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Background: The 5-year overall survival of hepatocellular carcinoma (HCC) is still

poor. Since glypican-3 (GPC3) is highly expressed in most HCC but not in healthy

or non-malignant livers, it may become an ideal therapeutic target for HCC.

Thus, this study aimed to construct a dynamic nomogram based on contrast-

enhanced computed tomography (CT) radiomics for predict ing

GPC3 expression.

Methods: The medical data of consecutive HCC patients from Nanjing Drum

Tower Hospital (from January 2020 to August 2023) were retrospectively

reviewed. Based on the immunohistochemistry analysis, GPC3-positive was

defined as a positive cell rate ≥ 10% (2+ and 3+). The 3D Slicer software and

PyRadiomics were used to extract radiomics features on the arterial phase (AP)

and venous phase (VP). A radiomics score (Radscore) was constructed using the

most predictive features identified by the least absolute shrinkage and selection

operator (LASSO) regression analysis. Univariate and multivariate analyses were

performed to screen clinical risk factors associated with GPC3-positive. Finally,

the Radscore and clinical risk factors were incorporated using logistic regression

classification to construct a nomogram.

Results: 181 HCC patients were included according to the inclusion criteria.

Among them, 106 were GPC3-positive, and 75 were GPC3-negative. Five

radiomics features were finally screened, including three AP and two VP

features. The nomogram model combining clinical risk factors (alpha-

fetoprotein [AFP] ≥ 10 ng/mL, hepatitis B virus surface antigen [HBsAg]-

negative, and age) and the Radscore (area under the receiver operating

characteristic curve [AUROC] = 0.794) was superior to the clinical (AUROC =

0.724) and radiomics models (AUROC = 0.722), with good consistency in the
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calibration curve. The decision curve analysis (DCA) demonstrated that the

nomogram had the highest net benefit for predicting GPC3-positive. The

dynamic nomogram is freely available as a mobile application at https://

zheyuzhou.shinyapps.io/GPC3nomogram/.

Conclusions: Since the intra-tumor heterogeneity of HCC and potential

complications brought by liver biopsy, our clinical prediction tool identified

GPC3 status satisfactorily and might be helpful in clinical decision-making.
KEYWORDS

hepatocellular carcinoma, glypican-3, radiomics, computed tomography, prediction
Introduction

Hepatocellular carcinoma (HCC) is the most common primary

liver cancer, with a poor 5-year overall survival, and its morbidity

and mortality are still on the rise (1). Surgical resection is the

optimal treatment of choice for HCC, but less than 30% of patients

are suitable for radical procedures at first diagnosis (2). Although

systemic therapies, including molecular targeted therapy,

immunotherapy, and chemotherapy, have improved the median

survival of intermediate and advanced HCC patients to about 20

months, the majority of patients still fail to achieve objective

remission (3, 4). Thus, new therapeutic targets are urgently

needed to improve the prognosis of intermediate and advanced

HCC patients.

Glypican-3 (GPC3) is a cell membrane glycoprotein that is

specifically expressed in liver, lung, and kidney tissues during fetal

life but not in most adult tissues (5). Besides, GPC3 is highly expressed

in HCC tissues, whereas it is under-expressed or not expressed in

benign liver diseases (such as liver cirrhosis and focal nodular

hyperplasia) (6). Soluble GPC3 is likewise found at elevated levels in

HCC patients and undetectable in patients with hepatitis or healthy

patients (7). Therefore, GPC3 may be a novel serum diagnostic marker

and therapeutic target for HCC. The current study confirmed that

GPC3-positive patients undergoing hepatectomy had significantly

lower 5-year survival rates than GPC3-negative patients, and its

expression was an independent prognostic factor for overall survival

(8). Meanwhile, Wang YL et al. certified that GPC3 mRNA

overexpression was significantly associated with recurrence of HCC

in patients who underwent liver transplantation (9). For patients with

advanced HCC, elevated expression of GPC3 may diminish the clinical

benefit of bevacizumab plus atezolizumab treatment (10).

Microvascular invasion (MVI) is an important indicator in liver

pathology, and positive expression of GPC3 could significantly

increase the incidence of MVI in HCC (11). Overall, high expression

of GPC3 is associated with poor prognosis and unfavorable treatment

response in HCC.

Radiomics is a high-throughput method capable of extracting a

large number of quantitative imaging features from conventional

images to better reflect tumor heterogeneity for prediction and
02
diagnosis (12). There are several previous studies based on magnetic

resonance imaging (MRI) radiomics to predict GPC3 expression. For

instance, Chong H et al. developed a Gadoxetate Disodium-enhanced

MRI radiomics model, which included 10 features, and its area under

the receiver operating characteristic curve (AUROC) for distinguishing

GPC3 status in combination with clinical factors could reach 0.943

(13). Due to the development of image post-processing techniques,

three-dimensional (3D) reconstruction of liver vasculature and tumor

volume measurements based on contrast-enhanced computed

tomography (CT) are now increasingly performed in clinical practice

(14). Contrast-enhanced CT plays a vital role in the diagnosis and

treatment of HCC, while the prediction of GPC3 expression based on

CT radiomics has not been thoroughly investigated.
Methods

Study design and included patients

Consecutive HCC patients’ medical data from Nanjing Drum

Tower Hospital (from Jan. 2020 to Aug. 2023) were retrospectively

reviewed. Because of the nature of the retrospective case-control study

and unidentifiable patient information, the requirement for written

informed consent was waived by the institutional review board of

Nanjing Drum Tower Hospital. The inclusion criteria of this study

were as follows: (1) patients with a first diagnosis of HCC who

underwent liver resection; and (2) availability of complete

clinicopathological and imaging data. The exclusion criteria were: (1)

patients with recurrent HCC; (2) absence of preoperative contrast-

enhanced CT imaging; (3) receipt of preoperative systemic or loco-

regional therapies; and (4) presence of other primary malignancies.

Importantly, two authors (ZYZ and CBC) independently performed

the patient selection process to ensure consistency.
Data collection

Included HCC patients’ blood test data were obtained within

one week before the liver resection, including hepatitis B virus
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surface antigen (HBsAg), alpha-fetoprotein (AFP), des-g-carboxy
prothrombin (DCP), blood routine, and liver and coagulation

functions. Furthermore, five inflammatory and three liver fibrosis

serum markers were included, and their corresponding calculation

formulas were described in the previous article (15). The number

and size of tumors and the presence of macrovascular invasion

(tumors invaded hepatic or portal vein branches (16)) were judged

based on the preoperative contrast-enhanced CT. All included

variables are presented in Table 1.
Contrast-enhanced CT scanning protocol

All patients underwent contrast-enhanced CT of the abdomen

within two weeks prior to the liver resection. The contrast agent used

was iohexol injection (35g, 100mL/COP bottle; GE Healthcare

Shanghai Co. Ltd). CT was performed in the axial plane with 1.25-

mm-thick sections using a 256-section (GE Revolution; GE

Healthcare) multi-detector CT scanner. Patients were injected with

1.5mL/kg of iohexol after a routine unenhanced scan. Arterial phase

(AP) images were acquired 30 seconds after injecting the contrast

agent, and venous phase (VP) images began 30 seconds after the AP.
Radiomics analysis

Images of contrast-enhanced CT arterial and venous phases of

included patients were exported in the DICOM format. Two authors

(CLZ and XLX) manually segmented tumors and outlined regions of

interest (ROI) on each layer of images using the Segment Editor

module of 3D Slicer software (version 5.4.0) (Figure 1). Images were

resampled into voxels of 1×1×1 mm3 size using the SimpleITK

module (version 2.3.1) in Python (version 3.9.12) to standardize

voxel spacing. By default, B-Spline interpolation (order = 3) was

applied for image resampling, while Nearest-Neighbor interpolation
TABLE 1 Comparison of clinicopathology characteristics among the
groups.

Variables
GPC3-negative
(n = 75)

GPC3-positive
(n = 106)

P

Age, years 62.0 ± 10.5 58.1 ± 12.0 .024

Gender .097

Male, n (%) 63 (84.0%) 78 (73.6%)

Female, n (%) 12 (16.0%) 28 (26.4%)

HBsAg .053

Negative, n
(%)

20 (26.7%) 43 (40.6%)

Positive, n (%) 55 (73.3%) 63 (59.4%)

AFP, ng/mL <.001

< 10 41 (54.7%) 27 (25.5%)

≥ 10 34 (45.3%) 79 (74.5%)

DCP, mAU/mL .230

< 40 19 (25.3%) 19 (17.9%)

≥ 40 56 (74.7%) 87 (82.1%)

NE, ×109/L 3.2 ± 1.3 3.1 ± 1.3 .629

LYM, ×109/L 1.4 ± 0.5 1.5 ± 0.6 .246

M, ×109/L 0.4 ± 0.2 0.4 ± 0.2 .659

PLT, ×109/L 158.0 ± 63.4 163.6 ± 68.4 .576

ALT, U/L 28.3 ± 15.8 29.4 ± 20.2 .679

AST, U/L 28.5 ± 12.5 32.8 ± 21.4 .120

GGT, U/L 68.1 ± 69.2 78.8 ± 103.2 .436

TB, mmol/L 13.6 ± 6.2 14.6 ± 12.7 .510

ALB, g/L 40.1 ± 2.8 40.2 ± 3.0 .775

CRP, mg/L 10.2 ± 23.1 10.4 ± 20.6 .954

PT, seconds 11.5 ± 0.8 11.6 ± 0.8 .456

GLR† 53.3 ± 59.1 62.4 ± 91.3 .456

PNI† 47.1 ± 4.2 47.7 ± 4.4 .373

ANRI† 10.6 ± 7.0 12.9 ± 11.9 .141

NLR† 2.5 ± 1.6 2.2 ± 1.0 .135

MLR† 0.3 ± 0.1 0.3 ± 0.1 .174

APRI# 0.6 ± 0.4 0.7 ± 0.7 .364

FIB-4# 2.6 ± 1.7 2.8 ± 2.4 .691

GPR# 0.5 ± 0.6 0.6 ± 1.1 .353

Tumor number^ .280

Solitary, n (%) 66 (88.0%) 87 (82.1%)

Multiple, n
(%)

9 (12.0%) 19 (17.9%)

Tumor size, cm^ .476

(Continued)
TABLE 1 Continued

Variables
GPC3-negative
(n = 75)

GPC3-positive
(n = 106)

P

≤ 5 42 (56.0%) 65 (61.3%)

> 5 33 (44.0%) 41 (38.7%)

Macrovascular
invasion^

.423

Absent, n (%) 63 (84.0%) 84 (79.2%)

Present, n (%) 12 (16.0%) 22 (20.8%)
frontier
Continuous variables are presented as mean ± standard deviation (SD). †Inflammatory
markers. #Serum liver fibrosis diagnostic models. ^Preoperative imaging results.
HBsAg, hepatitis B virus surface antigen; AFP, alpha fetoprotein; DCP, des-g-carboxy
prothrombin; NE, neutrophil; LYM, lymphocyte; M, monocyte; PLT, platelet; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; GGT, g-glutamyl transferase; TB, total
bilirubin; ALB, albumin; CRP, c-reactive protein; PT, prothrombin time; GLR, g-glutamyl
transferase to lymphocyte ratio; PNI, prognostic nutritional index; ANRI, aspartate
aminotransferase to neutrophil ratio index; NLR, neutrophil to lymphocyte ratio; MLR,
monocyte to lymphocyte ratio; APRI, aspartate transaminase to platelet ratio index; FIB-4,
fibrosis-4; GPR, g-glutamyl transferase to platelet ratio.
Bold values indicate variables with P-values less than 0.2.
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(order = 1) was used for ROI masks to preserve segmentation

boundaries. The Python-based PyWavelets (version 1.3.0) package

was used to perform wavelet transforms on all contrast-enhanced CT

sequences to reduce image noise and normalize intensities. Finally,

the PyRadiomics (version 3.1.0) package was used to extract 1,316

radiomics features from seven image types for each ROI, including

shape features, first-order intensity features, and higher-order texture

features derived from available filters (e.g., wavelet, Laplacian of

Gaussian [LoG], and square) (17).

All 1,316 radiomics features extracted above were normalized

using the z-score before filtering features. Subsequently, the

intraclass correlation coefficients (ICCs) of the ROI features

extracted by the two authors were calculated using the irr package

(version 0.84.1) based on the R language (version 4.2.2), and

features with coefficients > 0.8 were retained. According to the

grouping of GPC3-positive and -negative, the most predictive

features for GPC3 status were screened using the least absolute

shrinkage and selection operator (LASSO) regression based on the

glmnet package (version 4.1-8). Then, the optimal set of features

was obtained at lambda.min using the 10-fold cross-validation.

Eventually, the logistic regression model for predicting GPC3 status

by radiomics features was built using the glm function of the R

language, and the Radscore was calculated (18).
Histopathological examination

The expression of GPC3 in HCC cells was evaluated using the

criteria proposed by Takai H et al. under a light microscope (19). At
Frontiers in Oncology 04
least five randomly selected high-power fields within representative

tumor areas were examined, and according to the proportion of

positive HCC cells (brown reaction product present in the cell

membrane and cytoplasm), expression grades were categorized into

0 to 3 +. Grade 0 corresponded to HCC cells with less than 5%

positivity, and grade 1+ indicated 5-10% positivity. Grades 2+ and 3+

represented 10-50% and more than 50% positivity, respectively.

Based on the above immunohistochemistry analysis, GPC3-positive

was defined as a positive cell rate ≥ 10% (grades 2+ and 3+)

(Supplementary Figure S1) (20). All liver resection specimens were

independently analyzed by two pathologists, and any disagreements

were resolved after discussion.
Statistical analysis and model development

The c2 and Mann-Whitney U tests were used to compare

whether there were differences between the two groups for

clinical variables. The subsequent multivariate logistic regression

analysis included variables with p<0.2 in the univariate analysis.

Similar to radiomics model (Radscore) establishment methods, the

glm function was used to establish clinical and combined models.

With the aim of using the combined model more conveniently, the

DynNom package was used to exploit a mobile online prediction

tool. At last, ROC curves, decision curve analyses (DCA), and

calibration curves were used to evaluate the diagnostic accuracy,

provided net benefit, and calibration of three models, respectively.

Since the entire dataset was utilized for model construction, 10-fold

cross-validation was performed for internal validation (21).
FIGURE 1

Extraction of radiomics features using the 3D Slicer software. Representative images of contrast-enhanced computed tomography (CT) arterial (A)
and venous (D) phases. (B, E) Regions of interest (ROI). (C, F) The 3D reconstruction of tumors.
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Results

Enrolled patients and baseline information

181 HCC patients from Nanjing Drum Tower Hospital who

met the inclusion criteria were included in this retrospective case-

control study. Supplementary Figure S2 is the detailed flowchart of

this study. Among them, 75 (41.4%) were GPC3-negative HCC, and

106 (58.6%) were GPC3-positive HCC. Then, the comparison of

clinical variables was performed between the two groups, as shown

in Table 1. AFP ≥ 10 ng/mL, age, HBsAg-negative, gender-female,

AST, NLR, ANRI, and MLR were more correlated with GPC3

expression (p<0.2). Lastly, as presented in Table 2, the multivariate

logistic regression identified four variables as independent

predictors for GPC3-positive (p<0.05) (Figure 2).
Frontiers in Oncology 05
Radiomics features analysis

746 features with ICCs > 0.8 were judged as stable features. The

subsequent LASSO regression analysis (Figures 3A, B) finally

identified five crucial radiomics features significantly related to

GPC3 expression. The details and weighting coefficients of

identified features were shown in Figure 3C. The calculation

formula of the Radscore was as follows, the Radscore = 1.041 +

0.668 × (wavelet.LHL.gldm.SmallDependenceEmphasis) + 0.403 ×

(wavelet.HHL.glszm.SizeZoneNonUniformityNormalized) + 0.371

× (wavelet.HHH.gldm. SmallDependenceHighGrayLevelEmphasis)

- 1.458 × (wavelet .HLL.firs torder .Median) - 0 .051 ×

(wavelet.LLL.gldm.LargeDependenceLowGrayLevelEmphasis).
Model development and evaluation

The radiomics model consisted of five features in the Radscore,

which had a sensitivity of 66.7%, a specificity of 76.4%, and an

AUROC of 0.722. In contrast, the clinical model included three

independent risk factors for GPC3-positive (AFP ≥ 10 ng/mL,

HBsAg-negative, and age), which had a sensitivity of 62.7%, a

specificity of 79.3%, and an AUROC of 0.724. To further improve

the diagnostic accuracy of models, an integrated nomogram model

incorporating the Radscore and clinical variables was established

(Figure 4A). The dynamic nomogram is freely available as a mobile

application at https://zheyuzhou.shinyapps.io/GPC3nomogram/

(the user interface is presented in Supplementary Figure S3). The

integrated model improved the AUROC to 0.794 (Figure 4B) with a

sensitivity of 85.9% and a specificity of 70.7%. Notably, the 95%

confidence interval (CI) of the AUROC obtained using 10-fold

cross-validation was 0.729-0.860 (Supplementary Figure S4). In

addition, DCA showed that the integrated model could provide a
TABLE 2 The multivariate analysis of GPC3-positive based on the
univariate analysis.

Variables OR (95% CI) P

AFP (≥ 10 ng/mL) 2.95 (1.50-5.89) .002

HBsAg (Negative) 0.33 (0.15-0.69) .004

Age 0.96 (0.93-0.99) .015

Gender (Male) 0.44 (0.17-1.04) .067

AST 1.03 (0.99-1.06) .137

ANRI 0.97 (0.91-1.03) .321

NLR 0.85 (0.56-1.19) .369

MLR 0.49 (0.01-22.63) .709
GPC3, glypican-3; OR, odds ratio; CI, confidence interval; AFP, alpha fetoprotein; HBsAg,
hepatitis B virus surface antigen; AST, aspartate aminotransferase; ANRI, aspartate
aminotransferase to neutrophil ratio index; NLR, neutrophil to lymphocyte ratio; MLR,
monocyte to lymphocyte ratio.
Bold values indicate variables with P-values less than 0.05.
FIGURE 2

Clinical variables and the Radscore significantly associated with glypican-3 (GPC3)-positive expression. (A) Alpha-fetoprotein (AFP). (B) Hepatitis B
virus surface antigen (HBsAg). (C) Age. (D) The radscore.
frontiersin.org

https://zheyuzhou.shinyapps.io/GPC3nomogram/
https://doi.org/10.3389/fonc.2025.1640697
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2025.1640697
higher net benefit than the radiomics model and the clinical model

(Figure 4C). The calibration curves demonstrated close agreement

between predicted GPC3 and actual GPC3 status (Figures 4D-F).
Discussion and conclusion

The 5-year survival rate for advanced HCC patients is

approximately 12% worldwide (22). At the same time, the 5-year

cumulative recurrence rate for early and intermediate HCC patients

treated with surgical resection, liver transplantation or ablation can

be as high as 70% (23). Hence, exploring new therapeutic targets to

improve the prognosis of advanced and recurrent patients is crucial

to enhancing the overall long-term survival of HCC.

GPC3 has been proven to be a potential therapeutic target for

HCC. Several phase I clinical trials have verified that chimeric

antigen receptor (CAR)-GPC3-T cell therapy is safe for advanced

HCC patients. Meanwhile, initially effective anti-tumor activity was
Frontiers in Oncology 06
observed (24, 25). Novel therapeutic strategies combining

nanotechnology and CAR-T cell therapy are even providing new

directions to enhance anti-tumor effects (26, 27). Moreover, it was

worth noting that two previous phase II trials using GPC3-derived

peptide vaccine as adjuvant therapy after radical procedures or

radiofrequency ablation confirmed that the peptide vaccine

significantly reduced recurrence of HCC, especially in GPC3-

positive patients (28, 29). However, identifying target populations

with high GPC3 expression is an essential issue in future clinical

trials and clinical practice. In other words, GPC3-negative HCC

patients cannot benefit from this targeted therapy.

Liver biopsy is the gold standard for assessing the nature and

severity of liver diseases. A biopsy specimen measuring

approximately 1/50000 of the total liver mass may not be

representative of the entire liver parenchyma (30). On the other

hand, the specimen’s length and diameter may affect the accuracy of

the assessment (31). Clinically diagnosed intermediate to advanced

HCC patients require liver biopsy for definitive pathological
FIGURE 3

Screening of the most predictive radiomics features for glypican-3 (GPC3) status. (A, B) The process of the least absolute shrinkage and selection
operator (LASSO) regression. (C) The coefficients of five crucial radiomics features.
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diagnosis prior to targeted therapy and immunotherapy. Since HCC

has been proven to have extensive intra-tumor heterogeneity (32),

the GPC3 expression status of biopsy specimens may be biased.

Besides, advanced HCC is often combined with liver cirrhosis,

which results in thrombocytopenia and coagulation disorders that

increase the risk of biopsy-induced bleeding. The risk of needle tract

implantation metastasis of HCC may also deprive some patients of

conversion therapies (15). Therefore, radiomics, as an emerging

noninvasive diagnostic method, has crucial advantages in predicting

overall GPC3 expression in tumors. Although the radiomics

features screened in this study (one first order feature and four

grayscale texture features) were not present in previous HCC-

related radiomics studies, SmallDependenceEmphasis was used to

predict the infiltration status of CD8+ T cells prior to tumor

treatment in head and neck squamous cell carcinomas (33),

whereas SizeZoneNonUniformityNormalized was found to

correlate with tumor grading (34). Moreover, Mukherjee S et al.

reported that first order. Median was valuable in the early detection

of pancreatic ductal adenocarcinoma (35). These suggested that

CT-based radiomics could effectively reflect tumor heterogeneity.

In this study, age was found to be a protective factor for GPC3-

positive, consistent with the findings of Zhang N et al. (20). The worse

prognosis of GPC3-positive patients may be associated with higher

tumor invasiveness in this subtype of HCC, manifested by more

frequent vascular invasion, higher tumor number, and later tumor

staging (36, 37). A basic study explored the potential mechanism of this
Frontiers in Oncology 07
phenomenon. HCC cells HepG2 expressing high levels of GPC3 had

significant epithelial-mesenchymal transition-like alterations.

Simultaneously, cell scratch and transwell assays confirmed that

these cells had enhanced migration and invasion capabilities (37). Of

note, a previous analysis based on 10,145 patients from the Surveillance

Epidemiology and End Results (SEER) database showed that the later

the tumor stage at diagnosing HCC, the younger the patient and the

faster the HCC growth (38). Another large-sample retrospective study

also reported that younger patients had more aggressive tumor factors

(39). This might explain why younger HCC patients are more likely to

express GPC3.

AFP is a traditional biomarker for HCC (40). AFP-secreting HCC

is more aggressive than AFP-negative HCC, and single-cell sequencing

revealed that AFP-positive HCC patients had a suppressive tumor

immune microenvironment (41). Bevacizumab plus atezolizumab has

emerged as a first-line systemic treatment option for advanced HCC

patients. In-depth molecular analysis demonstrated that high AFP and

GPC3 (oncofetal genes) expressions were associated with reduced

clinical benefit (10). This confirmed that there might be a

consistency in AFP and GPC3 expression in HCC patients with poor

prognosis. Furthermore, initial and updated meta-analyses verified that

combining elevated AFP and GPC3 could improve the accuracy of

diagnosing HCC (42, 43). Since Morford LA et al. reported that AFP

regulator 2 is also a regulator of GPC3 (44), this explains the regulatory

mechanism why AFP-positive (≥ 10 ng/mL) is a risk factor for

GPC3-positive.
FIGURE 4

The establishment and evaluation of models. (A) The integrated nomogram incorporating clinical variables and the Radscore. Receiver operating
characteristic (ROC) curves (B), decision curve analyses (DCA) (C), and calibration curves (D-F) of three established models.
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A previous study reported that 5 features selected from the contrast-

enhanced CTAP in combination with AFP could predict GPC3-positive

expression. However, the authors did not provide a formula for the

Radscore or construct a nomogram model (45). In other words, readers

cannot refer to this result for clinical prediction. The development of a

mobile application based on the user-friendly nomogram represents a

major strength and a key novelty of this study. In addition, features were

simultaneously extracted from both the AP andVP in our study, thereby

fully utilizing the information provided by contrast-enhanced CT

imaging. These help physicians’ clinical decision-making and provides

a stronger foundation for predicting GPC3 expression in HCC patients

based on contrast-enhanced CT radiomics.

The nature of a single-center retrospective study is a major

limitation of this study, which limited the sample size and inevitably

led to selection bias. For instance, previous studies reported that HBsAg-

positive was associated with GPC3-positive. Gong L et al. reported that

out of 80 GPC3-positive HCC patients, 62 (77.5%) were HBsAg-

positive. In contrast, in 22 GPC3-negative patients, the percentage

was only 31.8% (7/22) (46). Moreover, a study including 755 HCC

patients showed that HBsAg-positive rates in GPC3-positive and

-negative patients were 78.7% and 72.1%, respectively (p=0.042) (47).

Since patients lacking preoperative contrast-enhanced CT and DCP

were excluded from this study among consecutive patients, the resulting

selection bias could be the reason why HBsAg-negative is a predictor of

high GPC3 expression. However, consecutive patients were strictly

screened based on the predefined criteria to minimize bias. Although

the lack of an external validation cohort prevents the generalizability of

the model from being fully verified, 10-fold cross-validation is a well

acknowledged approach to improve the model stability. We presented

comprehensive baseline data to allow comparison with other

populations, but multi-center studies are still required to validate our

findings in the future.

In conclusion, our clinical prediction tool identified GPC3

status satisfactorily and might be helpful in clinical decision-

making as the intra-tumor heterogeneity of HCC and potential

complications brought by liver biopsy. For surgeons, early

identification of high-risk GPC3-positive patients (risk

stratification) may assist in adopting a wider resection margin or

anatomical hepatectomy. For oncologists, the proposed nomogram

may help identify appropriate candidate populations for enrollment

in future GPC3-related clinical trials. For pathologists, our model

may serve as a reference to improve diagnostic accuracy.
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