.8%) 14 (12.4%) 13 (37.14%) 16 (33.33%)

5 16 (19.3%) 19 (16.8%) 1 (2.9%) 3 (6.2%)

6 2 (2.4%) 6 (5.3%) – 1 (2.1%)

7 3 (3.6%) 7 (6.2%) 4 (11.4%) 6 (12.5%)

8 9 (10.8%) 20 (17.7%) – –

9 1 (1.2%) 2 (1.8%) – –

10 13 (15.66%) 3 (2.66%) 5 (14.29%) 1 (2.1%)

11 28 (33.74%) 28 (24.78%) 10 (28.57%) 10 (20.83%)

12 – 4 (3.5%) – 1 (2.1%)

Long diameter (cm) 1.20 (1.00–1.50) 1.40 (1.00–2.00) 0.008
<0.001

1.30 (1.05–1.40) 1.60 (1.17–2.02) 0.027

Short diameter (cm) 0.80 (0.70–1.00) 1.00 (0.80–1.40) 1.00 (0.80–1.00) 1.10 (1.00–1.40) 0.001

SUVmax 4.00 (2.80–6.00) 6.70 (4.50–10.00) <0.001 3.70 (3.00–5.75) 7.00 (4.62–10.65) <0.001

Ki 0.01 (0.01–0.02) 0.02 (0.01–0.04) <0.001 0.01 (0.01–0.02) 0.03 (0.02–0.05) <0.001
frontie
RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; SCC, squamous cell carcinoma; AC, adenocarcinoma carcinoma; SCLC, small cell
lung cancer.
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Composite modeling and effectiveness
assessment

The quantitative model included SUVmax and Ki. In the training

group, the results of the single-factor logistic regression showed that

both the SUVmax and Ki were statistically different in the metastatic

and non-metastatic groups (p < 0.01, respectively). Multifactor

logistic regression analysis showed that Ki differed significantly

between the metastatic and non-metastatic groups (p = 0.001),

whereas the SUVmax did not (p = 0.917), as shown in Table 3.

Therefore, Ki was included in the quantitative prediction model.

Using ROC curve analysis (Figure 5), the AUCs of the quantitative

model were 0.772 (0.701–0.831) and 0.805 (0.711–0.893) in the

training and test groups, respectively.

A composite prediction model was created based on the RF

model and the quantitative model, which was named the PET/CT
Frontiers in Oncology 06
+Ki+quantitative composite model. According to the ROC curve

analysis (Figure 5), the AUC, the sensitivity, the specificity, and the

accuracy were respectively 0.844 (0.787–0.894), 0.611, 0.928, and

0.745 in the training group and 0.835 (0.745–0.911), 0.604, 0.943,

and 0.747 in the test group. The DeLong’s test showed that, in the

training group, the quantitative and composite models had a

statistical difference (p = 0.002), while the quantitative and RF

models, as well as the RF and composite models, did not (p = 0.120

and p = 0.101) (Figure 4). There were no statistical differences

between the quantitative model and the RF model, the quantitative

model and the composite model, or the RF model and the

composite model (p = 0.750, p = 0.278, and p = 0.382,

respectively). Table 4 shows the predictive efficacy of the

three models.

Figure 6 shows a nomogram of the composite model, which was

constructed based on the machine learning model and the
FIGURE 2

Process and results of the screening for radiomics features. f1, CTlog_glcm_log.sigma.2.0.mm.3D.InverseVariance; f2,
pet_wavelet_glcm_wavelet.LLL.Correlation; f3, pet_wavelet_glrlm_wavelet.HLH.ShortRunLowGrayLevelEmphasis; f4,
pet_wavelet_glrlm_wavelet.HHL.ShortRunLowGrayLevelEmphasis; f5, pet_wavelet_glszm_wavelet.HLL.SmallAreaLowGrayLevelEmphasis; f6,
KI_log_gldm_log.sigma.4.0.mm.3D.DependenceNonUniformityNormalized.
TABLE 2 Summary of the efficacy of three predictive models in the differential diagnosis of 18F-fluorodeoxyglucose (FDG)-avid lymph nodes (LNs).

Model Group AUC (95%CI) Sensitivity Specificity Accuracy

RF
Training 0.823 (0.766–0.877) 0.69 0.819 0.745

Test 0.818 (0.727–0.898) 0.667 0.80 0.723

SVM
Training 0.792 (0.728–0.847) 0.673 0.782 0.719

Test 0.797 (0.695–0.888) 0.854 0.714 0.795

LR
Training 0.775 (0.712–0.836) 0.664 0.771 0.709

Test 0.810 (0.717–0.893) 0.833 0.714 0.783
RF, random forest; SVM, support vector machine; LR, logistic regression.
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quantitative Ki prediction scores. Agreement between the predicted

and the actual values on the nomogram was evaluated. The results

of the Hosmer–Lemeshow goodness-of-fit test for both the training

and test groups showed no statistical significance (p = 0.978 for the

training group and p = 0.227 for the test group), indicating that the

predictions of the nomogram constructed in this study were

unbiased and a perfect fit, as shown in Figure 7. The curves

demonstrated that the values predicted by the composite model

are in close alignment with the actual values.
Decision curve analysis

Figure 8 shows the decision curve analysis of the composite

model in predicting the differential diagnosis of FDG-avid LNs in
Frontiers in Oncology 07
lung cancer. According to the decision curve analysis, the composite

model has a better net benefit and clinical value in the differential

diagnosis of FDG-avid LNs in lung cancer.
Discussion

This study investigated the value of a composite model based on

the radiomics features from CT, FDG PET, and Ki images combined

with quantitative parameters for predicting the differential diagnosis

of FDG-avid LNs in lung cancer. This study concludes that, among

the machine learningmodels, the RFmodel based on PET/CT+Ki has

a high diagnostic value (the training and test group AUCs were 0.823

and 0.818, respectively). In the quantitative model, Ki had better

predictive efficacy (the training and test group AUCs were 0.772 and
TABLE 3 Summary of the single-factor and multifactor logistic regression results for the quantitative values.

Quantitative value
Single-factor logistic regression Multifactor logistic regression

OR 95%CI p-value OR 95%CI p-value

Ki 2.511 1.779–3.765 <0.001 2.464 1.54–4.274 0.001

SUVmax 1.293 1.165–1.461 <0.001 1.009 0.854–1.191 0.917
TABLE 4 Summary of the efficacy of the quantitative model, the random forest (RF) model, and the composite model.

Model Group AUC (95%CI) Sensitivity Specificity Accuracy

Quantitative model
Training 0.772 (0.701–0.831) 0.708 0.747 0.724

Test 0.805 (0.711–0.893) 0.583 0.914 0.723

RF model
Training 0.823 (0.765–0.872) 0.690 0.819 0.745

Test 0.818 (0.709–0.902) 0.667 0.800 0.723

Composite model
Training 0.844 (0.787–0.894) 0.611 0.928 0.745

Test 0.835 (0.745–0.911) 0.604 0.943 0.747
FIGURE 3

Comparison of the receiver operating characteristic (ROC) diagnostic efficacy of the logistic regression (LR), random forest (RF), and support vector
machine (SVM) models in the differential diagnosis of 18F-fluorodeoxyglucose (FDG)-avid lymph nodes (LNs).
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FIGURE 4

Results of the DeLong’s test for each model.
FIGURE 5

Receiver operating characteristic (ROC) curves for the quantitative model, the random forest (RF) model, and the composite model.
FIGURE 6

Nomogram of the composite model for predicting the differential diagnosis of 18F-fluorodeoxyglucose (FDG)-avid lymph nodes (LNs).
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0.805, respectively). As a result, our PET/CT+Ki+quantitative

composite model had a higher predictive performance (the training

and test group AUCs were 0.844 and 0.835, respectively). The clinical

decision curves demonstrated that the predicted values of the

composite model aligned well with the actual values.

N staging is a key factor in predicting how lung cancer will

progress and is vital in developing personalized treatment plans

(18). Previous studies by our team on dPET and lung cancer have

shown that the dynamic quantitative metabolic parameter Ki is
Frontiers in Oncology frontiersin.o09
effective in diagnosing lung cancer and in determining the N stage

and EGFR status, particularly in improving the specificity of the

differential diagnosis (12–15). In particular, the addition of the

dynamic metabolic parameter Ki reduces the false-positive rate of

FDG-avid LNs and improves the accuracy of N staging (12). The

combination of dPET and sPET/CT is expected to be an effective

tool for the accurate staging of lung cancer.

Radiomics enables the noninvasive identification of solid tumors,

as well as the determination of their spatial and temporal consistency,
FIGURE 7

Calibration curves of the composite model for predicting the differential diagnosis of 18F-fluorodeoxyglucose (FDG)-avid lymph nodes (LNs).
FIGURE 8

Decision curve analysis of the composite model in predicting the differential diagnosis of 18F-fluorodeoxyglucose (FDG)-avid lymph nodes (LNs).
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using radiomics features such as pixel density and spatial distribution

(19–21). This provides a more complete description of the lesion

status. Consequently, radiomics has attracted growing interest in

studies related to tumor invasiveness, pathological grading,

treatment response, and prognosis prediction. In recent years, there

have been reports of studies using radiomics and deep learning in the

N staging of lung cancer (19–22). To our knowledge, there are no

studies on the use of dynamic imaging for the N staging of lung cancer

based on imaging radiomics features.

A previous meta-analysis showed an AUC of 0.90 for predicting

LN metastasis in lung cancer using CT and PET radiomics models

(23). The CT-based radiomics model demonstrated high sensitivity

(0.840), whereas the PET-based radiomics model exhibited a higher

specificity (0.860).

Yin et al. (24) concluded that the SVMmodel based on the FDG

PET/CT images is more effective than the RF model in predicting

metastatic LNs in lung cancer, with respective AUCs of 0.82 and

0.81. Xie et al. (25) concluded that the combined SUVmax and CT

radiomics model has better efficacy in the preoperative N staging of

lung cancer compared with the SUVmax and short diameter, with

AUCs of 0.849 and 0.828 for the combined model in the training

and test groups, respectively. Our results showed that the diagnostic

efficacy of the PET/CT+Ki-based RF model is higher than that of the

SVM and LR models. Our results differ from those of previous

studies in that we considered the following two factors to be

relevant. Firstly, we selected a sample size of FDG-avid LNs on

sPET/CT. Secondly, in the current study, we added the imaging

group learning feature of dynamic image Ki to obtain the joint

imaging group model PET/CT+Ki.

Yoo et al. (26) concluded that the diagnostic efficacy of the

combined FDG PET/CT+clinical information model (AUC =

0.810) is better than that of the physician (AUC = 0.768) or the

combined FDG-PET/CT+quantitative values model (AUC = 0.798).

Qiao et al. concluded that the PET/CT+tumor location composite

model demonstrates high diagnostic efficacy in predicting occult LN

metastasis in NSCLC, with a training group AUC of 0.884 (0.826–

0.941) and a test group AUC of 0.881 (0.803–0.959) (27). Therefore,

it is expected that a comprehensive predictive model combining

quantitative values, radiomics features, and clinical information will

further improve the accuracy of N staging in lung cancer.

Our previous study showed that Ki has a higher specificity

(0.918 vs. 0.388) but a lower sensitivity than SUVmax (0.395 vs.

0.826) in the differential diagnosis of FDG-avid LNs in lung cancer,

which may play a complementary role (15). In a subsequent

validation study, it was also concluded that SUVmax+Ki could

have a higher diagnostic efficacy, with AUC, sensitivity,

specificity, and accuracy of 0.907 (0.842–0.951), 84.3%, 94.6%,

and 88.89%, respectively (12). Our previous study well established

the advantages of Ki in the N staging of lung cancer, particularly in

improving the specificity. In this study, we developed a quantitative

prediction model based on Ki.

In this study, our composite model had a higher predictive

value for FDG-avid LN metastasis in lung cancer (AUC = 0.844

vs. 0.835). The clinical decision curves showed that the
Frontiers in Oncology 10
composite model had better net benefit and clinical value. In

this study, we established a composite model that included a

machine learning model based on Ki images and dynamic

metabolic parameters. Therefore, our composite model is

expected to be a noninvasive and a reliable imaging method

for the accurate N staging of lung cancer, providing clinicians

with reliable imaging evidence to guide the development of

individualized treatment plans.

This study has several limitations. Firstly, it is based on a single-

center image database. A large, multicenter dataset will be required

at a later stage to validate the stability and reproducibility of the

constructed model. Secondly, based on the results of the

preliminary experiments, only three-modality imaging features

based on CT, PET, and Ki were retained in the design of this

experiment, and single- or dual-modality CT, PET, or Ki were not

compared. In our subsequent research, we will expand the sample

size further and explore comparisons of single-, dual-, and three-

modality imaging based on CT, PET, and Ki. Thirdly, due to the

limited number of articles related to Ki-based radiomics,

particularly those concerning the differential diagnosis of LNs, it

was not possible to conduct a horizontal comparison in our

discussion. In the future, we intend to conduct more relevant

studies based on our institution’s dynamic dataset in order to

further explore the clinical value of the radiomics features of Ki in

lung cancer. Finally, the clinical factors in our composite model

only included quantitative values (SUVmax and Ki). The value of the

remaining combined clinical information (e.g., age, gender, and

pathology type, among others) will be further explored in

later studies.
Conclusions

A composite model created based on the RF model of PET/CT

+Ki images combined with dynamic quantitative Ki has high

diagnostic efficacy for the differential diagnosis of FDG-avid LNs

in lung cancer and has better net benefit and clinical value. The

developed composite model is expected to be an effective tool for

accurate lung cancer N staging, providing clinicians with reliable

imaging evidence to guide the development of individualized

treatment plans.
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