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Background: Prostate cancer is one of the most prevalent malignant tumors of
the male genitourinary system. The occurrence of metastasis significantly
influences treatment strategies and prognosis. However, current risk
assessments for metastatic disease primarily rely on single imaging or
pathological indicators, which are often limited by suboptimal accuracy and
considerable individual variability.

Objective: This study aimed to develop a high-performance predictive model for
prostate cancer metastasis by integrating semiquantitative parameters from [*8F]
PSMA-1007 PET/CTwith key clinicopathological features.

Methods: We retrospectively analyzed data from prostate cancer patients,
includingPSMA PET/CT-derived features (SUVmax, SUVmean, PSMA-TVp, TL-
PSMAp) and clinical-pathological variables (age, tPSA, Gleason score). Five
machine learningalgorithms—Logistic Regression, Support Vector Machine,
Random Forest, Naive Bayes, and XGBoost—were evaluated for metastasis
prediction performance. Model performance was assessed using accuracy,
sensitivity, precision, and area under the ROC curve (AUC). Shapley additive
explanations (SHAP) were applied to interpret the most effective model.
Results: Among the five algorithms, the XGBoost model achieved an accuracy of
90.32%, sensitivity of 90.0%, specificity of 94.74%, and an AUC of 0.8977. SHAP
analysis identified PSMA-TVp, TL-PSMAp as the most important predictors,
followed by SUVmax, tPSA, and Gleason score. These findings highlight the key
role of PSMA-derived tumor burden in metastasis prediction. Force plots further
revealed the individual-level contributions of features, supporting the model's
clinical interpretability.

Conclusion: The XGBoost-based multimodal model integrating PET/CT
semiquantitative parameters with clinicopathological data demonstrated
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excellent accuracy and interpretability in predicting prostate cancer metastasis.
This approach has strong potential for clinical application and may provide a
valuable tool for personalized treatment decision-making.

[18FIPSMA-1007, positron emission tomography/computed tomography,
predictingprostate cancer metastasis, multimodal prediction, machine learning, SHAP

1 Introduction

Prostate cancer (PCa) is one of the most common malignancies
among male worldwide and remains a leading cause of cancer-related
death, ranking sixth in global male cancer mortality rates (1). With
the growing trend of population aging, the incidence of prostate
cancer continues to rise annually, posing a significant challenge to
global public health. Clinical studies have shown that patients with
metastatic prostate cancer exhibit a markedly reduced 5-year survival
rate of approximately 31%, substantially lower than that of patients
with localized disease (2). However, the biological behavior of
prostate cancer is highly heterogeneous, leading to vastly different
progression trajectories and therapeutic responses among patients
even at the same clinical stage (2-4). Therefore, the early and accurate
identification of patients at high risk of metastasis has become a
critical issue in improving treatment outcomes and prolonging
survival, and holds great clinical importance for the realization of
precision diagnosis and therapy in prostate cancer.

The total prostate-specific antigen (tPSA) can be used for prostate
cancer risk stratification and prediction of distant metastasis;
however, its specificity is limited, which may lead to unnecessary
prostate biopsies in some patients (5). Magnetic Resonance Imaging
(MRI) has played a significant role in improving the detection rate
and local staging of prostate cancer. Nevertheless, it may still miss
approximately 20% of clinically significant cancers and has limited
sensitivity and specificity in detecting lymph node metastases (6).

By contrast, Prostate-specific membrane antigen (PSMA), a
transmembrane glycoprotein that is highly overexpressed in prostate
cancer cells, particularly in advanced or castration-resistant stages.
PSMA-targeted PET/CT imaging has demonstrated outstanding

Abbreviations: PCa, Prostate Cancer; csPCa, Clinically Significant Prostate
Cancer; PI-RADS, Prostate Imaging Reporting and Data System; PET/CT,
Positron Emission Tomography/Computed Tomography; [18F]F-PSMA-1007,
Fluorine-18-labeled Prostate-Specific Membrane Antigen-1007; PSMA, Prostate-
Specific Membrane Antigen; SUVmax, Maximum Standardized Uptake Value;
ROC, Receiver Operating Characteristic; AUC, Area Under the Curve; tPSA, the
total prostate-specific antigen; SUVmean, Mean Standardized Uptake Value;
PSMA-TVp, prostate PSMA-tumor volume; TL-PSMAp, prostate total lesion
PSMA; MRI, Magnetic Resonance Imaging; SHAP, SHapley Additive
exPlanations; XGBoost, Extreme Gradient Boosting; ML, Machine Learning;

ROI, Region of Interest; SVM, Support Vector Machine.
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sensitivity and specificity in the diagnosis, staging, recurrence
detection, and treatment evaluation of prostate cancer (6-10).
Compared to conventional imaging techniques, PSMA PET/CT
offers significant advantages in detecting small lesions and identifying
recurrent disease even in cases with low total prostate-specific antigen
(tPSA) levels, thus providing a reliable basis for precision therapy (11,
12). In addition, PSMA PET/CT enables the acquisition of multiple
semiquantitative parameters that reflect tumor PSMA expression and
volumetric characteristics, such as maximum standardized uptake
value (SUVmax), mean standardized uptake value (SUVmean),
prostate PSMA-tumor volume (PSMA-TVp) and prostate total
lesion PSMA (TL-PSMAp). These quantitative metrics provide an
objective basis for evaluating tumor aggressiveness and metastatic
potential. Specifically, SUVmax indicates the peak uptake within the
most active part of the lesion and is easy to obtain and compare across
patients. However, it neglects tumor volume and heterogeneity,
potentially underestimating tumor burden.SUVmean reflects the
average PSMA ligand uptake across the lesion, offering insight into
overall PSMA expression, although it is susceptible to variation
depending on the definition of the volume of interest (VOI). PSMA-
TVp and TL-PSMAp, as composite indicators of tumor burden,
quantify the PSMA-avid tumor volume and the prostate total uptake
PSMA, respectively. These parameters offer a more comprehensive
assessment of the tumor’s global PSMA ligand uptake and biological
behavior and have been reported in numerous studies to be closely
associated with tumor staging, metastasis, and prognosis (13-16).
However, in current clinical practice, interpretation of these imaging
parameters largely relies on empirical assessment, lacking systematic
analysis and quantitative predictive methodologies. This limitation
hinders their full potential in personalized metastatic risk stratification.

With the rapid advancement of artificial intelligence,
particularly machine learning (ML) techniques, there is now a
promising opportunity to build personalized risk prediction
models by integrating multimodal medical data (17-19).Machine
learning algorithms excel in handling high-dimensional, multi-
variable, and non-linear data relationships, and have shown great
success in early detection, metastasis prediction, and prognosis
evaluation across various solid tumors, such as breast and lung
cancer (20-23). In the context of prostate cancer, combining
machine learning with PSMA PET/CT-derived semiquantitative
metrics, clinical features, and pathological data could enable the
development of high-performance predictive models, allowing for
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"| Patients were previously diagnosed with other types of cancer.
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253 scans
253 patients
68 scans excluded.
Patients diagnosed with prostatic hyperplasia or prostatitis based on pathological
v findings.
185 scans
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»| Patients had received treatment prior to imaging or had a history of biochemical
i recurrence of prostate cancer.
101 scans
101 patients
Training Setting Validating Setting
70 scans 31 scans
70 patients 31 patients
FIGURE 1

Flowchart illustrating the inclusion and exclusion criteria for patient selection in the study.

early identification of high-risk patients and supporting more
precise stratified management and clinical decision-making.

In this study, we propose a multimodal data fusion strategy that
integrates clinicopathological features (e.g., age, Gleason score) and
PSMA PET/CT semi-quantitative metrics (e.g., SUVmax,PSMA-
TVp) to construct a machine learning-based predictive model for
assessing the risk of metastasis in prostate cancer patients. The goal
is to enhance the early identification of high-risk individuals,
facilitate personalized treatment planning, and provide an
intelligent decision-support tool for risk stratification. Ultimately,
this approach aims to shift the paradigm of prostate cancer
management from empirical judgment to data-driven precision
medicine, with significant clinical value and application potential.

2 Materials and methods
2.1 Study population
This retrospective study included a total of 295 patients with

histologically confirmed prostate cancer (PCa) who underwent
['"*F]PSMA-1007 PET/CT imaging at our institution between
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January 2020 and February 2022. Inclusion criteria were: (1)
complete clinical data; (2) patients had undergone transrectal
ultrasound-guided prostate biopsy or radical prostatectomy with
definitive pathological diagnosis. Exclusion criteria were as follows:
(1) presence of other malignancies; (2) an interval of more than one
month between serum total prostate-specific antigen (tPSA) testing,
pathological biopsy, and ['*F]JPSMA-1007 PET/CT imaging; (3)
severe hepatic or renal dysfunction; (4) prior anti-tumor treatment
before imaging; (5) lack of PSMA uptake in the primary tumor.
After screening, 101 patients met all criteria and were included in
the final analysis, the selection process is shown in Figure 1.

All study procedures were conducted in accordance with the
Declaration of Helsinki and were approved by the hospital ethics
committee (Approval Nos. 2020-083 and 2020-876). Written
informed consent was obtained from all participants.

2.2 Image interpretation
PET/CT imaging was performed using a GE Discovery VCT

scanner (64-slice CT), with routine quality control to ensure stable
performance. ['*F]PSMA-1007 was synthesized using the PET-IFB-
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X5 automated module from Shaanxi Zhengze Biotechnology Co.,
Ltd., and its radiochemical purity was confirmed by high-
performance liquid chromatography to be >95%. The injected
dose of ['"*F]PSMA-1007 was 4.0 MBq/kg. Whole-body PET/CT
scans were performed 60-90 minutes post-injection. Spiral CT
scans were first acquired from the skull vertex to mid-thigh with
the following parameters: 140 kV tube voltage, 150 mA tube
current, 0.875 mm pitch, 3.75 mm slice thickness, and a 512x512
matrix. Subsequently, PET images were acquired over the same
range using a 3D acquisition mode with a 128x128 matrix, 2.5
minutes per bed position, and 6-7 bed positions in total. All PET
images were attenuation-corrected using the corresponding CT
data and reconstructed for image fusion and further analysis.

2.3 Image interpretation

All images were independently reviewed in a double-blind
manner by two board-certified nuclear medicine physicians with
extensive diagnostic experience. Discrepancies were resolved
through joint discussion to reach a consensus diagnosis.

On visual inspection, lesions showing focal PSMA uptake
higher than the surrounding normal tissue in the prostate were
considered positive. A circular region of interest (ROI) was
manually drawn on axial images around the lesions, and the
positive volume was delineated using a fixed threshold method set
at 40% of the SUVmax. The maximum standardized uptake value
(SUVmax), the mean standardized uptake value (SUVmean),
PSMA-TVp and TL-PSMAp were recorded for each lesion.

Criteria for Lymph Node Metastasis: On ['*F]PSMA-1007 PET/
CT, focal abnormal radiotracer uptake outside of physiological uptake
regions (e.g., salivary glands, liver, gallbladder, prostate, kidneys,
intestines) was interpreted as metastatic unless located in known
false-positive sites such as axillary, mediastinal, or inguinal lymph
nodes. The number of metastatic lymph nodes and their corresponding
SUVmax, SUVmean, PSMA-TVp and TL-PSMAp were recorded.

Criteria for Bone Metastasis: Focal areas of increased PSMA uptake
in bone were considered metastatic if they could not be attributed to
fractures, degenerative changes, or other benign bone conditions (24).

Final diagnoses were established based on histopathological
findings from surgery or biopsy when available, or through clinical
follow-up. For lesions not amenable to tissue diagnosis (e.g., bone or
distant metastases), a comprehensive judgment was made based on
synchronous imaging findings and clinical follow-up data.

2.4 Statistical analysis

All statistical analyses were conducted using Python 3.10.
Continuous variables were compared using either Student’s t-test
or the Mann-Whitney U test, depending on data distribution.
Categorical variables were compared using Pearson’s x* test or
Fisher’s exact test. The dataset was randomly divided into training
and validation sets at a ratio of 7:3. For classification model
evaluation, receiver operating characteristic (ROC) curves were
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plotted using probability scores ranging from 0 to 1, and the area
under the curve (AUC) was calculated to assess discriminatory
performance. A p-value< 0.05 was considered statistically significant.

3 Results

3.1 Comparison of basic patient
information and clinicopathological
characteristics

A total of 101 patients with prostate cancer (PCa) were
retrospectively enrolled in this study, with a mean age of 68 years.
Among them, 97.03% were diagnosed with acinar adenocarcinoma,
while the remaining subtypes included one case each of signet ring cell
carcinoma, intraductal carcinoma, and foamy gland adenocarcinoma.
As summarized in Table 1, the Gleason scores ranged from 6 to 10,
with 60.39% (61/101) scoring greater than 8. The total prostate-specific
antigen (tPSA) levels ranged from 5.42 to 100.0 ng/mL, with 59.41%
(60/101) >20 ng/mL. Among the cohort, 34 patients showed no
evidence of metastasis, while 67 patients had confirmed metastatic
disease, including 53 cases of lymph node metastasis, 52 cases of bone
metastasis, and 8 cases of visceral metastasis, all of which
were pulmonary.

Figure 1 illustrates the distribution of various features between
the metastasis and non-metastasis groups. Based on the distributions
shown, there are significant differences in several features between the
two groups. Specifically, the metastasis group had significantly higher
values in tPSA, Gleason score, SUVmax, SUVmean, PSMA-TVp, and
TL-PSMAp compared to the non-metastasis group, with all
differences being statistically significant (p< 0.05). However, there
was no statistically significant difference in age between the two
groups (p = 0.096). For details, see Supplementary Table 1.

3.2 Performance evaluation of machine
learning models

To ensure the scientific rigor and effectiveness of model training,
the dataset was randomly divided into a training set and a validation set
at a 7:3 ratio. The training set included 70 patients, while the validation
set included 31 patients. Among the training cohort, 47 patients
(67.14%) presented with metastatic disease; in the validation cohort,
20 patients (64.52%) had confirmed metastases. To assess feature
distribution balance, we performed homogeneity tests on clinical,
pathological, and imaging characteristics between the two cohorts.
The results demonstrated no statistically significant differences between
the training and validation sets in terms of age, tPSA, Gleason score,
SUVmax, SUVmean, PSMA-TVp, and TL-PSMAp (p > 0.05), as
shown in Table 1. These findings confirm that the two groups were
well-balanced across key features, thereby minimizing potential bias
introduced by data partitioning during model development
and evaluation.

In the training cohort, five commonly used classification algorithms
—Logistic Regression, Support Vector Machine (SVM), Random Forest,
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TABLE 1 Baseline feature distribution and dataset partitioning.

Characteristics Overall cohort N=101 Training setting N=70 Validating setting N=31  p value
Age(years) 0.88
Mean+SD 68.91+7.20 68.98+7.27 68.74+7.16

Gleason (6-10) 0.86

>8, n(%) 61(60.39) 44(62.86) 17(54.84)

<8, n(%) 40(39.60) 26(37.14) 14(45.16)

tPSA (ng/ml) 0.62

220, n(%) 60(59.41) 44(62.86) 16(51.61)

<20, n(%) 41(40.59) 26(37.14) 15(48.39)

Mean=SD 48.67+46.84 50.27+49.27 45.07+41.36

Pet parameters

SUVmax, Mean + SD 18.79+13.65 17.81+12.76 20.99+15.46 0.29
SUVmean, Mean+SD 11.12+9.00 10.20+7.32 13.15+11.86 0.18
PSMA-TVp, Mean + SD 17.51+19.97 19.49+21.59 13.06+15.11 0.17
TL-PSMAp, Mean + SD 171.63+202.69 187.27+218.89 136.32+157.74 0.56
Pathological type, n(%) 0.71
Acinar Adenocarcinoma 98(97.03) 67(95.71) 31(100)

Others 3(2.97) 3(4.29) 0(0)

Metastasis, n(%)

Yes 67(66.34) 47(67.14) 20(64.52)

No 34(33.66) 23(32.86) 11(35.48)

Extreme Gradient Boosting (XGBoost), and Naive Bayes—were
employed to construct predictive models. All models were trained
using the same set of input features, with the presence or absence of
metastasis serving as the output label. In the validation cohort, model
performance was comprehensively evaluated using multiple metrics.
Receiver Operating Characteristic (ROC) curves were plotted, and the
Area Under the Curve (AUC) was calculated to assess classification
performance. In addition, accuracy, sensitivity, and specificity were used
as complementary evaluation metrics. The ROC curves for each model
are shown in Figure 2A. To further quantify the overall performance of
each model across multiple metrics, a Composite Score was introduced,
calculated as follows: Composite _Score = 0.4 x AUC + 0.3 x FI _
score + 0.1 X Accuracy + 0.1 x Sensitivity + 0.1 x Specificity. This
score provides a balanced and representative evaluation by integrating
both discriminative power and classification effectiveness. Figure 2B
illustrates the radar chart of the six major performance indicators, clearly
highlighting the superior overall performance of the XGBoost model.
Furthermore, to analyze the types and patterns of classification
errors, confusion matrices of the five models in the validation cohort
were generated (Figures 2C-G). Among them, the XGBoost model
demonstrated the best performance in predicting prostate cancer
metastasis, achieving an AUC of 0.8977, an accuracy of 90.32%, a
sensitivity of 90.0%, and a specificity of 94.74% in the validation set.
The Naive Bayes model ranked second, with the same AUC (0.8977)
and a slightly higher sensitivity (95.0%), though its accuracy (87.10%)

Frontiers in Oncology

and specificity (86.36%) were slightly lower. In contrast, the Logistic
Regression, Support Vector Machine, and Random Forest models
showed relatively inferior performance across the evaluated metrics.

In summary, all models demonstrated a certain degree of
discriminative ability in the validation set; however, nonlinear
ensemble models such as XGBoost exhibited superior generalization
and robustness when integrating multiple features. Combined with the
performance visualizations in Figure 2, these results suggest that deep
ensemble learning methods hold greater potential for clinical
application in predicting prostate cancer metastasis risk.

3.3 Feature contribution and
interpretability of the XGBoost model

Based on the performance evaluation of all models, we ultimately
selected the XGBoost model for predicting prostate cancer metastasis,
as it demonstrated the best overall performance. To further explore
the model’s decision-making process and the contribution of each
input feature, we employed the SHAP method for interpretability
analysis. SHAP is a game-theory-based model interpretation
technique that assigns each feature a clear “contribution value,”
quantifying both the direction and magnitude of its impact on
model output. Compared to traditional feature importance analysis,
SHAP not only reflects the global importance of features but also
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FIGURE 2

Distribution of individual features between metastatic and non-metastatic prostate cancer patients.(A-G) Illustration of the distribution of key
features—including age, tPSA, Gleason score, SUVmax, SUVmean, PSMA-TVp, and TL-PSMAp—between metastatic and non-metastatic groups using
violin plots. Each subplot shows the kernel density estimation and boxplot for a given feature, allowing visualization of both the value distribution
and central tendency. The x-axis represents metastasis status, while the y-axis indicates the corresponding feature values.

supports fine-grained explanations at the individual level. In this
study, we used SHAP to interpret the XGBoost model from both
global and individual perspectives.

As shown in Figure 3, subplot A presents the SHAP summary
plot for the XGBoost model, illustrating the global feature importance
rankings and their influence on metastasis prediction. The horizontal
axis represents SHAP values (i.e., the impact on the prediction), while
the vertical axis lists the eight input features. Each dot represents a
sample’s SHAP value for that feature, with color gradients from blue
to red corresponding from low to high feature values.

The SHAP analysis revealed that PSMA-TVp, and TL-PSMAp, as
key PET parameters reflecting the overall tumor burden based on
PSMA expression, contributed the most to the prediction of prostate
cancer metastasis. This suggests that the tumor’s overall PSMA
expression holds significant predictive value for metastasis risk.
SUVmax, representing the highest uptake intensity of the most active
part of the lesion, showed a slightly lower contribution due to its
sensitivity to image noise and lesion heterogeneity, compared to the
more comprehensive PSMA-TVp, and TL-PSMAp. Traditional clinical
indicators such as tPSA and Gleason score also demonstrated strong
discriminative power in the model, indicating that fundamental
serological and histopathological features still play a stable role in
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prediction. Although SUVmean can reflect the overall tumor PSMA
expression of the lesion, its importance was slightly lower due to its
sensitivity to VOI (volume of interest) delineation. Age had the least
predictive contribution in the model, consistent with the lack of
statistical difference between groups, suggesting its limited value in
distinguishing metastasis risk within this cohort.

To further illustrate the model’s decision-making mechanism at
the individual level, this study randomly selected two non-metastatic
patients and two metastatic patients, and generated SHAP force plots
for each case (Figure 4, subplots B-E). Subplots B and C correspond to
the non-metastatic patients. As shown in the plots, features such as
PSMA-TVp, and TL-PSMAp, and SUVmax were all at relatively low
levels, contributing negatively to the prediction outcome and steering
the model toward a “non-metastatic” classification. Although tPSA in
subplot B and the Gleason score in subplot C showed some positive
influence on the prediction, the overall SHAP value contributions still
supported a “non-metastatic” result. Subplots D and E illustrate the
SHAP explanations for the two metastatic patients. In these cases,
PSMA-TVp, TL-PSMAp, SUVmax, and tPSA were markedly elevated,
exhibiting strong red positive forces that drove the model decisively
toward a “metastatic” prediction. These results indicate that features
reflecting high PSMA expression and tumor burden play a critical role
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Performance evaluation of different models on the validation set. (A) Receiver operating characteristic (ROC) curves of the five models, along with
their corresponding area under the curve (AUC) values; (B) Radar plots illustrating the comparative performance of five classification algorithms in
terms of accuracy, sensitivity, specificity, and other key metrics; (C—G) Confusion matrices depicting the classification results of each model on the

validation set.

in the model’s decision-making process, further confirming their
clinical potential in identifying the risk of prostate cancer metastasis.

These individual-level explanations demonstrate that the model
not only possesses strong overall predictive performance but also
clearly reveals the key features and their directional influence at the
level of individual patients. This enhances the interpretability and
clinical applicability of the model. Combined with the SHAP analysis
results, it is evident that PSMA PET/CT-derived parameters such as
PSMA-TVp and TL-PSMAp play a dominant role in predicting
prostate cancer metastasis, outperforming the traditional SUVmax
metric. Meanwhile, clinicopathological variables such as the Gleason
score and tPSA also show significant predictive value, suggesting that
imaging biomarkers and pathological indicators offer complementary
strengths in this task.

In summary, the SHAP-based interpretability analysis not only
confirmed the critical role of PSMA-avid tumor burden-related
parameters in predicting prostate cancer metastasis but also
highlighted the potential of the XGBoost model in providing
individualized risk assessments. This approach holds promise for
supporting data-driven clinical decision-making and guiding
stratified management and treatment strategies for prostate cancer.

Frontiers in Oncology

4 Discussion

The occurrence of prostate cancer metastasis is directly related to
treatment decisions and prognosis assessment. To enhance clinical
prediction capabilities, this study developed a multimodal metastasis
risk prediction model based on machine learning by integrating
semiquantitative parameters from PSMA PET/CT, clinical variables,
and pathological features. This comprehensive approach provides a
powerful tool for precision diagnosis and treatment of prostate cancer.
The proposed model demonstrated excellent performance in the
validation cohort, achieving an accuracy of 90.32%, sensitivity of
90.0%, specificity of 94.74%, and an area under the curve (AUC) of
0.8977. These metrics indicate strong discriminative ability and suggest
that the model can effectively support clinicians in identifying patients
at high risk of metastasis. Previous studies have predominantly focused
on lesion-level prediction using PSMA PET/CT imaging features or on
evaluating treatment response following radioligand therapy (25-27).
In contrast, this study transcends the conventional paradigm of single-
modality prediction by systematically integrating heterogeneous data
sources.According to the D’Amico risk classification, metastasis can be
observed in at least half of patients categorized as high risk,
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FIGURE 4

SHAP-based interpretability analysis of the XGBoost model. (A) SHAP summary plot illustrating the global importance and directional impact of each
feature on the model's prediction; (B, C) SHAP force plots for two non-metastatic patients, showing how low metabolic values drive predictions
toward the “non-metastatic” class; (D, E) SHAP force plots for two metastatic patients, where higher SUVmax,PSMA-TVpand TL-PSMAp values

strongly contribute to the model's prediction of metastasis.

underscoring its clinical relevance. Nevertheless, this system does not
incorporate molecular imaging information (28, 29). By leveraging the
complementary use of multidimensional features, the model’s
predictive performance was substantially improved. This multimodal
fusion approach not only enhances risk stratification accuracy but also
offers a novel technical pathway for intelligent prediction of metastatic
PCa, further expanding the application scope of machine learning in
prostate cancer management.

As an emerging technology, machine learning is still in its early
stages of clinical application but has already demonstrated broad
potential in biomedical research. The predictive model developed in
this study provides strong supporting evidence for the clinical
translation of machine learning methods in urology. XGBoost, a type
of ensemble learning algorithm, has shown superior performance in
various medical prediction tasks due to its powerful nonlinear modeling
capabilities and adaptability to high-dimensional, heterogeneous data
(30-32). In our study, XGBoost outperformed other models such as
Random Forest and Support Vector Machine in assessing the risk of
prostate cancer metastasis. Unlike traditional models that rely on a
single imaging or clinical-pathological feature, our approach integrates
imaging, clinical, and pathological data to enhance the model’s ability to
identify complex patterns of metastasis. This multi-source data
integration strategy allows for a more comprehensive representation
of tumor biology and individual patient characteristics, and its
effectiveness has also been demonstrated in fields such as head and
neck cancer and cardiovascular disease (33, 34).

The SHAP framework, as a leading tool for model interpretability,
effectively unveils the “black-box” mechanisms within machine learning
models. In this study, SHAP analysis of the XGBoost model’s decision-
making process revealed that PSMA-TVp, and TL-PSMAp made the
largest marginal contributions, suggesting that volumetric parameters
exhibit greater stability and discriminative power in predicting prostate
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cancer metastasis. Compared to SUVmax and SUVmean, which only
reflects the highest uptake within a single voxel, PSMA-TVp, and TL-
PSMAp integrate both PSMA expression level and lesion volume,
offering a more comprehensive representation of tumor burden. This
allows them to demonstrate superior discriminative capacity and
robustness under complex biological conditions. These findings are
consistent with previous studies and further validate their potential
clinical value in capturing tumor heterogeneity and identifying distant
metastasis (35, 36). Although SUVmax, a conventional PSMA PET/CT
parameter, retained some importance in the model, its interpretive
capacity was limited due to its reflection of only the local peak uptake,
making it susceptible to noise interference (37, 38). Clinical and
pathological variables such as tPSA and Gleason score also
contributed significantly to the prediction task, indicating that
fundamental serological and histological grading information provides
important complementary value to the mode (39, 40). In contrast, age
showed the lowest contribution, which aligns with its lack of statistical
difference between groups, suggesting its limited predictive value for
metastasis risk within this study cohort. Overall, the XGBoost model,
when applied to high-dimensional multimodal data, tends to prioritize
variables with stable global explanatory power. This highlights the
importance of incorporating volumetric PSMA-avid tumor
parameters to enhance model performance. Future research should
consider giving priority to such comprehensive indicators in clinical
applications to improve model generalizability and decision-making
utility. Overall, the XGBoost model, when applied to high-dimensional
multimodal data, tends to prioritize variables with stable global
explanatory power. This highlights the importance of incorporating
volumetric PSMA-avid tumor parameters to enhance model
performance. Future research should consider giving priority to such
comprehensive indicators in clinical applications to improve model
generalizability and decision-making utility.
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This study has several limitations. First, it is a single-center
retrospective analysis with a relatively limited sample size(n=101),
although well-balanced across clinical variables, may limit the
generalizability of our findings to broader and more heterogeneous
patient populations. Larger prospective, multicenter studies are
warranted to validate and refine the predictive performance of our
model in diverse clinical settings. Second, although SHAP analysis
was employed to enhance model interpretability, the misclassification
mechanisms for borderline cases require further investigation. Third,
the current model is primarily based on structured features. Future
studies may consider integrating raw imaging data, genomic
information, longitudinal dynamic indicators, and additional
clinical risk stratification systems such as the D’Amico classification
to further enhance predictive accuracy and robustness.Additionally,
the clinical deployment and user interaction workflows of the model
remain to be designed and optimized to ensure feasibility and
usability in real-world medical settings.

5 Conclusions

In conclusion, the XGBoost model accurately predicted prostate
cancer metastasis, with PET parameters PSMA-TVp, TL-PSMAp,
and SUVmax contributing more prominently than traditional
clinical indicators such as Gleason score and tPSA.
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