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Background: Primary pulmonary lymphoepithelioma-like carcinoma (pLELC) is a

rare subtype of non-small cell lung cancer(NSCLC) with unclear etiological

mechanisms. This study aimed to investigate the underlying molecular

mechanisms and therapeutic targets for pLELC.

Methods: Retrospectively collected samples from advanced pLELC patients

underwent proteomic and metabolomic analyses, and patient-derived

xenograft (PDX) models were established for validation. Data-independent

acquisition (DIA) quantitative proteomics revealed upregulated tissue factor

(TF) protein expression in pLELC, while untargeted metabolomics identified key

metabolites such as linoleic acid (LA).

Results: Results demonstrated that LA promotes tumor progression by

facilitating M2-type tumor-associated macrophage infiltration and suppressing

natural killer (NK) cell activity, effects reversible by the TF inhibitor Tisotumab.

Mechanistic studies indicated that LA enhances TF expression via peroxisome

proliferator-activated receptor a (PPAR-a), and TF inhibitors effectively

counteract LA-induced malignant phenotypes.

Conclusion: This study reveals that LA remodels the pLELC tumor

microenvironment through the PPAR-a/TF axis, suggesting TF as a potential

therapeutic target for pLELC.
KEYWORDS

primary pulmonary lymphoepithelioma-like carcinoma, multiomics, linoleic acid, tissue
factor, PPAR-a
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Introduction

Lymphoepithelial carcinoma is a rare epithelial-origin tumor

most commonly occurring in the nasopharynx, but it can also arise

in diverse anatomical sites including the lung, thymus, stomach,

liver, cervix, and bladder (1–11). Primary pulmonary

lymphoepithelioma-like carcinoma accounts for only 0.4% of all

primary lung cancers and 0.9% of NSCLC (12, 13). Bégin et al. first

reported a case of pLELC in 1987 (14). In the 2021 World Health

Organization (WHO) classification of lung tumors, this disease was

reclassified from the “other unclassified carcinomas” category (4th

edition) to lymphoepithelial carcinoma, specifically designated as a

subtype of squamous cell carcinoma. Its characteristic pathological

features include diffuse strong positivity for CK5/6, p40, and p63, a

prominent syncytial growth pattern, variable degrees of

lymphoplasmacytic infiltration, and a strong association with

Epstein-Barr virus (EBV) (1, 2).

Studies indicate that pLELC shares genetic similarities with

nasopharyngeal carcinoma but exhibits significant differences from

other lung cancer types, NK/T-cell lymphoma, or EBV-associated

gastric carcinoma. This tumor displays a low somatic mutation

frequency but exhibits widespread copy number variations. A core

aspect of the host-virus interplay involves mutations and frequent

deletions in type I interferon genes (15). Reported genetic

alterations in pLELC include various somatic mutations and

genomic abnormalities. EBV predominantly integrates into

intergenic and intronic regions, with two specific miR-BamH1-A

rightward transcripts (Barts), Bart5-3p and BART20-3P, showing

significant upregulation (6).

Current research on pLELC has primarily focused on genomic

and transcriptomic analyses, as well as EBV integration studies.

However, the pathogenesis of pLELC at the proteomic and

metabolomic levels remains unclear. Furthermore, research on the

pLELC immune microenvironment is still limited, largely due to the

frequent diagnosis at advanced stages and the difficulty in obtaining

adequate tissue specimens.
Abbreviations: pLELC, lymphoepithelioma-like carcinoma; PDX, patient-

derived xenograft; DIA, data-independent acquisition; TF, tissue factor; LA,

linoleic acid; NK, natural killer; PPAR, peroxisome proliferator-activated

receptors; EBV, Epstein-Barr virus; HE, hematoxylin and eosin; GAPDH,

glyceraldehyde 3-phosphate dehydrogenase; OS, overall survival; PFS,

progression-free survival; TAMs, tumor-associated macrophages; LUSC, Lung

Squamous Cell Carcinoma; TCGA, The Cancer Genome Atlas; PUFAs,

polyunsaturated fatty acids; AA, arachidonic acid; COX, cyclooxygenase; LOX,

lipoxygenase; SREBP, sterol regulatory element-binding proteins; PGs,

prostaglandins; LTs, leukotrienes; WB, Western blot; HIF-1, hypoxia-inducible

factor-1; ELISA, Enzyme-linked immunosorbent assay; DC, dendritic cells;

MDSCs, myeloid-derived suppressor cells; LTB4, leukotriene B4; LXA4, lipoxin

A4; PGE-2, prostaglandin E-2; IL-4, interleukin-4; JNK, c-Jun N-terminal kinase;

mTOR, mammalian rapamycin target; HGF, Hepatocyte growth factor; AP-1,

activator protein-1; TNF-a, Tumor Necrosis Factor Alpha; Erg-1, early growth

response-1; KEGG, Kyoto Encyclopedia of Genes and Genomes; NF-kB, Nuclear

Factor kappa B.
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Methods

Proteomic analysis

Serum samples from 10 subjects (5 pLELC patients and 5 healthy

controls) were collected for proteomic profiling. For each subject, 7

mL of peripheral blood was drawn into coagulation tubes one day

prior to treatment initiation, centrifuged at 1,000×g for 10 min at 4°C,

aliquoted, and stored at −80°C. Subsequent analyses were performed

by HuiJun Biotechnology Co.,Ltd. using DIA technology. MS1 and

MS2 data were randomly acquired, with iRT kit peptides (Ki3002,

Biognosys AG, Switzerland) spiked into all samples for retention time

calibration. Spectronaut 16 software (Biognosys AG, Switzerland)

was employed for data normalization and relative quantification, as

previously described (16). Differential protein screening criteria

included: ≥2 unique peptides; coefficient of variation (CV) < 0.5; P

< 0.05; and average fold-change thresholds (AVG ≥ 1.2 for

upregulation; AVG ≤ 0.83 for downregulation).
Metabolomic profiling

Twenty-five serum samples (15 pLELC patients, 10 controls)

were analyzed. Frozen samples (−80°C) were thawed on ice,

vortexed for 10 sec, and 50 mL aliquots were mixed with 300 mL
of ice-cold extraction solvent (acetonitrile:methanol = 1:4, v/v)

containing internal standards. After vortexing for 3 min, samples

were centrifuged at 12,000 rpm for 10 min at 4°C. A 200 mL
supernatant aliquot was held at −20°C for 30 min, recentrifuged,

and 180 mL was subjected to LC-MS analysis. Chromatographic

conditions: Waters ACQUITY UPLC HSS T3 C18 column (1.8 mm,

2.1 × 100 mm); column temperature 40°C; flow rate 0.4 mL/min;

injection volume 2 mL; mobile phase: water (0.1% formic acid)-

acetonitrile gradient (0 min: 95:5; 11.0 min: 10:90; 12.0 min: 10:90;

12.1 min: 95:5; 14.0 min: 95:5). Raw data were converted to mzML

format using ProteoWizard, followed by peak extraction, alignment,

and retention time correction via XCMS. Peak areas were

normalized using support vector regression (SVR), and features

with <50% detection rate in any group were excluded. Metabolites

were identified by matching against in-house and public databases

(e.g., metDNA). Differential metabolites were screened using:

variable importance in projection (VIP) ≥ 1; P < 0.05; fold change

≥ 2 or ≤ 0.5. Unsupervised Principal Component Analysis(PCA)

(unit variance-scaled data) was performed using the R prcomp

function, and heatmaps with Pearson correlation coefficients were

generated via the Complex Heatmap package. Kyoto Encyclopedia

of Genes and Genomes (KEGG) annotation and enrichment

analyses were conducted for differential metabolites (17, 18).
Immunofluorescence and
immunohistochemistry

Formalin-fixed paraffin-embedded (FFPE) sections underwent

antigen retrieval in citrate buffer (pH 6.0) by boiling for 15 min.
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Endogenous peroxidase was blocked with 3% H2O2, followed by 30

min blocking at 37°C with normal goat serum. Primary antibodies

against TF (Bioss, #P13726, 1:50), CD68 (PTMBIO, #JMMR-2659,

1:100), and CD206 (PTMBIO, #PTM-5343, 1:100) were applied and

incubated overnight at 4°C. Corresponding secondary antibodies—

DyLight 488-conjugated goat anti-rabbit IgG (#A23220, 1:50),

DyLight 488-conjugated goat anti-mouse IgG (#A23210, 1:50), and

DyLight 649-conjugated goat anti-rabbit IgG (#A23630, 1:50)—were

incubated in the dark at 37°C for 90 min. Nuclei were counterstained

with DAPI. For IHC, after overnight incubation at 4°C with anti-

Granzyme B antibody (Bioss, #P10144, 1:50), sections were treated

with SP-0023 secondary antibody at room temperature, followed by

DAB (#C-0010) chromogenic development.
Enzyme-linked immunosorbent assay

Serum samples from 24 pLELC patients and 30 healthy controls

were analyzed according to manufacturer protocols (Table 1,

Supplementary table 1). TF, mouse IL-10R, and mouse TNF-a
levels were quantified using ELISA kits (Elabscience, China).
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Animal experiments

All procedures were approved by the Animal Ethics Committee

of Panyu Central Hospital, Guangzhou Medical University and

complied with ARRIVE 2.0 guidelines. Male BALB/c nude mice (3-

6 weeks old) were obtained from Southern Medical University

Laboratory Animal Center and housed under specific pathogen-

free (SPF) conditions (5-6 mice/cage, 12-h light/dark cycle).

Stratified randomization by body weight assigned mice to

either:w-6 diet group (Lieber-DeCarli liquid diet #710027),

Control group (standard diet #710028). Both diets were isocaloric

(1.0 kcal/mL) with identical macronutrient distribution: 35% fat,

47% carbohydrate, 18% protein (19, 20).
PDX model establishment and treatment

Fresh tumor tissues from consented pLELC patients (Nanfang

Hospital) were subcutaneously implanted into the right dorsum of

nude mice using a trocar (2×2×2 mm³ fragments) (21, 22). Stable

passage 3 (P3) models were cryopreserved. Treatments began 24h
TABLE 1 Patient characteristics at baseline of pLELC.

Patient characteristics
at baseline

DIA discovery cohort N (%) Metabolomics discovery
cohort N (%)

ELISA cohort N (%)

Age

≤60 4 10 17

>60 1 5 7

Sex

Male 1 3 10

Female 4 12 14

ECOG performance status

0–1 4 13 21

>1 1 2 3

Treatment line

1 4 7 13

>1 1 8 11

TNM

IIIA-IVA 2 9 15

IVB 3 6 9

Best overall response

PR 3 5 9

SD 2 9 14

PD 0 1 1

ORR 3 (60%,14.7- 94.7) 5 (33.3%,10.9- 61.7) 9 (37.5%,19.7-58.0)

DCR 5 (100%,47.8- 100.0) 14 (93.9%,67.7,-99.8) 23 (95.8%,79.2-100.0)
DIA, data-independent acquisition; ELISA, Enzyme-linked immunosorbent assay; ECOG, PR, partial response; SD, stable disease; PD, progressive disease. Confirmed complete and partial
responses were assessed by the investigator according to the Response Evaluation Criteria in Solid Tumors, version 1.1.
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post-implantation: Tisotumab (human anti-TF antibody;

AntibodySystem, France): 4 mg/kg, i.p. weekly (vs. IgG control),

WY-14643 (PPARa agonist; APExBIO, USA): 100 mg/kg/day in

corn oil, i.p. (vs. corn oil control). Mice were euthanized by CO2

asphyxiation at endpoint for tumor measurement.
Quantitative real-time PCR

Total RNA was extracted with TRIzol (Takara, Japan) and

reverse-transcribed using PrimeScript RT kits (Takara). SYBR

Premix Ex Taq II (Roche, Switzerland) was used for amplification

on a LightCycler 480 system. Primer sequences are listed in

Supplementary table 2. Relative gene expression was calculated by

the 2-DDCT method with GAPDH normalization.
Western blotting

Equal protein amounts were separated by 10% SDS-PAGE,

transferred to membranes, and incubated overnight at 4°C with

primary antibodies against PPARa (AF7794; Beyotime, China;

1:1000) or NF-kB (AN365; Beyotime; 1:1000). After 1-h

incubation with LI-COR fluorescent secondary antibodies (25°C),

bands were visualized using an Odyssey infrared imaging system.

Experiments were performed in triplicate.
Statistical analysis

Continuous variables were analyzed by Student’s t-test (normal

distribution) or Mann-Whitney U test (non-normal distribution).

Categorical data were assessed by Chi-square test. Overall survival

(OS) and progression-free survival (PFS) were evaluated via

Kaplan-Meier analysis. All analyses used SPSS 19.0 (IBM, USA),

with P < 0.05 considered statistically significant.
Results

Proteomic identification and validation
of TF

DIA-based proteomic analysis identified 259 proteins, with 16

exhibiting differential expression between groups (6 downregulated,

10 upregulated; Supplementary Figure 1, Table 2, Supplementary

tables 3-7). KEGG pathway enrichment revealed 15 significantly

altered pathways, implicating ferroptosis, HIF-1 signaling,

metabolic pathways, leukocyte transendothelial migration, and cell

adhesion. Ferroptosis demonstrated the highest significance (P =

0.0036), followed by HIF-1 signaling (P = 0.062). TF (P02787)

participated in 5 pathways (ferroptosis, HIF-1, mineral absorption).

Ceruloplasmin (CP; P00450) associated with ferroptosis and

porphyrin metabolism. TF expression was significantly upregulated
Frontiers in Oncology 04
(1.55-fold, P < 0.05) in pLELC versus controls (Figures 1A) and

localized to the most enriched pathways. Previous studies indicate

TF-targeted therapy reduces M2 tumor-associated macrophage

(TAM) infiltration (23), suggesting TF may regulate M2 TAMs in

pLELC. IHC confirmed TF positivity (immunoreactive score IRS ≥1)

in 87.5% (21/24) of pLELC samples (Figure 1). Serum TF levels were

significantly elevated in pLELC patients versus healthy controls

(Figure 1, Supplementary table 8). Patients stratified by ELISA-

based TF expression revealed prolonged progression-free survival

(PFS) in the high-TF group (Figure 1). Analysis of TCGA lung

squamous cell carcinoma (LUSC) data showed no correlation

between TF mRNA levels and overall survival (OS; P = 0.95,

Figure 1; http://ualcan.path.uab.edu/cgi-bin/TCGA-survival1.

pl?genenam=TF&ctype=LUSC).
Metabolomic profiling

Untargeted metabolomics detected 3,175 metabolites (946

secondary metabolites), with 74 differentially expressed (34

downregulated, 40 upregulated; Supplementary tables 9-12). KEGG

analysis enriched 23 pathways, most notably linoleic acid metabolism

(ko00591) and unsaturated fatty acid biosynthesis (ko01040),

involving key metabolites linoleic acid (LA; C01595) and palmitic

acid (C00249) (Figures 2A, Supplementary tables 9-12). Given

established links between w-6 polyunsaturated fatty acids (PUFAs;

particularly LA) and tumor immune microenvironments (24), we

focused subsequent experiments on LA-TF interactions.
TABLE 2 Identification of plasma proteome profiles as potential efficacy
biomarkers for pLELC.

Protein pLELC NOC Fold change P value

ATRN 915438.6 434074.425 2.108943875 0.007232952

CP 156394140.8 100992843.2 1.54856657 0.029309541

HP 457536.2688 303437.8031 1.507842016 0.044046333

SERPINA3 2755522.95 1854724.725 1.485677585 0.007827108

APCS 529892.525 356670.7031 1.485663163 0.032368801

C9 8860281.6 6380032.8 1.388751732 0.036641473

AHSG 24628879.2 18698623.6 1.317149311 0.034297511

TF 749988.875 573778.925 1.307104256 0.037533467

HRG 7825187.4 6223416.6 1.257378045 0.032028094

SERPINA5 1371449.5 1130521.25 1.213112535 0.003461194

CLEC3B 25654605.6 33463400 0.766646713 0.032041774

ITIH1 25569924.8 34484727.6 0.74148548 0.007702156

CDH5 6967165.3 10061159 0.692481383 0.019014349

SAA4 6169134.9 9528187.1 0.647461562 0.005088764

BTD 8636641.3 13802516.6 0.625729463 0.007700173

PGLYRP2 201612670.4 461501824 0.436862131 0.017988102
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TF inhibitor Tisotumab reverses LA-driven
pLELC progression

Due to the absence of established pLELC cell lines, PDX models

were generated from surgical specimens. H&E staining confirmed

histopathological fidelity between PDX tumors and primary tissues

(Figures 3A). LA (a major w-6 PUFA) is metabolized by

cyclooxygenase (COX)/lipoxygenase (LOX) to arachidonic acid (AA)

and derivatives (prostaglandins, leukotrienes) (25, 26). Mice (n= 5)
Frontiers in Oncology 05
were stratified into:Control (standard diet), w-6 diet, w-6 diet +

Tisotumab (anti-TF antibody, 4 mg/kg i.p. weekly) group (Figure 3).

Tumors in the w-6 diet + IgG group exhibited significantly larger

volumes versus control (P < 0.0001). Tisotumab treatment markedly

suppressed w-6 diet-induced tumor growth (P < 0.0001; Figures 3D).

Immunoanalysis revealed reduced CD68+, CD206+ M2 TAMs and

increased Granzyme B+ NK cells in control and Tisotumab groups

versus w-6 diet + IgG (Figures 4A). Cytokine profiling showed

decreased IL-10 and elevated TNF-a in intervention groups (Figure 4).
FIGURE 1

Proteomic identification and validation of TF. (A) Volcano plot of differentially expressed proteins (DEPs) in pLELC vs. control (CON) groups. X-axis:
log2(fold change); Y-axis: -log10(P-value). Red dots: significantly upregulated proteins (CV < 0.5, P < 0.05, AVG ≥ 1.2); blue dots: downregulated
proteins (CV < 0.5, P < 0.05, AVG ≤ 0.83); black dots: non-significant proteins (P > 0.05). (B) Hierarchical clustering heatmap of DEPs. Rows: 16 DEPs
(6 downregulated, 10 upregulated); columns: samples (group labels below). Color scale: red (high expression) to blue (low expression), with intensity
reflecting magnitude. Clustering used Euclidean distance and Ward’s linkage. (C) KEGG pathway enrichment bubble plot of DEPs (top 15 pathways,
adjusted P < 0.05). X-axis: Rich factor; Y-axis: pathways (ranked by significance). Bubble color: -log10(adjusted P-value) (darker red = higher
significance); size: number of DEPs per pathway. (D) IF and IHC staining of TF in pLELC tissues, showing strong vs. weak positivity. (E) IHC-based
immunoreactive score (IRS) of TF in pLELC. High-TF group showed significantly elevated IRS vs. low-TF group (P < 0.05). (F) Serum TF levels in
pLELC patients vs. healthy controls (ELISA; P < 0.001). (G) Progression-free survival (PFS) by TF expression. Kaplan-Meier curve: low-TF group had
significantly prolonged PFS (P < 0.0001). (H) Overall survival (OS) by TF mRNA expression in TCGA-LUSC cohort (log-rank P = 0.95). ** P<0.01, ***
P<0.001.
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LA promotes M2 TAM infiltration and
suppresses NK cells via PPAR-a

Experimental data confirm that LA-enriched diets promote M2

TAM infiltration and suppress NK cell activity—effects reversed by TF

inhibition. PPARs, sterol regulatory element-binding proteins

(SREBPs), and nuclear factor-kB (NF-kB) are established

transcriptional regulators of fatty acid metabolism (27–29). Among

PPAR isoforms, only PPAR-a and PPAR-g serve as natural receptors
for LA. Quantitative analysis revealed significantly elevated PPAR-a
and NF-kB expression in the w-6 diet + IgG and Tisotumab

intervention groups versus controls (P < 0.0001), alongside reduced

PPAR-g. No intergroup differences were observed in SREBP-1 or early

growth response factor 1 (Erg-1) expression (Figure 4). Western
Frontiers in Oncology 06
blotting further validated w-6 diet-induced PPAR-a upregulation

without significant NF-kB modulation (Figure 4).
TF inhibitor antagonizes PPAR-a agonist-
driven immune remodeling

Fifteen 6-week-old nude mice (n= 5/group) were allocated to:

PPAR-a agonist WY-14643 (100 mg/kg/day i.p.), Corn oil vehicle

control, WY-14643 + Tisotumab (Figure 5). Tumors in the WY-

14643 + IgG group exhibited significantly larger volumes than

controls (P<0.0001), while Tisotumab co-treatment suppressed

WY-14643-induced tumor growth (P<0.0001; Figures 5B).

Immunohistochemistry demonstrated reduced CD68+, CD206+
FIGURE 2

Metabolomic profiling results. (A) PCA plot (negative ion mode). PCA of metabolomic data shows separation between pLELC (orange) and control
(CON, green) groups along PC1 (18.43% variance) and PC2 (7.9% variance). Ellipses denote 95% confidence intervals. Significant intergroup
distinction (PERMANOVA, P = 0.008) indicates global metabolic profile differences. (B) Volcano plots of differential metabolites. Top: Positive ion
mode; Bottom: Negative ion mode. X-axis: log2(fold change); Y-axis: -log10(P-value); dot size: VIP score. Red: Significantly upregulated metabolites
(VIP ≥ 1, P < 0.05, FC ≥ 2); Green: Downregulated metabolites (VIP ≥ 1, P < 0.05, FC ≤ 0.5); Gray: Non-significant metabolites. (C) Hierarchical
clustering heatmap of negative ion differential metabolites (n=35). Rows: Metabolites; Columns: Samples. Color scale: UV-scaled relative abundance
(red: high; green: low). Key metabolites (e.g., linoleic acid) show significant upregulation in pLELC. (D) KEGG enrichment bubble plot of negative ion
metabolites (top 20 pathways, adjusted P < 0.05). X-axis: Rich factor; Y-axis: Pathways (significance-ranked). Bubble color: -log10(adjusted P) (darker
red = higher significance); Size: Number of enriched metabolites.
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cells and increased Granzyme B+ cells in control and combination

groups versus WY-14643 monotherapy (Figures 5E). ELISA

confirmed decreased IL-10 and elevated TNF-a in the

combination group (Figure 5).
Discussion

Tissue factor, a transmembrane receptor and cofactor for FVII/

FVIIa, is expressed by pericytes (e.g., adventitial fibroblasts) and

surface-lining cells (e.g., epithelial cells). Beyond its central role in

hemostasis and thrombosis (30, 31), TF overexpression in tumors

correlates with poor prognosis and promotes growth/metastasis

(31). In EGFR-mutant NSCLC and glioblastoma, elevated TF

predicts adverse outcomes (23). Targeting mTOR and TF

remodels the tumor microenvironment by reducing fibrin

deposition (ameliorating hypercoagulability), altering collagen

distribution (attenuating stromal fibrosis), decreasing CD31+, a-
SMA+ vessel density, and diminishing CD206+, F4/80+

immunosuppressive M2 TAM infiltration. Studies in C57BL/6-

derived TF-overexpressing tumor cells reveal that TF suppresses

NK cell-mediated micrometastasis clearance through fibrinogen-
Frontiers in Oncology 07
and platelet-dependent mechanisms (32). Additionally, TF

promotes metastasis via thrombin-dependent pathways

independent of NK cells (32), with recent evidence implicating

the TF-thrombin axis in macrophage recruitment for metastatic

progression (33). Collectively, TF drives disease progression by

remodeling the tumor microenvironment.

Our KEGG analysis highlighted significant ferroptosis pathway

enrichment. Key proteins TF and CP may trigger lipid peroxidation

by inhibiting GPX4 and enhancing iron toxicity. Although HIF-1

signaling did not reach strict significance (P=0.062), its interplay

with ferroptosis suggests hypoxia-mediated regulation of oxidative

stress. Future studies should validate direct mechanisms of the TF-

CP axis in ferroptosis.

Untargeted metabolomic analysis was performed to elucidate

the role of metabolites in pLELC pathogenesis. Results revealed

significant enrichment of LA and palmitic acid in unsaturated fatty

acid biosynthesis and linoleic acid metabolism pathways. LA may

generate pro-inflammatory lipids (e.g., PGE2) via w-6 PUFA

pathways, while palmitic acid supports tumor growth through

CD36-mediated lipid uptake. Targeting these metabolic axes—

such as combining COX-2 inhibitors with CD36 blockade—may

represent novel therapeutic strategies for pLELC.
FIGURE 3

Tisotumab reverses LA-driven pLELC progression. (A) PDX model establishment. Tumor tissues from surgery/biopsy were dissected into 2-mm³
fragments and subcutaneously implanted into nude mice via trocar. Stable models were confirmed at passage 3 (P3). (B) H&E validation of PDX
model. Primary patient tumors and PDX grafts show identical histopathological features. (C) Experimental timeline. Mice received w-6 or control
diets from 3 weeks of age. PDX tumors implanted at week 10; Tisotumab (4 mg/kg i.p.) or IgG administered weekly. Tissues harvested at Day 24.
(D) Macroscopic tumor morphology at endpoint (Day 24). (E) Tumor growth curves. w-6 diet + IgG group exhibited significantly larger volumes vs.
control (P < 0.0001), while Tisotumab suppressed w-6 diet-induced growth (P < 0.0001; two-way ANOVA).
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FIGURE 4

LA promotes M2 TAM infiltration and suppresses NK cells via PPAR-a. (A) Representative IF staining of CD68 and CD206 in PDX tumors across
groups. (B) IHC for Granzyme B in PDX tumors. (C) Immune cell quantification. Versus w-6 diet + IgG group, control and Tisotumab groups showed
reduced CD68+, CD206+ cells and increased Granzyme B+ cells (all P < 0.0001). (D) Cytokine levels. IL-10 decreased (P = 0.012/P < 0.0001) while
TNF-a increased (P = 0.001/P < 0.0001) in control and Tisotumab groups. (E) qRT-PCR analysis of transcription factors. w-6 diet upregulated PPAR-
a/NF-kB and downregulated PPAR-g (all P < 0.0001). No changes in SREBP-1 or Erg-1 (P > 0.05). (F) Western blot validation: w-6 diet significantly
increased PPAR-a protein (P < 0.001) without altering NF-kB. **** P<0.0001.
FIGURE 5

TF Inhibitor reverses PPAR-a agonist-induced immune remodeling. (A) Timeline and treatment schedule for umor implant and assessment. PDX
inoculation at 6 weeks; daily i.p. WY-14643 (100 mg/kg in corn oil) or vehicle; weekly Tisotumab or IgG; harvest at Day 24. (B) Tumor samlpes
shown with varying sizes. (Day 24). (C) Schematic of mouse endpoint procedures. (D) Tumor growth curves: WY-14643 + IgG > control (P < 0.0001);
Tisotumab reversed tumor growth (P < 0.0001). (E) Microscopic images displaying stained tumor sections at 400x magnification, focusing on
CD206, CD68, and GranzymeB markers. (F) Bar graphs illustrating the number of CD68+, CD206+, and GranzymeB+ cells per high power field.
Control and Tisotumab groups showed reduced CD68+, CD206+ cells and increased Granzyme B+ cells vs. WY-14643 + IgG (all P < 0.0001). (G)
Bar graphs showing IL-10 and TNF-a levels in various treatments: reduced IL-10 (P < 0.0001) and increased TNF-a (P = 0.004/P < 0.0001) in control
and Tisotumab groups. ** P<0.01, *** P<0.001, **** P<0.0001.
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Accumulating evidence demonstrates distinct roles of

polyunsaturated fatty acids (PUFAs) in tumorigenesis: w-3 family

members (a-linolenic acid, EPA, DHA) exert anti-tumor effects,

whereas w-6 PUFAs (LA, AA) exhibit pro-tumor properties (34).

Notably, LA demonstrates context-dependent duality—promoting

BT-474 and A549 cell proliferation in vitro (35). Epidemiologically,

high LA intake paradoxically correlates with reduced cancer risk in

certain malignancies (36).

Adipose tissue deposition in obesity promotes M2 macrophage

polarization, contrasting with M1-dominant profiles in lean

individuals (37, 38). Metabolized w-6 PUFAs generate

arachidonic acid (AA), which COX/LOX enzymes convert to pro-

inflammatory mediators (prostaglandins, leukotrienes) (39).

Crucially: COX-derived PGE-2 induces dendritic cell tolerance

and Treg activation (39), AA metabolites (LTB4, LXA4) stimulate

expansion of myeloid progenitors (MDSCs, M2 macrophages) (40).

Activated M2 macrophages secrete IL-10 to promote Th2

differentiation and PD-L1 upregulation, accelerating T-cell

apoptosis and establishing a pro-tumor immunosuppressive

feedback loop (40).

TF and LA cooperatively regulate immune equilibrium,

particularly M2 macrophage/NK cell/T-cell balance. HGF/c-Met

and EGFR pathways upregulate TF expression by activating JNK/

Src, PI3K/Akt/mTOR, and KRAS/Raf/MEK/ERK cascades, thereby

inducing AP-1, NF-kB, and Egr-1 transcription factors (30). As

PPARs and SREBPs constitute master transcriptional regulators of

lipid metabolism, this study demonstrates that PPAR-a potentiates

LA-induced TF expression. Critically, TF inhibitors effectively

reverse PPAR-a agonist-driven tumor progression.

Current mechanistic studies of pLELC primarily focus on

genomic and transcriptomic profiles, revealing similarities to

nasopharyngeal carcinoma (NPC)—including driver mutations in

NF-kB, CDKN2A, and JAK/STAT pathways, analogous regulation

of p53 and PD-L1, and shared type II latency features evidenced by

LMP1/LMP2 expression (15, 41). Molecular parallels between EBV-

positive NPC and pLELC provide rationale for combined

therapeutic strategies in advanced disease (42), though pLELC

differs significantly from other lung cancers, NK/T-cell

lymphoma, or EBV-associated gastric carcinoma (15). First-line

treatment for advanced pLELC typically combines immunotherapy

or anti-angiogenesis therapy with chemotherapy (43, 44), yet

evidence remains limited to small retrospective studies,

warranting further exploration of targeted/immunotherapeutic

approaches. Our study pioneers multi-omics investigation

(proteomics/metabolomics) to identify pLELC vulnerabilities,

uncovering a novel LA/PPAR-a/TF axis that drives tumor

progression—revealing actionable therapeutic targets.

Beyond our findings, emerging evidence suggests broader

regulatory roles. Conjugated linoleic acid (CLA) activates PPAR-g
to alleviate neuroinflammation and promote remyelination (45).

Low LA/a-linolenic acid ratios modulate lipid metabolism via

PPAR-a /ACOX1 up r e gu l a t i on and SREBP - 1 c / FAS
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downregulation (46). CLA induces endogenous PPARa ligands

(palmitoylethanolamide/oleoylethanolamide) to exert anti-

neuroinflammatory effects (47). Maternal CLA supplementation

regulates fetal hepatic lipid metabolism via AMPK signaling (48).

Outstanding questions requiring further investigation: Precise

mechanisms of LA-mediated TF regulation, TF-PPAR-a feedback

dynamics, potential PPAR-a/NF-kB-independent pathways for

Tisotumab’s antitumor effects.

Study Limitations:1.No integrated multi-immune-marker

prognostic model established. 2.Insufficient fresh tissues for

genomic/transcriptomic validation (pLELC rarity). 3.Absence of

stable cell lines precluded in vitro pathway validation. 4.Modest

animal cohort size (n=5) necessitates larger validation. 5.NSG/NSG-

SGM3 humanized models unexplored for T/B-cell immunity.

6.Stromal components (e.g., angiogenesis) not analyzed. 7.EBV-

LA/TF/PPAR-a axis crosstalk unexamined. Nonetheless, this work

provides foundational insights into pLELC immunopathology.
Conclusion

This study demonstrates that LA promotes pLELC progression

via PPAR-a-mediated TF upregulation, identifying TF as a

promising therapeutic target. Future directions include: Validating

synergistic targeting of the TF-PPARa axis (e.g., Tisotumab +

PPARa inhibitor GW6471). Elucidating LA metabolic specificity

through gene editing/epigenetic approaches. Clinical translation of

TF inhibitor-based combination therapies. Investigating EBV latency

protein regulation of TF using patient-derived organoid models.
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SUPPLEMENTARY FIGURE 1

Protein electropherograms. (A) pLELC group. (B) Control (CON) group.

SUPPLEMENTARY FIGURE 2

LA-TF association. (A) Positive correlation between serum LA (mM) and TF (pg/

mL) (Spearman r= 0.8536, P = 0.001; n= 15 pLELC patients). (B)WB validation:
w-6 diet upregulated TF vs. control; Tisotumab reversed this effect (GAPDH

loading control). (C) Pre-/post-treatment serum TF: No baseline differences;
post-treatment TF in w-6 + IgG group > control (P < 0.05) and w-6 +

Tisotumab (P < 0.01).

SUPPLEMENTARY FIGURE 3

NK Cell (NKp46+) infiltration. (A, B) w-6 diet: (A) IHC showing reduced NKp46+
cells with w-6 diet; partial reversal by Tisotumab. (B) Quantification: increased

NKp46+ cells in control/Tisotumab vs. w-6 + IgG (all P < 0.001). (C, D)WY-14643
treatment: (C) IHC showing ↓NKp46+ cells with WY-14643; partial reversal by

Tisotumab. (D) Quantification: increased NKp46+ cells in control/Tisotumab
groups (all P < 0.001).
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