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TROP2, a transmembrane glycoprotein, is overexpressed and plays pivotal roles
in diverse epithelial tumors. The differential expression of TROP2 between cancer
and normal tissues offers distinct advantages in developing drugs targeting it.
Thus, TROP2-targeted antibody-drug conjugates (ADCs), including
datopotamab deruxtecan and sacituzumab govitecan, present considerable
efficacy and safety in multiple cancers. However, in lung cancer, the
application of TROP2-targeted ADCs has many limitations and challenges. The
current clinical trials have not achieved encouraging results yet. Meanwhile,
the expression of TROP2 in lung cancer remains ambiguous, let alone its
biological effects and underlying mechanism. The complex features and
limited research may slow down the development of TROP2-targeted ADCs in
lung cancer. Therefore, we comprehensively reviewed the literature on TROP2 in
lung cancer, extending back to basic research from clinical trials. We also
combined several preliminary bioinformatics analyses in this review and
intended to find some research directions on breaking through these limitations.

KEYWORDS

Trop2, antibody-drug conjugates, lung cancer, bioinformatics analysis,
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1 Introduction

Lung cancer remains a leading cause of morbidity and mortality among malignancies
globally (1, 2). Non-small cell lung cancer (NSCLC) constitutes approximately 85% of all
lung cancers, with adenocarcinoma and squamous cell carcinoma being the major
subtypes, and small cell lung cancer (SCLC) accounts for about 15% (3-5). Despite the
remarkable progress made in lung cancer treatments recently, the existing strategies still
have significant limitations (6-8). For example, chemotherapy damages normal tissues due
to poor specificity (9, 10); targeted therapy, despite fewer side effects, nearly always develops
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drug resistance over time (11, 12); and immune checkpoint
inhibitors can occasionally trigger immune reactions in vital
organs, causing severe adverse events (13, 14). Thus, exploring
novel treatment targets and methods is crucial for improving
survival and quality of life in lung cancer patients.

TROP2 (trophoblast cell-surface antigen 2), also known as
tumor-associated calcium signal transducer 2 (TACSTD2), is a
transmembrane glycoprotein widely overexpressed in epithelial-
derived tumors (15-17). Studies on various cancers, such as
breast, colorectal, and bladder, have shown that TROP2
significantly influences tumor cell proliferation, migration,
invasion, and metastasis (18-20). Given its high expression
characteristic, drugs targeting TROP2 can precisely target cancer
cells, minimizing damage to normal cells and disrupting tumor-
related signaling pathways (21-23). Thus, TROP2-targeted
antibody-drug conjugates (ADCs), which link cytotoxic drugs to
TROP2-specific antibodies and have succeeded in treating these
cancers, may ofter potential for lung cancer treatment (21, 22, 24).

However, unlike in other tumors, results of current clinical trials
on TROP2-targeted ADCs in lung cancer are not promising. The
ambiguous differential expression and effects may be ascribable.
The unknown underlying regulatory mechanisms also impede the
development of TROP2-targeted ADCs.

Thus, we reviewed the recent advances of TROP2-targeted
ADC:s in the field of lung cancer. We also summarized the basic
and translational research on TROP2 in lung cancer, including its
links to clinical features, prognostic significance, and molecular
mechanisms. We further enrolled preliminary explorations via
online bioinformatics tools, aiming to provide potential insights
for future research and treatment development.

2 TROP2-targeted treatment in lung
cancer and its limitations

2.1 TROP2-targeted ADCs in lung cancer
therapy

ADC:s are a novel class of anti-cancer agents (25-27), consisting
primarily of monoclonal antibodies, linkers, and cytotoxic drugs
(28-30). The monoclonal antibodies can specifically recognize
antigens in cancer, guiding the entire ADC precisely to tumor
cells (16, 21, 22). TROP2 is one of the most common antigens; it is
significantly overexpressed in a wide range of tumor cells, allowing
TROP2-targeted ADCs to show promising efficacy in clinical trials
among breast, colorectal, and bladder cancers (18-20).

Theoretically, TROP2-targeted ADCs should also have definite
efficacy in lung cancer. For example, by using NSCLC patient-
derived xenograft (PDX) models, Daisuke Okajima et al. found that
datopotamab deruxtecan (Dato-DXd) specifically binds TROP2, is
then internalized by tumor cells and transported to lysosomes
through intracellular trafficking mechanisms (21). In lysosomes,
the linker is cleaved, releasing the connected cytotoxic drug, a type
of topoisomerase I inhibitor, which then induces DNA damage and
apoptosis in tumor cells (21). The phase I TROPION-PanTumor01
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trial, which assessed TROP2 via immunohistochemistry (IHC) and
enrolled patients without a minimum TROP2 expression, showed
that in NSCLC patients receiving 6mg/kg, the objective response
rate was 26%; median duration of response was 10.5 months; and
median progression-free survival (PFS) and overall survival (OS)
were 6.9 and 11.4 months, respectively (22). The IMMU-132-01
basket trial also showed that several NSCLC patients achieved
remission (31).In SCLC, sacituzumab govitecan (SG) has also
shown efficacy in treating metastatic patients (32).

However, the limitations and challenges are evident. Firstly, in
most cancers, TROP2 expression predicts responses to TROP2-
targeted ADCs. For example, as Shuying Qiu et al. reviewed, the
expression of TROP2 may be positively correlated with SG
sensitivity in uterine carcinoma and ovarian cancer (33). In breast
cancer, TROP2 expression might also enhance SG responsiveness in
specific subtypes, as reviewed by Liqin Yao et al (34). Unlike in
other cancer types, the efficacy of TROP2-targeted ADCs is not yet
established and appears unrelated to TROP2 expression in lung
cancer (22, 32). A substantial fraction of patients presenting high
TROP2 expression even exhibit complete non-responsiveness to
ADCs (22, 31). Outcomes of TROP2-targeted ADCs in lung cancer
have also been less encouraging than those in triple-negative breast
cancer (TNBC) and metastatic urothelial cancer (mUC) (22, 31, 32).
The underlying reason remains unclear. As Toshio Shimizu noted
in the discussion, differences in internalization efficiency, the
amount of DXd released via lysosomal proteases, and the
sensitivity of cancer cells to deruxtecan may all lead to variations
in Dato-DXd’s efficacy (22).

Additionally, safety also presents a notable challenge. Prevalent
adverse events include interstitial lung disease, pneumonia,
infusion-related reactions, oral mucositis, and stomatitis (35). In
the TROPION-PanTumor01 trial, 6% of patients developed
interstitial lung disease (22). In IMMU-132-01, severe adverse
events included febrile neutropenia (4.0%) and diarrhea (2.8%)
(31). This trial also reported one treatment-related death from an
adverse event of aspiration pneumonia (31). TROP2 is widely
expressed across tissues, with the respiratory epithelium being a
major site of high expression (17). This may be one of the important
reasons for its tendency to cause lung-specific toxicity. Pulmonary
function impairment from central lung cancer, extensive
pulmonary metastases, or other space-occupying lesions,
combined with drug-induced pulmonary toxicity, may disrupt
TROP2-targeted ADC therapy and diminish efficacy.

2.2 Combination therapy: a potential
solution with unknown efficacy

Combining TROP2-targeted ADCs with other drugs may be a
promising therapeutic strategy for overcoming the above
limitations. In 2023, Melissa L. Abel reported on a Phase I clinical
trial, showing that SG combined with berzosertib may improve
safety over conventional chemotherapy-based combinations, as no
clinically relevant >grade 4 adverse events occurred (36). It also
resulted in a response in one SCLC patient (transformed from
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epidermal growth factor receptor (EGFR)-mutant NSCLC), with a
partial response lasting 17 weeks (36). This study supports the
potential of the combination strategies.

Latest clinical trials on combination therapy are also currently
underway. Okamoto I et al. launched a study to evaluate the efficacy
of Dato-DXd combined with pembrolizumab + platinum-based
chemotherapy as first-line treatment for advanced NSCLC, named
TROPION-Lung07 (no TROP2 expression requirement for
enrolled patients; TROP2 detection method not mentioned) (37).
Levy BP et al. initiated the TROPION-Lung08 study which similarly
had no TROP2 expression requirement for enrollment and did not
specify TROP2 detection methods. This study set up a Dato-DXd
combined with pembrolizumab group and a pembrolizumab
monotherapy group to compare the efficacy of their combined
application in specific patients with advanced NSCLC (38). If these
trials yield promising results in the future, they could offer a novel
therapeutic strategy for lung cancer.

3 TROP2 expression in lung cancer
and its clinical implications

As discussed above, while TROP2-targeted ADCs show
potential in lung cancer treatment, their efficacy remains
unconfirmed and challenges persist. Combination therapy may
offer a potential solution but remains exploratory. More
intriguingly, efficacy shows no correlation with TROP2 expression
in either NSCLC or SCLC (22, 32). The identification of specific
biomarkers, effects, and mechanisms may represent a critical
breakthrough for overcoming limitations in both efficacy and
safety. Therefore, this review advocates shifting from clinical
observations to basic research to identify potential directions.

3.1 Elusive differential expression of TROP2

While TROP2 is significantly overexpressed in most cancer
types, including breast cancer (33, 34), its expression in lung cancer
tissues remains controversial. Jiang A et al. confirmed significant
TROP2 overexpression in lung cancer tissues using a cohort of 87
NSCLC patients (39). M Trerotola et al. similarly reported that
TROP2 expression was significantly higher in lung cancer than in
normal tissues (40). Inamura K et al. compared different NSCLC
subtypes and found that TROP2 protein levels were significantly
increased in 64% (172/270) of adenocarcinomas, 75% (150/201) of
squamous cell carcinomas, and 18% (21/115) of high-grade
neuroendocrine tumors (HGNETs) (41). These studies suggest
that TROP2 may be generally upregulated in lung cancer.
However, the opposite results in lung adenocarcinoma (LUAD)
tissues have also been reported. Its low expression may be related to
loss of heterozygosity (LOH) or hypermethylation of CpG islands in
its promoter region (42). Different pathological types also exhibit
distinct expression patterns. For example, Pak MG et al. compared
164 NSCLC patients and found that TROP2 was expressed
significantly higher in squamous cell carcinoma (100/164) than in
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adenocarcinoma (64/164) (43). We summarized all reported
expression patterns of TROP2 in lung cancers and showed them
in Table 1.

To further explore these controversial expression patterns, we
queried the open-access bioinformatics analysis tool Gene
Expression Profiling Interactive Analysis (GEPIA) (http://
gepia2.cancer-pku.cn/#index) and analyzed the data from The
Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/)
(44). Results showed that TROP2 was significantly overexpressed
in both LUAD and lung squamous cell carcinoma (LUSC)
(Figure 1). We also retrieved RNA sequencing results of lung
cancer cells and normal bronchial epithelial cell lines. The
sequencing data of GSE211118 were then analyzed by using the
online tool GEO2R (45). Notably, in this dataset, we used the pre-
treatment data of A549 (a human NSCLC cell line) and H446 (a
human SCLC line) as the sequencing results for lung cancer cells,
and the pre-treatment data of BEAS-2B (a human normal bronchial
epithelial cell line) as normal cell controls. The results showed that
TROP2 significantly underexpressed in both A549 and H446 cell
lines (Figure 2). The differentially expressed genes (DEGs) are listed
in Supplementary Material S1 (statistical results table of DEGs for
A549 vs BEAS-2B) and Supplementary Material S2 (statistical
results table of DEGs for H446 vs BEAS-2B). These preliminary
bioinformatics analyses thus revealed a striking inconsistency in
TROP2 expression patterns between tissues and cell lines. This
inconsistency may lead to the reported controversial results
discussed above. Other factors including different detection
methods and timing, and lack of multi-dimensional analyses may
also hinder scholars from clarifying the specific expression pattern
of TROP2 in lung cancer.

It should be noted that our bioinformatics analyses have some
limitations. Firstly, both the TCGA database and GSE211118 data
only provide TROP2 mRNA detection results. In the mechanism of
ADCs, the key process involves specific binding to membrane
proteins to guide drug delivery. Thus, although a study has
shown a significant positive correlation between TROP2 mRNA
expression and protein expression in NSCLC (46), the lack of
protein-level research may still lead to result bias. Additionally,
our preliminary bioinformatics analyses did not explore TROP2
expression in various lung cancer subtypes. Future research at this
level may help identify specific subtypes with significant efficacy of
TROP2-targeted ADCs.

3.2 Association with clinical features and
prognosis

TROP2 also shows inconsistent correlations with clinical
features in lung cancer (Table 1). Pak MG et al. found that
TROP2 only correlated significantly with histologic grade in
LUAD (43). In contrast, Li Z et al. confirmed that TROP2 was
significantly correlated with the TNM stage (P = 0.012), lymph node
metastasis (P = 0.038), and histological grade (P = 0.013) (47). In
squamous cell carcinoma, TROP2 was also related to the
histological grade but not to gender, age, lymph node metastasis,
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TABLE 1 TROP2 expression in lung cancer and its clinical implications.

Differential expression of Trop2 in lung cancer Association with clinical features and prognosis
Published
years Pathological S_ample Expression Detection Expression Gender Histological TNM staging LN . PS Fregmest
type size status methods level grade metastasis
270 of AdG; High exp. in 64% NSS in High expression Lower Higher stage
} | differentiation i High rtality in AdC; NSS
Kentaro Inamura, et al (41) 2017 AdG, SqCC 201 of of AdC, 75% in IHC Protein AdG; N/A in males in AdG; Ai:::‘(e;'l Na/Ao Iilnm in AdG; N/A N/A N/A ligneSr I(I:l((; lmlntI);rurlnortali
> & HGNET $qCC; 115 $qCC and 18% in SqCC N/A in $qCC S’q e in SqCC 4 o HONETS v
of HGNET in HGNETs & HGNETs & HGNETs & HGNETSs & HGNETs
Lower
100 of High exp. in . L Lo
differentiat L rtal AdC; N/A
Min Gyoung Pak, et al (43) 2012 AdC, 5qCC AdC,64 23.0% of AdC, IHC Protein NSs$ NS$ erentiation in N/A N/A N/A ower mortality in AdC; N/
£ SqCC 64.1% in SqCC el in $qCC
oo : 4 in SqCC
231 of Expressed in all g;gher_a?;oftamy mEAG:§
Remi Mito, et al (48) 2020 AdC, $qCC AdC,103 AdC and 92% IHC Protein NSS NSS NSS NSS N/A N/A speciatly in nom
of SaCC of SaCC mutation and lower
q q differentiation); NSS in SqCC
Higher
. . Protein Higher More . . .
Zanhua Li, et al (47) 2016 AdC 68 High exp. THC & qPCR & mRNA RN NSS differentiation advanced me:stt:sxs N/A Higher mortality
THG; .
Jau-Chen Lin et al (42) 2012 AdC 63 Low exp. 55 IE)?WBC 8 Protein NSS NSS N/A NSS N/A N/A N/A
. . More Higher
50 of High exp. in . . . P
L d d tast High rtality in AdC; NSS
Aigui Jiang, et al (39) 2013 AdC, SqCC AdC37 | 42.0% of AdC and IHC Protein NSS NSS | ower acvancee metastasis 1 Nss ighermorta ity In
of SaCC 67.6% in SaCC differentiation AdC; NSS rate in AdC; in SqCC
4 or g in $qCC NSS in SqCC
21 for 21 by
mRNA, 72 . Comparative Protein
M Trerotola, et al (40) 2013 Lung cancer for High exp. SAGE; 72 & mRNA N/A
protein level by THC

NSS, No Significant Statistical Significance; N/A, Not Applicable; AdC, Adenocarcinoma; SqCC, Squamous Cell Carcinoma; HGNET, High-Grade Neuroendocrine Tumor; IHC, Immunohistochemistry; LN, Lymph Node; Exp., expression; PS, Performance Status;
SAGE, Serial Analysis of Gene Expression.
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FIGURE 1

Preliminary Bioinformatics Analysis on Differential Expression of TROP2. The differential expression of TROP2 was analyzed by GEPIA2 (http://gepia2.
cancer-pku.cn/#index), and the data were based on the TCGA database (https://portal.gdc.cancer.gov/). TROP2 was significantly overexpressed in
tumor tissues compared with normal tissues in both LUAD and LUSC. The scatter plot is shown in (A) and the bar chart is shown in (B). The
parameter settings were defined as a Log2FC Cutoff of 1 and a g-value Cutoff of 0.01. The ANOVA was selected as the major method. The log2
fold-changes of TROP2 in the tumor compared with normal tissue were 1.12 and 1.65 in LUAD and LUSC, respectively (C).

TNM stage, or PS score (39). Peiwen Kuo et al. also found that the
expression of TROP2 in NSCLC was not correlated with age, gender
and race (46). While, in large cell lung cancer or SCLC, the
correlations were rarely reported.

It may be even more complicated to identify the association of
TROP2 with lung cancer prognosis, as shown in Table 1. Inamura K
et al. found that TROP2 overexpression in adenocarcinoma was
associated with higher lung cancer-specific mortality (hazard ratio
(HR)=1.60, P=0.022) (41). Meanwhile, Mito R et al. found similar
results, especially in cases with low differentiation and non-EGFR
mutations (48). Conversely, Pak MG et al. reported opposing
results: patients with high TROP2 expression—particularly those
with stage II or III disease—had better OS and PFES (43). In
HGNETs, both univariate and multivariate analyses showed that
overexpressed TROP2 indicated a lower lung-cancer-specific
mortality (41). In terms of squamous cell carcinoma, TROP2
might not be associated with patient mortality, as reported (41).
These studies indicated that TROP2 exhibits heterogeneous
associations with prognosis in lung cancers. We further
performed survival analysis using bioinformatics methods
including GEPIA and OncolLnc (http://www.oncolnc.org/) (44,
49, 50). Our results showed that the association of TROP2 with

Frontiers in Oncology

prognosis remains unclear, with trends observed but no statistical
significance (Figure 3).

Notably, our preliminary survival analysis is also limited by the
lack of protein-level data as discussed earlier. Meanwhile, our study
also did not analyze the relationship between TROP2 expression and
factors of the tumor microenvironment (TME), such as immune
infiltration and tumor stemness. Both immune infiltration and tumor
stemness play important roles in lung cancer and broadly affect
prognosis (51-53). Therefore, future studies employing multi-level,
multi-center, large-sample designs—incorporating subtype-specific
stratified analyses and TME assessments—may better clarify the
prognostic significance of TROP2 in lung cancer.

4 Molecular mechanisms of TROPZ2 in
lung cancer development

4.1 Involvements in signaling pathways
Given the unclear expression pattern of TROP2 in lung cancer,

its functional effects and underlying mechanisms are likely complex.
Li Z et al. manipulated TROP2 expression in A549 and PC9 cells
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FIGURE 2

Differential Expression Analysis of GSE211118 Dataset Identified TROP2 Downregulation in Lung Cancer Cell Lines. The GSE21118 dataset includes
RNA sequencing data from lung cancer cell lines (A549, H446) and the normal alveolar cell line (BEAS-2B), with three biological replicates before
and after treatment. To identify DEGs, we selected the pre-treatment data of these three cell lines and employed the GEO2R online tool for
comparative analysis. Using the tool's default parameters, we generated volcano plots for A549 (A) and H446 (B). Notably, TROP2 was significantly
downregulated in both cancer cell lines, with log2 fold-changes of -8.48 in A549 and -1.93 in H446 (C).

and found it significantly enhanced the proliferation, migration,
and invasion abilities of cancer cells (47). They further found that
TROP2 significantly upregulated p-AKT, p-ERK, and MMP-9,
suggesting it may promote the malignant phenotypes via the
PI3K/Akt and MAPK pathways (47). Zheng WP et al. verified
that Toxicarioside O could inhibit the proliferation and epithelial-
mesenchymal transition (EMT) of A549 and H1299 cells by
downregulating TROP2, which indirectly verifies its tumor-
promoting effect (54). However, Lin JC et al. reported opposing
effects: TROP2 significantly inhibited cell proliferation, colony
formation, and cell-cycle progression in LUAD. They further
demonstrated that TROP2 is competitively bound to IGFI,
inhibiting the activation of AKT/B-catenin and ERK by IGF-IR,
thus playing an anti-tumor role (42). All reported mechanisms of
TROP2 in LUAD are summarized in Figure 4. These controversial
effects suggest complex roles for TROP2 in LUAD. Extensive
negative feedback mechanisms may lead to these contradictory
findings. Clarifying the specific regulatory networks of TROP2 may
identify breakthroughs to enhance the therapeutic efficacy and
safety of ADC agents.

Moreover, besides the co-expression of TROP2 and p53 in
squamous cell carcinoma reported by Mito R et al., the investigation
of TROP2-related mechanisms in other types of lung cancer is
extremely rare (48). Further exploration is needed in this area
moving forward.
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4.2 Role in TME remodeling and drug
resistance

TROP2 may also be involved in TME remodeling and drug
resistance in NSCLC, as shown in Figure 5. Guo X et al. verified that
TROP2 promoted angiogenesis in NSCLC by activating the ERK1/2
signaling pathway and upregulating the expression of MMP13 and
PECAMI (55). Wang X et al. treated A549 and PC14 cells with
cisplatin (DDP) and found it significantly promoted the expression
of TROP2. They further demonstrated that TROP2 mediates T-cell
apoptosis and DDP resistance via the MAPK signaling pathway
(56). TROP2 may also promote EGFR-TKI resistance. Sun X et al.
demonstrated that in NSCLC, TROP2 binds to IGF2R, promoting
activation of the IGF2-IGF1R-Akt axis and thereby driving gefitinib
resistance and TME remodeling (57).

5 Summary and future perspectives

Despite showing potential in lung cancer treatment, TROP2-
targeted ADCs exhibit limited efficacy and a moderate safety profile.
This is likely due to the complex interplay of TROP2’s variable
expression patterns, prognosis-related heterogeneity, and intricate
functional effects and regulatory mechanisms. Future research
integrating interventional clinical studies (where researchers
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FIGURE 3

Preliminary Survival Analysis of TROP2 in Lung Cancer. Preliminary survival analyses were conducted using GEPIA2. (A) In LUAD, although high
TROP2 expression trended towards a lower OS (P=0.058), the difference did not reach statistical significance. Disease-free survival (DFS) showed no
association with TROP2 expression. (B) In LUSC, TROP2 expression was not significantly correlated with OS. Patients with high TROP2 expression
trended toward better DFS, though this did not reach statistical significance. (C) Cox regression analysis via OncolLnc (http://www.oncolnc.org/)
further confirmed the absence of a prognostic correlation for TROP2 in both LUAD and LUSC.

actively intervene and observe outcomes), observational clinical
studies (where researchers observe without intervention), and basic
studies, may overcome these challenges.

In observational clinical studies, identifying specific patient
subgroups—analogous to how EGFR mutations predominate in
Asian, female, and non-smoking adenocarcinoma patients—could
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improve treatment efficacy (58). Exploring novel molecular
markers, such as co-expression patterns or gene co-mutations,
enables the preselection of responsive patients, optimizing

Basic research efforts should focus on elucidating the drivers of
heterogeneity in TROP2 expression and determining whether such
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TROP2 in TME Remodeling and Drug Resistance. TROP2 promotes gefitinib resistance and TME remodeling by binding competitively to IGF2R,
thereby activating the IGF2-IGF1R-Akt axis. It also stimulated T-cell apoptosis and cisplatin resistance via the MAPK signaling pathway. TROP2 further
promoted angiogenesis by activating the ERK1/2 signaling pathway, leading to MMP13 and PECAM1 upregulation.

heterogeneity is temporally dynamic. These studies could provide
insights into improving treatment safety. Investigating the
regulatory mechanisms of TROP2—including potential negative
feedback loops, external regulatory factors, and how these variables
influence lung cancer progression—is also crucial. A comprehensive
understanding of its expression regulation will significantly advance
drug development.

In summary, TROP2 plays a multifaceted role in lung cancer.
Integrating interventional clinical, observational and basic research
is essential to improve the efficacy and safety of TROP2-targeted
ADC:s for lung cancer.
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Glossary
TACSTD2
TROP2
ADCs
NSCLC
SCLC
PDX
Dato-DXd
IHC

SG

TNBC
mUC
EGFR

HGNET

Tumor-associated calcium signal transducer 2
Trophoblast cell-surface antigen 2 (an alias of TACSTD2)
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