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Multimodal integration of
[18F]PSMA-1007 PET/CT
semiquantitative parameters
and clinicopathological data
for predicting prostate
cancer metastasis
JiaYing Yang1†, ZhiLong Ma1†, HaiTong Hao2, Jian Chen3,
ZhiYong Lv4*‡, Qian Zhao1*‡ and YanMei Li1*‡

1Nuclear Medicine Department, General Hospital of Ningxia Medical University, Yinchuan,
Ningxia, China, 2College of Basic Medical Sciences, Ningxia Medical University, Yinchuan,
Ningxia, China, 3Nuclear Medicine Department, International Medical Center Hospital, Xi'an,
Shanxi, China, 4Urinary surgery Department,General Hospital of Ningxia Medical University, Yinchuan,
Ningxia, China
Background: Prostate cancer is one of the most prevalent malignant tumors of

the male genitourinary system. The occurrence of metastasis significantly

influences treatment strategies and prognosis. However, current risk

assessments for metastatic disease primarily rely on single imaging or

pathological indicators, which are often limited by suboptimal accuracy and

considerable individual variability.

Objective: This study aimed to develop a high-performance predictive model for

prostate cancer metastasis by integrating semiquantitative parameters from [18F]

PSMA-1007 PET/CTwith key clinicopathological features.

Methods: We retrospectively analyzed data from prostate cancer patients,

includingPSMA PET/CT-derived features (SUVmax, SUVmean, PSMA-TVp, TL-

PSMAp) and clinical-pathological variables (age, tPSA, Gleason score). Five

machine learningalgorithms—Logistic Regression, Support Vector Machine,

Random Forest, Naive Bayes, and XGBoost—were evaluated for metastasis

prediction performance. Model performance was assessed using accuracy,

sensitivity, precision, and area under the ROC curve (AUC). Shapley additive

explanations (SHAP) were applied to interpret the most effective model.

Results: Among the five algorithms, the XGBoost model achieved an accuracy of

90.32%, sensitivity of 90.0%, specificity of 94.74%, and an AUC of 0.8977. SHAP

analysis identified PSMA-TVp, TL-PSMAp as the most important predictors,

followed by SUVmax, tPSA, and Gleason score. These findings highlight the key

role of PSMA-derived tumor burden in metastasis prediction. Force plots further

revealed the individual-level contributions of features, supporting the model’s

clinical interpretability.

Conclusion: The XGBoost-based multimodal model integrating PET/CT

semiquantitative parameters with clinicopathological data demonstrated
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excellent accuracy and interpretability in predicting prostate cancer metastasis.

This approach has strong potential for clinical application and may provide a

valuable tool for personalized treatment decision-making.
KEYWORDS

[18F]PSMA-1007, positron emission tomography/computed tomography,
predictingprostate cancer metastasis, multimodal prediction, machine learning, SHAP
1 Introduction

Prostate cancer (PCa) is one of the most common malignancies

among male worldwide and remains a leading cause of cancer-related

death, ranking sixth in global male cancer mortality rates (1). With

the growing trend of population aging, the incidence of prostate

cancer continues to rise annually, posing a significant challenge to

global public health. Clinical studies have shown that patients with

metastatic prostate cancer exhibit a markedly reduced 5-year survival

rate of approximately 31%, substantially lower than that of patients

with localized disease (2). However, the biological behavior of

prostate cancer is highly heterogeneous, leading to vastly different

progression trajectories and therapeutic responses among patients

even at the same clinical stage (2–4). Therefore, the early and accurate

identification of patients at high risk of metastasis has become a

critical issue in improving treatment outcomes and prolonging

survival, and holds great clinical importance for the realization of

precision diagnosis and therapy in prostate cancer.

The total prostate-specific antigen (tPSA) can be used for prostate

cancer risk stratification and prediction of distant metastasis;

however, its specificity is limited, which may lead to unnecessary

prostate biopsies in some patients (5). Magnetic Resonance Imaging

(MRI) has played a significant role in improving the detection rate

and local staging of prostate cancer. Nevertheless, it may still miss

approximately 20% of clinically significant cancers and has limited

sensitivity and specificity in detecting lymph node metastases (6).

By contrast, Prostate-specific membrane antigen (PSMA), a

transmembrane glycoprotein that is highly overexpressed in prostate

cancer cells, particularly in advanced or castration-resistant stages.

PSMA-targeted PET/CT imaging has demonstrated outstanding
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ata System; PET/CT,

y; [18F]F-PSMA-1007,

-1007; PSMA, Prostate-

ardized Uptake Value;

er the Curve; tPSA, the

ardized Uptake Value;

p, prostate total lesion

P, SHapley Additive

L, Machine Learning;

02
sensitivity and specificity in the diagnosis, staging, recurrence

detection, and treatment evaluation of prostate cancer (6–10).

Compared to conventional imaging techniques, PSMA PET/CT

offers significant advantages in detecting small lesions and identifying

recurrent disease even in cases with low total prostate-specific antigen

(tPSA) levels, thus providing a reliable basis for precision therapy (11,

12). In addition, PSMA PET/CT enables the acquisition of multiple

semiquantitative parameters that reflect tumor PSMA expression and

volumetric characteristics, such as maximum standardized uptake

value (SUVmax), mean standardized uptake value (SUVmean),

prostate PSMA-tumor volume (PSMA-TVp) and prostate total

lesion PSMA (TL-PSMAp). These quantitative metrics provide an

objective basis for evaluating tumor aggressiveness and metastatic

potential. Specifically, SUVmax indicates the peak uptake within the

most active part of the lesion and is easy to obtain and compare across

patients. However, it neglects tumor volume and heterogeneity,

potentially underestimating tumor burden.SUVmean reflects the

average PSMA ligand uptake across the lesion, offering insight into

overall PSMA expression, although it is susceptible to variation

depending on the definition of the volume of interest (VOI). PSMA-

TVp and TL-PSMAp, as composite indicators of tumor burden,

quantify the PSMA-avid tumor volume and the prostate total uptake

PSMA, respectively. These parameters offer a more comprehensive

assessment of the tumor’s global PSMA ligand uptake and biological

behavior and have been reported in numerous studies to be closely

associated with tumor staging, metastasis, and prognosis (13–16).

However, in current clinical practice, interpretation of these imaging

parameters largely relies on empirical assessment, lacking systematic

analysis and quantitative predictive methodologies. This limitation

hinders their full potential in personalized metastatic risk stratification.

With the rapid advancement of artificial intelligence,

particularly machine learning (ML) techniques, there is now a

promising opportunity to build personalized risk prediction

models by integrating multimodal medical data (17–19).Machine

learning algorithms excel in handling high-dimensional, multi-

variable, and non-linear data relationships, and have shown great

success in early detection, metastasis prediction, and prognosis

evaluation across various solid tumors, such as breast and lung

cancer (20–23). In the context of prostate cancer, combining

machine learning with PSMA PET/CT-derived semiquantitative

metrics, clinical features, and pathological data could enable the

development of high-performance predictive models, allowing for
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early identification of high-risk patients and supporting more

precise stratified management and clinical decision-making.

In this study, we propose a multimodal data fusion strategy that

integrates clinicopathological features (e.g., age, Gleason score) and

PSMA PET/CT semi-quantitative metrics (e.g., SUVmax,PSMA-

TVp) to construct a machine learning-based predictive model for

assessing the risk of metastasis in prostate cancer patients. The goal

is to enhance the early identification of high-risk individuals,

facilitate personalized treatment planning, and provide an

intelligent decision-support tool for risk stratification. Ultimately,

this approach aims to shift the paradigm of prostate cancer

management from empirical judgment to data-driven precision

medicine, with significant clinical value and application potential.
2 Materials and methods

2.1 Study population

This retrospective study included a total of 295 patients with

histologically confirmed prostate cancer (PCa) who underwent

[18F]PSMA-1007 PET/CT imaging at our institution between
Frontiers in Oncology 03
January 2020 and February 2022. Inclusion criteria were: (1)

complete clinical data; (2) patients had undergone transrectal

ultrasound-guided prostate biopsy or radical prostatectomy with

definitive pathological diagnosis. Exclusion criteria were as follows:

(1) presence of other malignancies; (2) an interval of more than one

month between serum total prostate-specific antigen (tPSA) testing,

pathological biopsy, and [18F]PSMA-1007 PET/CT imaging; (3)

severe hepatic or renal dysfunction; (4) prior anti-tumor treatment

before imaging; (5) lack of PSMA uptake in the primary tumor.

After screening, 101 patients met all criteria and were included in

the final analysis, the selection process is shown in Figure 1.

All study procedures were conducted in accordance with the

Declaration of Helsinki and were approved by the hospital ethics

committee (Approval Nos. 2020–083 and 2020-876). Written

informed consent was obtained from all participants.
2.2 Image interpretation

PET/CT imaging was performed using a GE Discovery VCT

scanner (64-slice CT), with routine quality control to ensure stable

performance. [18F]PSMA-1007 was synthesized using the PET-IFB-
FIGURE 1

Flowchart illustrating the inclusion and exclusion criteria for patient selection in the study.
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X5 automated module from Shaanxi Zhengze Biotechnology Co.,

Ltd., and its radiochemical purity was confirmed by high-

performance liquid chromatography to be ≥95%. The injected

dose of [18F]PSMA-1007 was 4.0 MBq/kg. Whole-body PET/CT

scans were performed 60–90 minutes post-injection. Spiral CT

scans were first acquired from the skull vertex to mid-thigh with

the following parameters: 140 kV tube voltage, 150 mA tube

current, 0.875 mm pitch, 3.75 mm slice thickness, and a 512×512

matrix. Subsequently, PET images were acquired over the same

range using a 3D acquisition mode with a 128×128 matrix, 2.5

minutes per bed position, and 6–7 bed positions in total. All PET

images were attenuation-corrected using the corresponding CT

data and reconstructed for image fusion and further analysis.
2.3 Image interpretation

All images were independently reviewed in a double-blind

manner by two board-certified nuclear medicine physicians with

extensive diagnostic experience. Discrepancies were resolved

through joint discussion to reach a consensus diagnosis.

On visual inspection, lesions showing focal PSMA uptake

higher than the surrounding normal tissue in the prostate were

considered positive. A circular region of interest (ROI) was

manually drawn on axial images around the lesions, and the

positive volume was delineated using a fixed threshold method set

at 40% of the SUVmax. The maximum standardized uptake value

(SUVmax), the mean standardized uptake value (SUVmean),

PSMA-TVp and TL-PSMAp were recorded for each lesion.

Criteria for Lymph Node Metastasis: On [18F]PSMA-1007 PET/

CT, focal abnormal radiotracer uptake outside of physiological uptake

regions (e.g., salivary glands, liver, gallbladder, prostate, kidneys,

intestines) was interpreted as metastatic unless located in known

false-positive sites such as axillary, mediastinal, or inguinal lymph

nodes. The number of metastatic lymph nodes and their corresponding

SUVmax, SUVmean, PSMA-TVp and TL-PSMAp were recorded.

Criteria for BoneMetastasis: Focal areas of increased PSMA uptake

in bone were considered metastatic if they could not be attributed to

fractures, degenerative changes, or other benign bone conditions (24).

Final diagnoses were established based on histopathological

findings from surgery or biopsy when available, or through clinical

follow-up. For lesions not amenable to tissue diagnosis (e.g., bone or

distant metastases), a comprehensive judgment was made based on

synchronous imaging findings and clinical follow-up data.
2.4 Statistical analysis

All statistical analyses were conducted using Python 3.10.

Continuous variables were compared using either Student’s t-test

or the Mann–Whitney U test, depending on data distribution.

Categorical variables were compared using Pearson’s c² test or

Fisher’s exact test. The dataset was randomly divided into training

and validation sets at a ratio of 7:3. For classification model

evaluation, receiver operating characteristic (ROC) curves were
Frontiers in Oncology 04
plotted using probability scores ranging from 0 to 1, and the area

under the curve (AUC) was calculated to assess discriminatory

performance. A p-value< 0.05 was considered statistically significant.
3 Results

3.1 Comparison of basic patient
information and clinicopathological
characteristics

A total of 101 patients with prostate cancer (PCa) were

retrospectively enrolled in this study, with a mean age of 68 years.

Among them, 97.03% were diagnosed with acinar adenocarcinoma,

while the remaining subtypes included one case each of signet ring cell

carcinoma, intraductal carcinoma, and foamy gland adenocarcinoma.

As summarized in Table 1, the Gleason scores ranged from 6 to 10,

with 60.39% (61/101) scoring greater than 8. The total prostate-specific

antigen (tPSA) levels ranged from 5.42 to 100.0 ng/mL, with 59.41%

(60/101) ≥20 ng/mL. Among the cohort, 34 patients showed no

evidence of metastasis, while 67 patients had confirmed metastatic

disease, including 53 cases of lymph node metastasis, 52 cases of bone

metastasis, and 8 cases of visceral metastasis, all of which

were pulmonary.

Figure 1 illustrates the distribution of various features between

the metastasis and non-metastasis groups. Based on the distributions

shown, there are significant differences in several features between the

two groups. Specifically, the metastasis group had significantly higher

values in tPSA, Gleason score, SUVmax, SUVmean, PSMA-TVp, and

TL-PSMAp compared to the non-metastasis group, with all

differences being statistically significant (p< 0.05). However, there

was no statistically significant difference in age between the two

groups (p = 0.096). For details, see Supplementary Table 1.
3.2 Performance evaluation of machine
learning models

To ensure the scientific rigor and effectiveness of model training,

the dataset was randomly divided into a training set and a validation set

at a 7:3 ratio. The training set included 70 patients, while the validation

set included 31 patients. Among the training cohort, 47 patients

(67.14%) presented with metastatic disease; in the validation cohort,

20 patients (64.52%) had confirmed metastases. To assess feature

distribution balance, we performed homogeneity tests on clinical,

pathological, and imaging characteristics between the two cohorts.

The results demonstrated no statistically significant differences between

the training and validation sets in terms of age, tPSA, Gleason score,

SUVmax, SUVmean, PSMA-TVp, and TL-PSMAp (p > 0.05), as

shown in Table 1. These findings confirm that the two groups were

well-balanced across key features, thereby minimizing potential bias

introduced by data partitioning during model development

and evaluation.

In the training cohort, five commonly used classification algorithms

—Logistic Regression, Support VectorMachine (SVM), Random Forest,
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Extreme Gradient Boosting (XGBoost), and Naive Bayes—were

employed to construct predictive models. All models were trained

using the same set of input features, with the presence or absence of

metastasis serving as the output label. In the validation cohort, model

performance was comprehensively evaluated using multiple metrics.

Receiver Operating Characteristic (ROC) curves were plotted, and the

Area Under the Curve (AUC) was calculated to assess classification

performance. In addition, accuracy, sensitivity, and specificity were used

as complementary evaluation metrics. The ROC curves for each model

are shown in Figure 2A. To further quantify the overall performance of

each model across multiple metrics, a Composite Score was introduced,

calculated as follows: Composite _ Score =  0:4� AUC + 0:3� F1 _

score + 0:1�  Accuracy + 0:1� Sensitivity + 0:1� Specificity. Thi s

score provides a balanced and representative evaluation by integrating

both discriminative power and classification effectiveness. Figure 2B

illustrates the radar chart of the sixmajor performance indicators, clearly

highlighting the superior overall performance of the XGBoost model.

Furthermore, to analyze the types and patterns of classification

errors, confusion matrices of the five models in the validation cohort

were generated (Figures 2C–G). Among them, the XGBoost model

demonstrated the best performance in predicting prostate cancer

metastasis, achieving an AUC of 0.8977, an accuracy of 90.32%, a

sensitivity of 90.0%, and a specificity of 94.74% in the validation set.

The Naive Bayes model ranked second, with the same AUC (0.8977)

and a slightly higher sensitivity (95.0%), though its accuracy (87.10%)
Frontiers in Oncology 05
and specificity (86.36%) were slightly lower. In contrast, the Logistic

Regression, Support Vector Machine, and Random Forest models

showed relatively inferior performance across the evaluated metrics.

In summary, all models demonstrated a certain degree of

discriminative ability in the validation set; however, nonlinear

ensemble models such as XGBoost exhibited superior generalization

and robustness when integrating multiple features. Combined with the

performance visualizations in Figure 2, these results suggest that deep

ensemble learning methods hold greater potential for clinical

application in predicting prostate cancer metastasis risk.
3.3 Feature contribution and
interpretability of the XGBoost model

Based on the performance evaluation of all models, we ultimately

selected the XGBoost model for predicting prostate cancer metastasis,

as it demonstrated the best overall performance. To further explore

the model’s decision-making process and the contribution of each

input feature, we employed the SHAP method for interpretability

analysis. SHAP is a game-theory-based model interpretation

technique that assigns each feature a clear “contribution value,”

quantifying both the direction and magnitude of its impact on

model output. Compared to traditional feature importance analysis,

SHAP not only reflects the global importance of features but also
TABLE 1 Baseline feature distribution and dataset partitioning.

Characteristics Overall cohort N=101 Training setting N=70 Validating setting N=31 p value

Age(years) 0.88

Mean±SD 68.91±7.20 68.98±7.27 68.74±7.16

Gleason (6-10) 0.86

≥8, n(%) 61(60.39) 44(62.86) 17(54.84)

<8, n(%) 40(39.60) 26(37.14) 14(45.16)

tPSA (ng/ml) 0.62

≥20, n(%) 60(59.41) 44(62.86) 16(51.61)

<20, n(%) 41(40.59) 26(37.14) 15(48.39)

Mean±SD 48.67±46.84 50.27±49.27 45.07±41.36

Pet parameters

SUVmax, Mean ± SD 18.79±13.65 17.81±12.76 20.99±15.46 0.29

SUVmean, Mean±SD 11.12±9.00 10.20±7.32 13.15±11.86 0.18

PSMA-TVp, Mean ± SD 17.51±19.97 19.49±21.59 13.06±15.11 0.17

TL-PSMAp, Mean ± SD 171.63±202.69 187.27±218.89 136.32±157.74 0.56

Pathological type, n(%) 0.71

Acinar Adenocarcinoma 98(97.03) 67(95.71) 31(100)

Others 3(2.97) 3(4.29) 0(0)

Metastasis, n(%)

Yes 67(66.34) 47(67.14) 20(64.52)

No 34(33.66) 23(32.86) 11(35.48)
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supports fine-grained explanations at the individual level. In this

study, we used SHAP to interpret the XGBoost model from both

global and individual perspectives.

As shown in Figure 3, subplot A presents the SHAP summary

plot for the XGBoost model, illustrating the global feature importance

rankings and their influence on metastasis prediction. The horizontal

axis represents SHAP values (i.e., the impact on the prediction), while

the vertical axis lists the eight input features. Each dot represents a

sample’s SHAP value for that feature, with color gradients from blue

to red corresponding from low to high feature values.

The SHAP analysis revealed that PSMA-TVp, and TL-PSMAp, as

key PET parameters reflecting the overall tumor burden based on

PSMA expression, contributed the most to the prediction of prostate

cancer metastasis. This suggests that the tumor’s overall PSMA

expression holds significant predictive value for metastasis risk.

SUVmax, representing the highest uptake intensity of the most active

part of the lesion, showed a slightly lower contribution due to its

sensitivity to image noise and lesion heterogeneity, compared to the

more comprehensive PSMA-TVp, and TL-PSMAp. Traditional clinical

indicators such as tPSA and Gleason score also demonstrated strong

discriminative power in the model, indicating that fundamental

serological and histopathological features still play a stable role in
Frontiers in Oncology 06
prediction. Although SUVmean can reflect the overall tumor PSMA

expression of the lesion, its importance was slightly lower due to its

sensitivity to VOI (volume of interest) delineation. Age had the least

predictive contribution in the model, consistent with the lack of

statistical difference between groups, suggesting its limited value in

distinguishing metastasis risk within this cohort.

To further illustrate the model’s decision-making mechanism at

the individual level, this study randomly selected two non-metastatic

patients and two metastatic patients, and generated SHAP force plots

for each case (Figure 4, subplots B–E). Subplots B and C correspond to

the non-metastatic patients. As shown in the plots, features such as

PSMA-TVp, and TL-PSMAp, and SUVmax were all at relatively low

levels, contributing negatively to the prediction outcome and steering

the model toward a “non-metastatic” classification. Although tPSA in

subplot B and the Gleason score in subplot C showed some positive

influence on the prediction, the overall SHAP value contributions still

supported a “non-metastatic” result. Subplots D and E illustrate the

SHAP explanations for the two metastatic patients. In these cases,

PSMA-TVp, TL-PSMAp, SUVmax, and tPSA were markedly elevated,

exhibiting strong red positive forces that drove the model decisively

toward a “metastatic” prediction. These results indicate that features

reflecting high PSMA expression and tumor burden play a critical role
FIGURE 2

Distribution of individual features between metastatic and non-metastatic prostate cancer patients.(A-G) Illustration of the distribution of key
features—including age, tPSA, Gleason score, SUVmax, SUVmean, PSMA-TVp, and TL-PSMAp—between metastatic and non-metastatic groups using
violin plots. Each subplot shows the kernel density estimation and boxplot for a given feature, allowing visualization of both the value distribution
and central tendency. The x-axis represents metastasis status, while the y-axis indicates the corresponding feature values.
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in the model’s decision-making process, further confirming their

clinical potential in identifying the risk of prostate cancer metastasis.

These individual-level explanations demonstrate that the model

not only possesses strong overall predictive performance but also

clearly reveals the key features and their directional influence at the

level of individual patients. This enhances the interpretability and

clinical applicability of the model. Combined with the SHAP analysis

results, it is evident that PSMA PET/CT-derived parameters such as

PSMA-TVp and TL-PSMAp play a dominant role in predicting

prostate cancer metastasis, outperforming the traditional SUVmax

metric. Meanwhile, clinicopathological variables such as the Gleason

score and tPSA also show significant predictive value, suggesting that

imaging biomarkers and pathological indicators offer complementary

strengths in this task.

In summary, the SHAP-based interpretability analysis not only

confirmed the critical role of PSMA-avid tumor burden-related

parameters in predicting prostate cancer metastasis but also

highlighted the potential of the XGBoost model in providing

individualized risk assessments. This approach holds promise for

supporting data-driven clinical decision-making and guiding

stratified management and treatment strategies for prostate cancer.
Frontiers in Oncology 07
4 Discussion

The occurrence of prostate cancer metastasis is directly related to

treatment decisions and prognosis assessment. To enhance clinical

prediction capabilities, this study developed a multimodal metastasis

risk prediction model based on machine learning by integrating

semiquantitative parameters from PSMA PET/CT, clinical variables,

and pathological features. This comprehensive approach provides a

powerful tool for precision diagnosis and treatment of prostate cancer.

The proposed model demonstrated excellent performance in the

validation cohort, achieving an accuracy of 90.32%, sensitivity of

90.0%, specificity of 94.74%, and an area under the curve (AUC) of

0.8977. These metrics indicate strong discriminative ability and suggest

that the model can effectively support clinicians in identifying patients

at high risk of metastasis. Previous studies have predominantly focused

on lesion-level prediction using PSMA PET/CT imaging features or on

evaluating treatment response following radioligand therapy (25–27).

In contrast, this study transcends the conventional paradigm of single-

modality prediction by systematically integrating heterogeneous data

sources.According to the D’Amico risk classification, metastasis can be

observed in at least half of patients categorized as high risk,
FIGURE 3

Performance evaluation of different models on the validation set. (A) Receiver operating characteristic (ROC) curves of the five models, along with
their corresponding area under the curve (AUC) values; (B) Radar plots illustrating the comparative performance of five classification algorithms in
terms of accuracy, sensitivity, specificity, and other key metrics; (C–G) Confusion matrices depicting the classification results of each model on the
validation set.
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underscoring its clinical relevance. Nevertheless, this system does not

incorporate molecular imaging information (28, 29). By leveraging the

complementary use of multidimensional features, the model’s

predictive performance was substantially improved. This multimodal

fusion approach not only enhances risk stratification accuracy but also

offers a novel technical pathway for intelligent prediction of metastatic

PCa, further expanding the application scope of machine learning in

prostate cancer management.

As an emerging technology, machine learning is still in its early

stages of clinical application but has already demonstrated broad

potential in biomedical research. The predictive model developed in

this study provides strong supporting evidence for the clinical

translation of machine learning methods in urology. XGBoost, a type

of ensemble learning algorithm, has shown superior performance in

various medical prediction tasks due to its powerful nonlinear modeling

capabilities and adaptability to high-dimensional, heterogeneous data

(30–32). In our study, XGBoost outperformed other models such as

Random Forest and Support Vector Machine in assessing the risk of

prostate cancer metastasis. Unlike traditional models that rely on a

single imaging or clinical-pathological feature, our approach integrates

imaging, clinical, and pathological data to enhance the model’s ability to

identify complex patterns of metastasis. This multi-source data

integration strategy allows for a more comprehensive representation

of tumor biology and individual patient characteristics, and its

effectiveness has also been demonstrated in fields such as head and

neck cancer and cardiovascular disease (33, 34).

The SHAP framework, as a leading tool for model interpretability,

effectively unveils the “black-box”mechanisms within machine learning

models. In this study, SHAP analysis of the XGBoost model’s decision-

making process revealed that PSMA-TVp, and TL-PSMAp made the

largest marginal contributions, suggesting that volumetric parameters

exhibit greater stability and discriminative power in predicting prostate
Frontiers in Oncology 08
cancer metastasis. Compared to SUVmax and SUVmean, which only

reflects the highest uptake within a single voxel, PSMA-TVp, and TL-

PSMAp integrate both PSMA expression level and lesion volume,

offering a more comprehensive representation of tumor burden. This

allows them to demonstrate superior discriminative capacity and

robustness under complex biological conditions. These findings are

consistent with previous studies and further validate their potential

clinical value in capturing tumor heterogeneity and identifying distant

metastasis (35, 36). Although SUVmax, a conventional PSMA PET/CT

parameter, retained some importance in the model, its interpretive

capacity was limited due to its reflection of only the local peak uptake,

making it susceptible to noise interference (37, 38). Clinical and

pathological variables such as tPSA and Gleason score also

contributed significantly to the prediction task, indicating that

fundamental serological and histological grading information provides

important complementary value to the mode (39, 40). In contrast, age

showed the lowest contribution, which aligns with its lack of statistical

difference between groups, suggesting its limited predictive value for

metastasis risk within this study cohort. Overall, the XGBoost model,

when applied to high-dimensional multimodal data, tends to prioritize

variables with stable global explanatory power. This highlights the

importance of incorporating volumetric PSMA-avid tumor

parameters to enhance model performance. Future research should

consider giving priority to such comprehensive indicators in clinical

applications to improve model generalizability and decision-making

utility. Overall, the XGBoost model, when applied to high-dimensional

multimodal data, tends to prioritize variables with stable global

explanatory power. This highlights the importance of incorporating

volumetric PSMA-avid tumor parameters to enhance model

performance. Future research should consider giving priority to such

comprehensive indicators in clinical applications to improve model

generalizability and decision-making utility.
FIGURE 4

SHAP-based interpretability analysis of the XGBoost model. (A) SHAP summary plot illustrating the global importance and directional impact of each
feature on the model’s prediction; (B, C) SHAP force plots for two non-metastatic patients, showing how low metabolic values drive predictions
toward the “non-metastatic” class; (D, E) SHAP force plots for two metastatic patients, where higher SUVmax,PSMA-TVpand TL-PSMAp values
strongly contribute to the model’s prediction of metastasis.
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This study has several limitations. First, it is a single-center

retrospective analysis with a relatively limited sample size(n=101),

although well-balanced across clinical variables, may limit the

generalizability of our findings to broader and more heterogeneous

patient populations. Larger prospective, multicenter studies are

warranted to validate and refine the predictive performance of our

model in diverse clinical settings. Second, although SHAP analysis

was employed to enhance model interpretability, the misclassification

mechanisms for borderline cases require further investigation. Third,

the current model is primarily based on structured features. Future

studies may consider integrating raw imaging data, genomic

information, longitudinal dynamic indicators, and additional

clinical risk stratification systems such as the D’Amico classification

to further enhance predictive accuracy and robustness.Additionally,

the clinical deployment and user interaction workflows of the model

remain to be designed and optimized to ensure feasibility and

usability in real-world medical settings.
5 Conclusions

In conclusion, the XGBoost model accurately predicted prostate

cancer metastasis, with PET parameters PSMA-TVp, TL-PSMAp,

and SUVmax contributing more prominently than traditional

clinical indicators such as Gleason score and tPSA.
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