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Radiation-induced heart disease (RIHD) represents a major dose-limiting

complication of thoracic radiotherapy, with a multifaceted pathogenesis

involving endothelial dysfunction, chronic oxidative stress, and progressive

fibrotic remodeling. Emerging evidence reveals distinct molecular mechanisms

underlying RIHD’s heterogeneous clinical manifestations, including pericarditis,

accelerated coronary artery disease, cardiomyopathy, valvular degeneration, and

conduction abnormalities—which often manifest after prolonged latency

periods. Modern radiotherapy techniques have reduced but not eliminated

cardiac toxicity, particularly in high-risk populations. Advanced imaging

modalities and biomarkers now enable earlier detection, though diagnostic

challenges persist. While current management remains largely extrapolated

from conventional cardiovascular therapies, novel targeted interventions show

preclinical promise. This review synthesizes contemporary understanding of

RIHD pathophysiology, risk stratification paradigms, and evolving

cardioprotective strategies, while highlighting critical knowledge gaps requiring

translational investigation to optimize outcomes for cancer survivors.
KEYWORDS
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1 Introduction

Radiation-induced heart disease (RIHD) has become an increasingly significant clinical

challenge, particularly among cancer survivors who have undergone thoracic radiotherapy

(1). As a fundamental component in the multidisciplinary treatment of thoracic

malignancies, including breast cancer, lung cancer, esophageal cancer, and mediastinal

lymphomas (2, 3), radiotherapy has contributed to improved survival outcomes through

advancements in precision techniques and multimodal therapeutic strategies (4). However,
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these therapeutic benefits are accompanied by the risk of both acute

and delayed toxicities to surrounding normal tissues, with

radiation-induced cardiac injury representing one of the most

severe and potentially life-threatening complications (5–7). RIHD

encompasses a spectrum of cardiovascular pathologies whose

clinical manifestations and severity are influenced by several

critical factors: the specific cardiac substructures within the

radiation field, dose-volume parameters, and treatment field

design. The disease spectrum includes cardiomyopathy,

pericardial disease, accelerated coronary artery atherosclerosis,

valvular dysfunction, and conduction system abnormalities.

Clinical presentations vary widely, from overt symptomatic

disease to subclinical dysfunction detectable only through

advanced imaging modalities or sensitive biomarker analysis

(8–10).

The pathogenesis of RIHD is complex, involving acute

microvascular endothelial injury, inflammatory responses, and

chronic progressive fibrotic processes (11). At the molecular level,

radiation induces DNA damage and activates signaling pathways

such as TGF-b/Smad, leading to sustained pro-fibrotic responses

(12). Despite improvements in radiotherapy delivery techniques,

RIHD remains a major dose-limiting factor, particularly in high-

risk populations such as those with pre-existing cardiovascular

comorbidities or those receiving cardiotoxic chemotherapy (13).

Characterized by a prolonged latency period (typically 5–10 years

post-exposure) and heterogeneous clinical presentations, RIHD

poses substantial challenges for early detection and intervention

(14). This review synthesizes current mechanistic understanding of

both acute and chronic RIHD phases, elucidates the pivotal role of

molecular pathways such as TGF-b/Smad signaling, and evaluates

emerging diagnostic and therapeutic approaches, including proton

therapy, FLASH irradiation, and novel anti-fibrotic agents. A

deeper understanding of the mechanisms and risk factors of

RIHD is essential for developing individualized treatment

strategies that balance cancer control and cardio-protection.
2 Pathophysiological mechanisms of
RIHD

2.1 Acute and chronic RIHD

Acute RIHD develops rapidly, emerging within minutes to

hours following radiation exposure, and is primarily mediated by

neutrophil infiltration into myocardial tissue (15). These

neutrophils trigger a potent inflammatory cascade by recruiting

macrophages and other immune cells, which subsequently release

key pro-inflammatory mediators including tumor necrosis factor,

interleukin-1, interleukin-6, monocyte chemoattractant protein-1,

platelet-derived growth factor, and transforming growth factor-beta

(16). This cytokine storm exacerbates acute tissue injury,

establishing acute RIHD as an inflammation-driven pathological

process (17). In contrast, chronic RIHD develops through

prolonged oxidative stress and reactive oxygen species

accumulation. Inflammatory cell infiltration plays a critical role in
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perpetuating oxidative damage and pathological cardiac remodeling

(18). Persistent oxidative stress and cytokine dysregulation induce

myocardial fibrosis and hypertrophy, compromising cardiac

function and microvascular perfusion. Progressive vascular

occlusion from cumulative radiation exposure leads to ischemic

cardiomyocyte necrosis, while excessive collagen and extracellular

matrix deposition drive fibrotic degeneration, resulting in

irreversible myocardial damage (19–21).
2.2 TGF-b/Smad signaling in radiation-
induced heart disease

The pathogenesis of RIHD is strongly linked to the activation of

pro-fibrotic signaling cascades, with the TGF-b/Smad pathway

being a key mediator (22, 23). Following ionizing radiation

exposure, latent TGF-b, stored in the extracellular matrix,

undergoes activation via ROS-dependent mechanisms and

proteolytic cleavage (24). Once activated, TGF-b binds to its

receptors (TGFBR1/TGFBR2) on endothelial cells and cardiac

fibroblasts, triggering the phosphorylation of Smad2/3 (25). These

phosphorylated Smads form a complex with Smad4 and translocate

to the nucleus, where they induce the transcription of fibrosis-

related genes, including PAI-1, COL3A1, and COL1A1 (26, 27).

Beyond promoting EMT and myofibroblast differentiation, the

TGF-b/Smad pathway exacerbates tissue stiffening (28, 29).

Additionally, its crosstalk with NF-kB signaling and p38 MAPK

further amplifies fibrotic progression. Chronic TGF-b/Smad

activation sustains adverse myocardial remodeling, microvascular

loss, and inflammation, hallmarks of advanced RIHD (9).
3 Clinical spectrum of radiation-
induced cardiac injuries

3.1 Radiation pericarditis

RIHD affects multiple cardiac structures, including the

pericardium, myocardium, coronary arteries, valves, and conduction

system, either independently or concurrently (30, 31). The onset of

clinical manifestations varies from weeks to decades following

radiotherapy, influenced by radiation dose and anatomical targeting

(4). Pericardial involvement is particularly common, predominantly

due to microvascular endothelial injury and subsequent fibrotic

changes (32). The condition encompasses constrictive pericarditis,

chronic pericarditis, and acute radiation pericarditis. Acute

pericarditis is rare, typically emerging during or immediately after

radiation exposure, characterized by fever, pleuritic chest pain,

electrocardiographic alterations, and mild biomarker elevation. While

most cases are self-limiting or manageable with NSAIDs and diuretics,

a subset may progress to chronic inflammation, necessitating long-

term monitoring (33). Chronic pericarditis frequently develops within

12 months post-radiation, commonly presenting as pericardial

effusion. Research indicates a median onset of 5.3 months, with a

strong dose-dependent association, pericardial V30 >46% correlates
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with a 73% effusion incidence compared to 13% at V30 <46% (34, 35).

Sustained inflammation may cause pericardial fibrosis, compromised

diastolic filling, and life-threatening tamponade, occasionally requiring

pericardiocentesis or surgical intervention. Echocardiography serves as

the primary diagnostic modality (36–38). Pathological thickening

(exceeding 17 mm) restricts ventricular filling, leading to progressive

heart failure within a decade. Although NSAIDs can provide

symptomatic relief in mild cases, advanced disease with significant

hemodynamic compromise necessitates invasive interventions (39).
3.2 Radiation-induced coronary artery
disease

Coronary artery injury is a pivotal contributor to the elevated

incidence of cardiovascular morbidity post-radiotherapy (40). The

clinical presentation includes angina, dyspnea, heart failure,

syncope, and, in rare cases, sudden cardiac death (41, 42).

Radiation accelerates atherosclerosis through endothelial

dysfunction, leading to plaque formation. Notably, the left

anterior descending artery, frequently within the high-dose

volume during left-sided breast cancer radiotherapy, is

particularly vulnerable (43, 44). Radiation triggers vascular

inflammation, microvascular impairment, and subendothelial

fibrosis, predisposing to unstable plaque development, especially
Frontiers in Oncology 03
at arterial bifurcations. Concurrent cardiovascular risk factors, such

as hyperlipidemia, exacerbate disease progression. Tjessem et al.

highlighted a synergistic effect between radiation exposure and

hypercholesterolemia in accelerating coronary artery disease (45).

Long-term survivors face an escalating risk of RICAD with

advancing age, further amplified by comorbidities like ischemic

heart disease (IHD), diabetes, dyslipidemia, smoking, and chronic

obstructive pulmonary disease (COPD) (46). Therapeutic

approaches for RICAD mirror those for conventional coronary

artery disease, including pharmacotherapy and revascularization via

percutaneous coronary intervention (PCI). However, post-

radiotherapy patients demonstrate higher rates of graft restenosis

following coronary artery bypass grafting (CABG), necessitating

careful long-term surveillance (39) (Figure 1).
3.3 Radiation-induced myocardial injury

Radiotherapy-induced direct myocardial injury and endothelial

dysfunction promote intravascular collagen accumulation, causing

capillary constriction, myocardial ischemia, and subsequent fibrotic

tissue remodeling (47). These pathological changes progressively

compromise both systolic and diastolic cardiac performance,

ultimately leading to heart failure (48, 49). Radiation-induced

myocardial injury typically follows an indolent clinical course,
FIGURE 1

Radiation-induced cardiac toxicity in thoracic oncology.
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remaining subclinical for more than a decade and consequently

leading to significant underdiagnosis, with reported clinical

detection rates as low as 10% (50). Symptomatic manifestations

commonly include reduced exercise capacity and diminished left

ventricular ejection fraction (LVEF), which may also show mild

reduction during resting conditions. Mediastinal irradiation in

Hodgkin lymphoma survivors is associated with increased risk of

congestive heart failure compared to non-irradiated populations.

Retrospective cohort analyses reveal a cumulative 5-year CHF

incidence of 5.9% (95% CI 3.4-9.6) following radiotherapy, with

cardiac radiation doses exceeding 15 Gy conferring higher risk for

major cardiovascular complications including heart failure,

myocardial infarction, and valvular disease (51). Therapeutic

strategies mirror standard cardiomyopathy management,

incorporating ACE inhibitors, ARBs, aldosterone antagonists, and

b-blockers.
3.4 Radiation-induced valvular heart
disease

Radiation exposure significantly compromises cardiac valve

integrity, inducing pathological changes such as thickening,

calcification, and fibrosis, which progress from valvular

regurgitation to stenosis. Studies indicate that valvular

abnormalities occur in up to 81% of RIHD patients, with

clinically significant dysfunction observed in 6% of cases (52).

The aortic and mitral valves demonstrate the highest

susceptibility, primarily due to their anatomical position within

radiation fields and exposure to elevated pressure gradients (53).

Histopathological analysis reveals chronic endothelial injury and

collagen accumulation as central features, with radiation-induced

activation of fibroblasts and valvular interstitial cells contributing to

fibrotic remodeling (54). Myxoid degeneration and calcific nodules

are frequently observed in irradiated valves. Moreover, TGF-b
signaling plays a pivotal role in promoting valvular fibrosis post-

radiation (22, 55). Clinically, radiation-induced valvular disease

(RIVD) can remain asymptomatic for years, underscoring the

importance of routine long-term monitoring (56). Mediastinal

radiation therapy (MRT) significantly elevates the risk of valvular

heart disease, with a strong dose-dependent relationship

particularly evident at radiation doses exceeding 30 Gy. The

aortic valve demonstrates particular vulnerability, showing the

highest incidence of radiation-induced damage (57). These

valvular abnormalities typically manifest after a prolonged latency

period, with their prevalence showing a progressive increase over

time. Long-term follow-up studies demonstrate that approximately

31% of Hodgkin lymphoma survivors develop valvular

regurgitation within 10 years post-MRT, with this proportion

exceeding 90% after 22 years (58). When compared to non-

irradiated HL survivors, MRT recipients not only face

substantially higher risks of valvular dysfunction but also require

surgical intervention more frequently (59–63). For severe aortic

stenosis cases, surgical aortic valve replacement remains the gold

standard treatment, while transcatheter aortic valve replacement
Frontiers in Oncology 04
(TAVR) has emerged as an effective alternative for patients with

elevated surgical risk (64).
3.5 Radiation-induced cardiac conduction
abnormalities

Radiation-induced conduction system disturbances, though

uncommon, may arise from myocardial fibrosis, localized ischemia,

or direct injury to the sinoatrial or atrioventricular nodes (49, 50).

Clinically, these disturbances manifest as atrioventricular block, sick

sinus syndrome, QTc prolongation, and supraventricular or

ventricular arrhythmias. Right bundle branch block is particularly

prevalent due to the anatomical proximity of the conduction bundle

to the irradiated endocardial surface (51). The underlying

mechanisms involve radiation-induced dysregulation of ion

channel expression and electrophysiological remodeling, driven by

chronic inflammation and fibrotic infiltration into conduction

pathways. Pediatric and adolescent cancer survivors are at

heightened risk, with conduction abnormalities often emerging

decades after radiation exposure. Studies report that 12.5% of

irradiated pediatric survivors exhibit a resting QTc interval ≥0.44

seconds (52), while Hodgkin lymphoma survivors face a twofold

increased risk of requiring pacemaker or implantable cardioverter-

defibrillator (ICD) implantation compared to the general population

(53). Although asymptomatic cases typically require no intervention,

symptomatic patients may benefit from pacemaker implantation or

radiofrequency ablation. A systematic classification of these

radiation-associated cardiac complications facilitates early detection

and personalized management strategies (Supplementary Table S1).
4 Modifiable risk factors and dose-
response relationships

he development of radiation-induced heart disease (RIHD) is

modulated by three key modifiable factors: radiation dose,

chemotherapy regimen, and cardiac exposure volume. In

Hodgkin lymphoma, radiation demonstrates a clear dose-

dependent association with valvular pathology, where higher

doses progressively exacerbate valvular dysfunction (57).

Similarly, in breast cancer radiotherapy, left-sided irradiation

confers greater cardiac toxicity than right-sided treatment due to

increased cardiac exposure, leading to higher RIHD incidence (65).

Concurrent chemotherapy further amplifies radiation-associated

cardiotoxicity. Anthracycline-based regimens are particularly

detrimental, with patients receiving mediastinal radiotherapy plus

anthracyclines exhibiting twice the incidence of valvular

abnormalities compared to non-anthracycline protocols (66).

Moreover, valvular disease severity correlates positively with

cumulative anthracycline dose, underscoring its compounding

effect on cardiac damage (59). Detailed dose-response analyses in

HL patients reveal critical thresholds for cardiac substructure

irradiation. Significant valvular pathology occurs when >63% of

the left atrium receives ≥25 Gy or >25% of the left ventricle receives
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≥30 Gy (67). Furthermore, whole-heart irradiation exceeding 33 Gy

markedly elevates valvular disease risk, establishing this as a critical

dose threshold.
5 Multimodality diagnostic approaches

Diagnosing radiation-induced heart disease (RIHD) presents a

clinical challenge due to its often insidious and delayed presentation

(68). As a diagnosis of exclusion, it necessitates a comprehensive

clinical evaluation, particularly in patients with a history of thoracic

radiotherapy. Echocardiography remains the cornerstone of

diagnostic evaluation, enabling the detection of subclinical cardiac

dysfunction even in the early post-radiation period (69, 70). Three-

dimensional echocardiography and contrast-enhanced techniques

were recommended to improve the accuracy of left ventricular

ejection fraction (LVEF) quantification (71). Current guidelines

recommend baseline echocardiography before radiotherapy,

repeated assessments during and three months post-treatment,

with subsequent periodic LVEF monitoring. For asymptomatic

patients, follow-up echocardiograms every five years are advised

(72). Cardiac magnetic resonance imaging (cMRI) remains the

reference standard for evaluating cardiac anatomy, function, and

perfusion, while also providing critical insights into pericardial and

coronary pathology (73, 74). Additionally, myocardial biomarkers,

particularly cardiac troponins (TnI and TnT), are pivotal in

detecting myocardial injury, with troponin T (TnT) being the

most clinically relevant in radiation-induced cardiac damage (75).

High-sensitivity troponin T (hs-cTnT) further enhances early

detection of minimal myocardial injury during radiotherapy

(76, 77). However, the predictive value of these biomarkers in

routine clinical practice remains limited by several factors,

including baseline variability among patients, interference from

non-radiation-related comorbidities (78, 79). Furthermore, the

sensitivity and specificity of these markers in differentiating

radiation-induced damage from other cardiotoxic insults, such as

chemotherapy, are still under evaluation (80). Therefore, while hs-

cTnT and NT-proBNP show potential for early RIHD detection,

their clinical application should be integrated with imaging and risk

stratification tools rather than used in isolation.
6 Cardioprotective strategies in
radiotherapy

6.1 Optimizing radiotherapy protocols

To mitigate RIHD incidence, strategic modifications in

radiation dose parameters and cardiac-sparing techniques must

be complemented by vigilant post-treatment surveillance and

proactive interventions. Minimizing cardiac radiation exposure

remains the cornerstone of RIHD prevention. Current approaches

include risk-adapted personalized planning with dose/fractionation
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and advanced modalities like intensity-modulated radiotherapy

(IMRT) or proton beam therapy (81–83). Given the dose-

dependent cardiotoxicity, contemporary protocols advocate

limiting daily doses to ≤2 Gy. A phase IIb randomized trial

(n=145) in locally advanced esophageal cancer demonstrated

proton therapy’s superiority over IMRT in reducing composite

toxicity while preserving oncological outcomes (84). Beyond

clinical techniques, several preclinical innovations show promise.

FLASH radiotherapy, an innovative approach delivering

millisecond ultra-high dose rates, has cardioprotective potential in

animal models, showing significantly attenuated cardiac fibrosis,

inflammatory responses, and oxidative damage without

compromising tumor control (85–88). However, its translation

into clinical practice awaits further validation.
6.2 Screening and surveillance of RIHD

Patients receiving thoracic radiotherapy or irradiation near the

heart require lifelong systematic monitoring. Current clinical guidelines

recommend a comprehensive baseline assessment, including physical

examination and transthoracic echocardiography, before initiating

radiation therapy (89). Echocardiography serves as the primary

surveillance tool for RIHD due to its widespread availability, cost

efficiency, and capacity to evaluate left ventricular ejection fraction

(LVEF), diastolic function, and pericardial effusion (2, 71).

Nevertheless, its diagnostic accuracy for early myocardial fibrosis or

regional wall motion abnormalities remains suboptimal, particularly in

cases with poor acoustic windows (90, 91). Advanced imaging

modalities such as cMRI are clinically used when echocardiographic

findings are inconclusive, providing superior tissue characterization

through late gadolinium enhancement and mapping techniques

(92, 93). Although cMRI represents the reference standard for

myocardial fibrosis assessment, its clinical application may be

restricted by limited accessibility, high costs, and contraindications

such as implanted devices (90). Multidetector computed tomography

(MDCT) offers high-resolution visualization of coronary artery

calcification and early atherosclerotic changes, particularly valuable

for radiation-induced coronary artery disease (RICAD) evaluation, yet

it provides no functional data and involves radiation exposure (94).

Nuclear myocardial perfusion imaging detects ischemic regions but

suffers from inferior spatial resolution and potential attenuation

artifacts, with inconsistent diagnostic performance (95). Therefore,

an integrated diagnostic approach—grounded in baseline risk

stratification and long-term monitoring—is critical for early RIHD

identification, enabling prompt cardioprotective measures and

personalized management in cancer survivors. The predictive

value of cardiac biomarkers for radiation-related cardiovascular

toxicity remains under investigation. Although elevated troponin and

NT-proBNP levels have been observed in patients undergoing

radiotherapy, their clinical utility as early diagnostic tools for RIHD

requires further large-scale validation (96, 97).
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6.3 Treatment of RIHD

Several therapeutic strategies show potential for addressing

radiation-induced cardiovascular injury. Among clinically

recommended therapies, ACE inhibitors and b-blockers have

been adopted for managing radiation-related cardiomyopathy,

mirroring standard heart failure protocols (98, 99). However,

their prophylactic use in preventing RIHD is still under

investigation. In preclinical studies, captopril has demonstrated

efficacy in reducing cardiac damage post-irradiation, suggesting

potential for cardioprotection (100). Statins, commonly used in

clinical settings for dyslipidemia, may also attenuate radiation-

induced inflammation and fibrosis based on animal model data,

though clinical evidence remains limited (101). Additionally,

interleukin-1 blockade using agents like anakinra has been

investigated for mitigating radiation-associated vascular

inflammation (102). Despite these promising findings, none of

these interventions have been widely adopted in clinical practice

due to insufficient evidence. Further validation through large-scale

randomized trials is necessary to establish their efficacy and safety.
7 Conclusion

Radiation-induced heart disease (RIHD) remains a major late

complication of thoracic radiotherapy, driven by endothelial injury,

chronic inflammation, and fibrotic remodeling. Its clinical

manifestations include pericardial disease, coronary artery disease,

cardiomyopathy, valvular dysfunction, and conduction

abnormalities, often appearing years after treatment. Although

modern radiotherapy techniques such as intensity-modulated

radiotherapy, proton therapy, and FLASH irradiation have

reduced cardiac exposure, the risk remains, especially in patients

with pre-existing cardiovascular conditions or those receiving

cardiotoxic chemotherapy. Diagnosis is challenging due to the

delayed and subtle onset of RIHD, requiring a multimodal

strategy involving echocardiography, cardiac magnetic resonance

imaging, and cardiac biomarkers. Current treatments largely follow

standard cardiovascular management, while emerging approaches

including angiotensin-converting enzyme inhibitors, statins, and

interleukin-1 blockade show promise in preclinical models but need

further clinical validation.

Critical research gaps persist in the prevention and management

of RIHD. There is an urgent need for long-term prospective studies

assessing cardiovascular outcomes in cancer survivors, as well as the

development of validated risk prediction models tailored to cancer

type, radiation dose, and treatment strategy. Translational efforts

should focus on identifying molecular drivers of RIHD and

advancing targeted antifibrotic and anti-inflammatory therapies.

Future research priorities include biomarker-guided surveillance

protocols, longitudinal outcome registries, and clinical trials
Frontiers in Oncology 06
evaluating cardioprotective agents that target pathways such as

transforming growth factor beta and chronic inflammation.

Incorporating cardio-oncology principles into survivorship care,

including routine cardiovascular screening and multidisciplinary

collaboration, is essential to improving long-term patient outcomes.
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