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Systemic therapy remains the cornerstone of treatment for recurrent and
metastatic (R/M) head and neck squamous cell cancers (HNSCC). However,
there is a dearth of effective treatments beyond platinum combinations, anti-
programmed death-1 (PD-1) agents and the epidermal growth factor receptor
(EGFR)-targeting monoclonal antibody cetuximab. Recent years have seen
several exciting new agents being tested in clinical trials. These are designed to
target alternate oncogenic signaling pathways and have novel mechanistic
compositions, including bi-specific antibodies and antibody-drug conjugates.
This review will delve into the clinical limitations of currently approved systemic
therapies, explore newer agents in development and highlight ongoing clinical
trials using targeted therapies in this disease.
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Introduction

Squamous cell cancers of the head and neck (HNSCC) are a heterogeneous group of
malignancies that develop in the upper aerodigestive tract, which includes the oral cavity,
pharynx, and larynx. This disease accounts for 4.7% of cancer-related deaths worldwide
and ranks as the sixth most common malignancy (1). Risk factors for HNSCC include
excessive tobacco or alcohol use and oncogenic viral infections, such as the human
papillomavirus (HPV) and Epstein-Barr virus (EBV) (2). Despite a gradual decline in
smoking rates, the overall incidence of HNSCC continues to rise, driven largely by HPV-
associated oropharyngeal cancers (3). More than 60% of HNSCC tumors are diagnosed at a
locally advanced stage and are treated with curative intent therapy. This treatment is
tailored to the tumor’s extent, the primary tumor site, and the risk of functional
impairment. For early-stage disease, either single-modality surgery or radiation therapy
(RT) is typically sufficient, with the choice depending on functional assessment and patient
preference. In contrast, aggressive multimodal treatment is used for locally advanced
disease. Nevertheless, up to 40% of patients may still experience locoregional recurrences
and/or distant metastases (4, 5).

Systemic therapy is the mainstay of treatment for unresectable locoregionally recurrent
HNSCC as well as for distant disease. In 2006, cetuximab became the first, and to-date, only
targeted therapy to be FDA approved for the treatment of HNSCC. This approval came on
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the basis of improved locoregional control (LRC) and overall
survival (OS) when used in combination with RT versus RT alone
for patients with locally advanced disease (6). It was also approved
in the second-line treatment of recurrent or metastatic (R/M)
HNSCC, after progression on platinum-based chemotherapy,
based on a 13% overall response rate (ORR) in a multi-center
phase 2 trial (7). And in 2011, cetuximab was granted frontline
approval in combination with platinum-fluorouracil chemotherapy
in R/M HNSCC based on improved OS compared to platinum
doublet chemotherapy alone in the phase 3 EXTREME trial (8, 9).

Subsequently, agents targeting the immune checkpoint
programmed death-1 (PD-1), were investigated in R/M HNSCC.
Nivolumab and pembrolizumab both demonstrated clinical activity
in platinum-resistant patients in the CheckMate-141 and
KEYNOTE-012 trials respectively and were granted FDA
approval in the second-line setting in 2016 (10, 11). KEYNOTE-
048 was a randomized phase 3 trial which demonstrated improved
OS in patients randomized to pembrolizumab plus chemotherapy
compared with cetuximab plus chemotherapy as well as improved
OS in the subgroup of patients with programmed death-ligand-1
(PD-L1) combined positive score (CPS) =1 HNSCC, when
randomized to pembrolizumab as a single agent compared with
cetuximab plus chemotherapy (12). This trial led to pembrolizumab
being approved in the first-line treatment of R/M HNSCC in 2019.
Despite these recent advances in systemic therapy, median OS
(mOS) for patients diagnosed with R/M HNSCC is approximately
13 months, and there is a critical unmet need for more efficacious
and well-tolerated agents and combinations (13).

Recent developments in HNSCC treatment have focused on
testing novel combinations of immune checkpoint therapies as well
as targeted therapies, with the intent to benefit a greater proportion
of patients. The remainder of this review will focus on promising
targeted therapies and their mechanisms of action.

Role of epidermal growth factor
receptor targeting in HNSCC

EGFR is a transmembrane glycoprotein receptor that is a
member of the Erythroblastic Leukemia Viral Oncogene
Homolog (ErbB) family of receptor tyrosine kinases (RTKs). Up
to 90% of HNSCC cases demonstrate overexpression of EGFR, and
this has been linked to treatment resistance and poor prognosis
(14). The binding of the EGF and transforming growth factor-alpha
(TGF-0) ligands and the subsequent activation of EGFR signaling
pathways initiate a cascade of intracellular processes that promote
proliferation and metastasis via the RAS/RAF/MAPK pathway,
survival and therapeutic resistance through the PI3K/AKT/mTOR
pathway, and immune evasion and angiogenesis through the JAK/
STAT pathway (15, 16).

Given the central role of EGFR in HNSCC tumor biology,
multiple agents have been tested to inhibit this signaling pathway.
Most importantly, the only currently approved therapy, Cetuximab,
is a chimeric monoclonal antibody (mAb) that blocks ligand
binding to the extracellular domain of EGFR. The effect of
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Cetuximab extends beyond the inhibition of EGFR signaling. It
engages immune effector cells via its Fc region, triggering the release
of cytotoxic molecules and resulting in cancer cell death, a
mechanism known as antibody-dependent cellular cytotoxicity
(ADCC) (17-21). However, only a small minority of patients
benefit from cetuximab monotherapy, and responses are not
durable (7). Panitumumab has emerged as an alternative
monoclonal antibody to cetuximab. While it binds to the
extracellular domain of the EGFR, it has limited ADCC compared
to cetuximab. The CONCERT-1 trial, which enrolled patients with
locally advanced HNSCC, found no benefit with adding
panitumumab to standard chemoradiation (22). Furthermore, the
CONCERT-2 trial demonstrated that panitumumab was less
effective than cisplatin when combined with RT (23). Therefore,
panitumumab is not routinely recommended for the treatment of
HNSCC. EGFR tyrosine kinase inhibitors (TKIs) such as erlotinib,
gefitinib, and afatinib are small molecules that bind competitively to
the ATP-binding domain in the intracellular portion of EGFR,
inhibiting autophosphorylation and the subsequent downstream
signaling of the receptor (24, 25). Despite promising preclinical
studies, most TKIs have demonstrated limited efficacy in clinical
trials in HNSCC (26).

To better understand why only a subset of patients respond to
EGEFR inhibition and why even responders rarely achieve a lasting
effect, preclinical studies have been conducted to clarify the
resistance mechanisms that hinder the effectiveness of cetuximab
and TKIs. These mechanisms are categorized as inherent; those
associated with the tumor’s genomic makeup, and acquired, which
develop in response to therapy (see Figure 1). Inherent resistance
mechanisms include de novo mutations of downstream proteins
such as PI3K, KRAS, and BRAF, resulting in EGFR-independent
activation of their associated pathways (27-29). Inherent resistance
also exists through alternative compensatory RTK pathways such as
HER2, MET, and IGF-1R (30-32). The activation of these
alternative oncogenic pathways allows tumors to maintain
proliferation, survival, and immune evasion despite
EGEFR inhibition.

On the other hand, acquired resistance involves mechanisms
that occur in response to treatment and typically reflect the
evolution of tumor biology. A prime example of acquired
resistance in EGFR is the well-studied gatekeeper mutation
T790M in non-small-cell lung cancer (NSCLC). This mutation,
found in EGFR exon 20, accounts for up to 60% of resistance to
Gefitinib in NSCLC (33, 34). It increases the affinity of ATP for
binding to EGFR, which impairs gefitinib’s ability to inhibit EGFR
signaling. In response, the third-generation TKI Osimertinib was
developed to preferentially bind and overcome the effects of mutant
EGFRs, including those harboring the T790M mutation in NSCLC.
Osimertinib has had great success in NSCLC, with evidence of
improved progression-free survival (PES), objective response rate
(ORR), and intracranial response rate in the AURA2 and AURA3
trials (35, 36). However, in HNSCC, the genomic landscape differs
from that in NSCLC. Activating mutations like those in T790M are
rare in HNSCC. Rather, HNSCC cells tend to upregulate and
overexpress preexisting RTK pathways, including HER2, HER3,
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FIGURE 1
Mechanisms of resistance to EGFR inhibition.
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and MET (37-39). Additionally, a key process in HNSCC resistance
and metastasis is the epithelial-to-mesenchymal transition (EMT),
during which neoplastic epithelial cells acquire mesenchymal
properties that enable them to migrate, seed, and propagate
throughout the body (40, 41). Key factors in EMT include EGF
and TGF-B. The binding of these ligands to their respective
receptors (EGFR and TGF-B-R) activates transcription factors
such as Snail, Twist, and Slug, leading to the disruption of cell-
cell adhesion, impaired apical-basal cell polarity, and upregulation
of mesenchymal proteins (42-44) (Figure 2).

Next-generation EGFR inhibitors

Beyond Cetuximab and tyrosine kinase inhibitors (TKIs),
additional EGFR inhibitors have been developed, with
Nimotuzumab being a notable example. Nimotuzumab is a novel
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humanized monoclonal antibody that targets EGFR (45). Like
Cetuximab, Nimotuzumab binds to the extracellular domain of
EGEFR, preventing its ligands, EGF and TGF-a, from attaching and
activating the receptor (46). However, unlike Cetuximab, which
binds strongly and monovalently to individual EGFR molecules,
Nimotuzumab binds bivalently and with intermediate strength (47).
Nimotuzumab thus requires attachment to two EGFR molecules on
the cell surface, allowing it to selectively target cells with moderate
to high levels of EGFR expression. This unique binding mechanism
helps minimize off-target receptor interactions, thereby reducing
potential side effects. Furthermore, nimotuzumab has been shown
to maintain the active conformation of the EGFR receptor, which is
necessary for ligand-independent basal signaling and essential for
normal cell function (45).

Early phase I and II trials with Nimotuzumab demonstrated
that it is better tolerated, particularly from a standpoint of
dermatologic adverse events (48). Since EGFR is highly expressed
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in skin epithelial cells, dermatologic toxicities are common with
EGEFR inhibitors, especially during the initial weeks of treatment
(49, 50). However, due to its unique binding method,
Nimotuzumab has demonstrated a significantly lower incidence
of infusion reactions and skin-related toxicities (51). A single-center
phase III randomized clinical trial comparing cisplatin-based
chemoradiation (CRT) alone versus CRT with Nimotuzumab in
536 patients with newly diagnosed, treatment-naive, locally
advanced HNSCC showed improved PFS (hazard ratio (HR) 0.69;
P = .004), disease-free survival (DFS) (HR, 0.71; P = .008), and a
trend to improved OS (HR, 0.84; 95% CI, 0.65-1.08; P = .163) with
the addition of nimotuzumab (52). A meta-analysis of randomized
controlled trials, including 1012 cases of locally advanced HNSCC
and comparing Nimotuzumab combined with RT or CRT to CRT
alone or RT alone also showed improved OS (HR 0.75, P<0.05), PES
(HR 0.69, P<0.05), ORR (Risk Ratio [RR] 1.32, P<0.05), and
complete response rate (CRR) (RR 1.52, P<0.05) with the
addition of nimotuzumab (53).

While not FDA-approved for clinical use in the United States
(US), Nimotuzumab is used in the treatment of HNSCC in other
countries such as India, China, and Argentina.

Approaches combining EGFR
inhibitors

Recent trials have investigated the vertical inhibition of EGFR
signaling through the combination of a mAb and a TKI. In a phase 2
trial involving 24 patients with treatment-naive R/M HNSCC, the
combination of chemotherapy, cetuximab, and erlotinib (added
starting with cycle 2) resulted in an ORR of 58% and a median PFS
(mPFS) of 5.2 months. When compared to historical data from the
EXTREME trial, this dual-blockade approach achieved a relatively
high response rate. Importantly, it also demonstrated a tolerable
safety profile, with the most common toxicities being anemia,
neutropenia, and skin rash (54). Similarly, in a single-arm phase
2 study that enrolled 50 patients, the majority of whom had
platinum- and anti-PD-1-refractory R/M HNSCC, the
combination of cetuximab and afatinib resulted in an ORR of
23.4%. This response was primarily driven by the pl6-negative
subgroup, which had an ORR of 38.5% and a mPFS of 3.8 months.
In contrast, the p16-positive cohort had a mPFS of 1.8 months. The
most common adverse events reported included diarrhea, anemia,
and rash (55). This suggests that dual EGFR blockade with an anti-
EGFR mAb and TKI could potentially overcome cetuximab
resistance for some patients, particularly those with HPV-
negative disease.

Another Phase 2 randomized trial compared cetuximab and
afatinib in 124 patients with platinum-refractory R/M HNSCC,
permitting crossover to the other treatment arm upon disease
progression or intolerable adverse events. The response was
assessed by both the investigator (IR) and an independent central
review (ICR). The ORR was 16.1% for afatinib and 6.5% for
cetuximab by IR (P = 0.09), while the rates by ICR were 8.1% for
afatinib and 9.7% for cetuximab (P = 0.78). Disease control rate
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(DCR) was 50% for afatinib and 56.5% for cetuximab by IR (P =
0.48). After crossover, DCR was 38.9% for patients who switched
from cetuximab to afatinib and 33.3% for those switching from
afatinib to cetuximab by IR, while both groups showed an 18.8%
control rate by ICR. This suggests a partial non-cross-resistance
between the two EGFR inhibitors, potentially allowing for an
extension of clinical benefit. However, drug-related adverse events
(DRAES) in 23% of patients treated with afatinib led to treatment
discontinuation, indicating an unfavorable side effect profile (56).

Combining monoclonal antibodies
targeting different RTKs

Blocking EGFR with cetuximab is limited by compensatory
signaling through parallel RTKs. A key strategy to overcome this
limitation is to combine multiple mAbs targeting different RTKs,
which helps block crosstalk and aids in resensitizing resistant
tumors. Dysregulation of c-MET signaling, triggered by its ligand
hepatocyte growth factor (HGF), has been implicated in driving
cetuximab resistance, particularly in HPV-negative HNSCC (57).
Recent trials have investigated targeting the HGF/c-MET pathway
for its therapeutic potential. In a multicenter, non-comparative
Phase 2 trial involving 58 patients with platinum- and cetuximab-
refractory R/M HNSCC, patients were assigned to receive either
ficlatuzumab (an anti-HGF IgGl) alone or in combination with
cetuximab. The combination arm achieved a mPFS of 3.7 months
and an ORR of 19%. Notably, the HPV-negative cohort experienced
the most significant benefit, with an ORR of 38% and a mPFS of 4.1
months. This benefit was further enriched in cases with high c-MET
expression. However, the monotherapy arm demonstrated futility
and was therefore discontinued early. The most commonly
observed adverse events in the combination group included
acneiform rash, hypoalbuminemia, and edema (58). Based on
these findings, a global double-blind phase 3 trial, (FIERCE-HN)
is currently enrolling patients (NCT06064877). This trial compares
the effectiveness of cetuximab combined with ficlatuzumab against
cetuximab combined with a placebo. The results may be practice-
changing and could guide future strategies for targeting parallel
signaling pathways to address cetuximab resistance.

Recent studies have investigated the role of HER3 (ErbB3) as a
RTK to overcome resistance to cetuximab. In a multicenter, Simon
two-stage phase 2 trial involving 30 patients with HPV-negative,
cetuximab-resistant R/M HNSCC, cetuximab was combined with
an anti-ErbB3 monoclonal antibody CDX-3379. The ORR was 6.7%
(2/30), and the mPFS was 2.2 months. Unfortunately, this
combination was associated with high toxicity, as 53% of patients
experienced grade 3 or higher treatment-related adverse events,
leading to dose reductions in 70% of cases. Although the concept of
dual targeting of EGFR and ErbB3 appeared promising from a
mechanistic perspective, the clinical results showed only modest
efficacy and high toxicity, making it unsuitable for further
development (59).

Combinatorial strategies in RTK targeting can be effective;
however, success may hinge on key factors such as selecting
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combinations with acceptable tolerability and targeting the right
compensatory pathways in genomically preselected patients.

Bispecific antibodies in HNSCC

With advancements in antibody engineering, novel bispecific
antibodies (BsAbs) are an emerging group of drugs being
investigated in the treatment of HNSCC. BsAbs can target and
crosslink two distinct epitopes, either on the same cell or on two
nearby cells. There are two major classes of BsAbs currently being
tested in HNSCC: the first is dual-targeting BsAbs, which bind to
two different antigens expressed on cancer cells. The second class is
T-cell engagers (TCEs), which bind a T-cell receptor, such as CD3,
and a tumor-associated antigen. This interaction stimulates targeted
cytotoxicity against cancer cells (60).

In 2024, the FDA granted Petosemtamab (formerly MCLA-158)
a breakthrough therapy designation. This BsAb targets both EGFR
and the leucine-rich repeat-containing G-protein-coupled receptor
5 (LGRS5), a stem cell marker linked to the Wnt signaling pathway.
Petosemtamab was identified through large-scale functional
screening in patient-derived organoids and demonstrated an
ability to trigger EGFR degradation and inhibit growth in
colorectal cancer cells (61). In addition, it possesses enhanced
ADCC and antibody-dependent cellular phagocytosis (ADCP)
activity, promoting recognition and elimination of malignant
cells. In a phase 2 study of Petosemtamab monotherapy in
patients with platinum- and anti-PD-1-refractory R/M HNSCC,
the ORR was 40.4% (19 out of 47 patients), the mPFS was 5.1
months, and the mOS was 12.5 months. The most common
treatment-emergent adverse event observed was acneiform
dermatitis, occurring in 37% of patients (62). When
Petosemtamab was combined with pembrolizumab as a first-line
treatment for PD-L1-positive R/M HNSCC, the recently updated
ORR was 60% (26 out of 43 patients). Here, the median duration of
response was 11 months, and the Kaplan-Meier estimate of OS at 6
months was 93% (mOS was not reached). The most frequent
adverse events were acneiform dermatitis (49%), asthenia (49%),
and rash (44%) (63). While the pivotal phase 3 trial (NCT06525220)
is underway, the early, promising findings for Petosemtamab
position it at the forefront of its class.

A key strategy employed by the novel BsAbs is simultaneously
targeting different RTK pathways. This strategy seeks to prevent
compensatory upregulation of alternative RTK pathways when one
pathway is inhibited, thereby preventing drug resistance. BCA101
(ficerafusp) is another promising BsAb, which is designed by fusing
an anti-EGFR mAb with the extracellular binding domain of a TGF-
B receptor. The anti-EGFR component of BCA101 functions
similarly to cetuximab by binding to and blocking EGFR.
Meanwhile, the TGF-f binding domain serves to sequester TGF-f3
molecules. This unique first-in-class bifunctional design allows for
the inhibition of two major signaling pathways involved in HNSCC
growth, survival, and immune evasion. In xenograft models,
BCA101 could localize to tumors, neutralize 90% of TGF-B
molecules, and show durable tumor growth suppression (64). A
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phase 1 trial of BCA101 alone or combined with pembrolizumab in
advanced solid tumors demonstrated tolerability and safety. The
most common adverse effect was rash (70%), in addition to fatigue,
pruritus, and epistaxis (65). Building on these results, a dose
expansion study (NCT04429542) of combination BCA101 and
pembrolizumab in thirty-nine efficacy-evaluable patients with
treatment-naive, R/M HNSCC and with tumor PD-L1 CPS > 1
reported an ORR of 54%. Most of the benefit was observed in HPV-
negative patients; this subset had a confirmed ORR was 64%.
Median PFS was 7.4 months for the entire cohort and 9.8 months
in the HPV-negative subset. The median OS rate was 61.5% (66).
The most common adverse event of any grade was an acneiform
rash, occurring in 75% of the patients (67). The randomized phase
2/3 FORTIFI-HNOI1 trial is currently enrolling patients to
investigate this combination in the first-line treatment of R/M
HNSCC (NCT06788990).

Another agent in development, SI-B001, is a BsAb designed to
target both EGFR and HER3. In vivo studies using xenograft models
demonstrated that SI-B001, when used as a monotherapy, is more
effective than cetuximab in inhibiting tumor growth. Furthermore,
when SI-B001 was combined with carboplatin and paclitaxel in
xenograft models, it produced a synergistic antitumor effect that
surpassed the results of cetuximab used alongside the same agents
(68). Two phase II clinical trials reported promising results with SI-
B001 in R/M HNSCC. The S209 monotherapy trial evaluated SI-
BO001 alone in patients with R/M HNSCC who had progressed on
prior anti-PD-1/L1 therapy plus platinum-based chemotherapy and
demonstrated an ORR of 22.2% (2/9) with a mPFS of 2.7 months
(95% CI: 1.8-7.9) (69). Hypomagnesaemia was the most common
grade 23 treatment-related adverse event (TRAE) in the
monotherapy trial, with an incidence of 9%, suggesting a good
safety profile but modest efficacy in heavily pretreated HNSCC
patients. The S206 combination therapy trial also included patients
with R/M HNSCC who had progressed on prior anti-PD-1/L1
therapy, either alone or in combination with platinum-based
chemotherapy, and had received <2 prior lines of treatment. In
this trial, patients were administered either SI-B001 combined with
paclitaxel (Group A) or SI-B001 combined with docetaxel (Group
B). Group A had an ORR of 64.3% with a mPFS of 5.6 months (95%
CI: 5.1-6.3). Group B had an ORR of 12.5% with a mPFS of 1.9
months (95% CI: 1.2-3.7). The combination of SI-B001 with
paclitaxel was therefore determined to be worthy of
further investigation.

Additional BsAbs are currently being developed to target
various RTK pathways in HNSCC. A notable example is the
targeting of the mesenchymal-epithelial transition factor c-MET,
a proto-oncogene recognized for its role in promoting oncogenesis
in several malignancies, including HNSCC. c-MET is overexpressed
in HNSCC and is particularly relevant in HPV-negative disease, as
it drives survival, proliferation, and metastasis (70). The binding of
the HGF ligand to its receptor c-MET activates major signaling
kinases such as MAPK and PI3K-associated pathways, activating
downstream cell cycle regulators (71). MCLA-129 is a new BsAb
that is currently under investigation, specifically designed to target
both EGFR and ¢-MET. Like previously discussed BsAbs, MCLA-
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129 is engineered with enhanced ADCC and ADCP activity (72). In
a phase 1/2 trial (NCT04868877), MCLA-129 was administered in
18 R/M HNSCC patients every two weeks in 28-day cycles (73). The
median duration of exposure was 8 weeks. Among the 12 evaluable
patients, 17% (2/12) achieved an unconfirmed partial response, with
a disease control rate (DCR) of 67% (95% CI: 35-90%). The most
common adverse events included infusion-related reactions (72%)
and skin toxicity (61%).

As a class of therapeutics, BsAbs have the potential to advance
the management of HNSCC. Perhaps the most promising and
farthest along in development are Petosemtamab and Ficerafusp.
Preliminary efficacy results of these agents in combination with
pembrolizumab have demonstrated their ability to significantly
improve response rates and survival, particularly in the high-risk
HPV-negative population. However, the simultaneous targeting of
different receptors that are ubiquitously expressed in both
malignant and healthy tissues increases the risk of off-target
effects and overlapping toxicities, leading to a broader range of
side effect profiles. Current early-phase clinical trials lack long-term
efficacy data, resulting in a limited understanding of the durability
of responses to these therapies. Previous experience, for instance
with the LEAP-010 trial of pembrolizumab plus Lenvatinib, has
taught us that not all promising early-phase trial combinations go
on to succeed in a phase 3 trial setting, possibly due to treatment-
related toxicities necessitating dose reduction or treatment
discontinuation (74). Thus, larger phase 2 and 3 trials with
extended follow-up are essential to validate current studies’ safety
and efficacy.

Antibody-drug conjugates

Among the many exciting developments in cancer therapies,
Antibody-Drug Conjugates (ADCs) are particularly promising, as
they combine the therapeutic potential of targeted therapy with that
of cytotoxic chemotherapy. ADCs are designed using an mAb
covalently linked to a cytotoxic payload, targeting a specific
tumor antigen (75). Once the ADC binds the cell surface
receptor, the ADC-receptor complex is endocytosed, allowing for
the delivery of the cytotoxic payload intracellularly. The payload
can also permeate the cell membrane and exert its anti-cancer effect
on surrounding bystander cells (76). In the past decade, ADCs have
shown clinical efficacy against various solid tumors, including
breast, cervical, gastric, urothelial, and ovarian cancers. They have
also proven effective in treating hematological malignancies, such as
acute myeloid leukemia, hairy cell leukemia, diffuse large B-cell
lymphoma, and Hodgkin lymphoma. Many of these treatments
have received FDA approval (77-79).

Currently, there are no approved ADC therapies for clinical use
in HNSCC, but several agents are undergoing investigation in phase
1 and 2 trials. One such agent is MRGO003 or becotatug vedotin, a
humanized anti-EGFR IgG1 that is conjugated to monomethyl
auristatin E (MMAE) via a cleavable valine-citrulline linker. In a
phase 2a trial involving patients with R/M nasopharyngeal
carcinoma who had previously failed platinum-based and/or PD-
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L1 therapies, MRG003 demonstrated an ORR of up to 55.2% and a
DCR of 86.2% at the higher dosage of 2.3 mg/kg. The most
frequently reported TRAEs were dermatological, with 49.2% of
patients experiencing a rash (80). In a Phase 1/2 study that
combined MRGO003 with Pucotenlimab, a recombinant
humanized PD-1 inhibitor, antitumor effects were observed. In
treatment-naive patients with EGFR-positive HNSCC, the
combination regimen achieved an ORR of 60% and a DCR of
80%. In a recently reported randomized trial of 173 R/M, heavily
pre-treated nasopharynx cancer (NPC) patients received MRG003
2.3 mg/kg every 3 weeks or investigator’s choice chemotherapy (81).
ORR was 30.2% in the MRG003 arm versus 11.5% with standard
chemotherapy (p value 0.0025), median PFS was 5.82 months
versus 2.83 months with chemotherapy (p value 0.0146) and OS
data was not mature. Collectively, this data suggests its potential to
provide significant antitumor activity in both treatment-naive and
heavily pretreated HNSCC and NPC patients, and more so when
administered in combination with an anti-PD-1 agent.

Another agent in early investigation is ozuriftamab vedotin
(BA3021), a conditionally binding ROR2-ADC, using MMAE as the
cytotoxic payload (82). ROR2 is a transmembrane protein RTK
enriched in several tumor types. In HNSCC, its overexpression is
driven by HPV-associated E6 and E7 oncoproteins (83).
Ozuriftamab vedotin is an ADC designed to bind to ROR2 under
low pH conditions of the tumor microenvironment, thus reducing
off-target toxicity by sparing normal tissue and improving
pharmacokinetics (84). In a phase 1 trial (NCT03504488), the
recommended phase 2 dose was established at 1.8 mg/kg. This
dose was tested in two different schedules in a phase 2 trial in 40
patients with R/M, chemotherapy- and anti-PD-1 refractory
HNSCC. Every two weeks dosing was found to be tolerable and
effective. Among 11 evaluable patients with HPV-associated
HNSCC, ORR was 45%, median PFS was 4.8 months and median
OS was 11.6 months. Most adverse events were low grade,
commonest high-grade events were nausea, diarrhea, cytopenias
and neuropathy.

Other emerging ADC therapies include tisotumab vedotin and
enfortumab vedotin. Tissue factor is known to be aberrantly
expressed in various squamous tumor cells, including HNSCC.
Tisotumab vedotin (TV) is a first-in-class ADC that was
developed by linking an anti-tissue factor IgG1 antibody with the
antimitotic payload MMAE. Once the ADC is internalized by
tumor cells, it triggers apoptotic cell death and induces bystander
cytotoxicity (85). In the phase 2 InnovaTV 207 trial, TV treatment
in 40 patients with R/M HNSCC demonstrated an ORR of 32.5%.
The median time to response was 1.4 months, and the DOR was 5.6
months. Grade three or higher TRAE were observed in 25% of
patients, with peripheral neuropathy being the most common,
affecting 12.5% of patients. These findings suggest a clinically
meaningful and durable response in pan-refractory R/M HNSCC
with a tolerable safety profile for TV (86).

Nectin-4 is expressed in up to 86.2% of HNSCC and is
significantly enriched in pl6-positive tumors and never-smokers
(87). The ADC enfortumab vedotin (EV) is an anti-Nectin-4 IgG1
antibody conjugated to MMAE. In the single-arm, two-stage Phase
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TABLE 1 Summary of recent trials testing novel targeted therapies in HNSCC.

Agent(s) and

design

Population

Endpoints

Outcomes

10.3389/fonc.2025.1640960

Development stage

Randomized phase 2:

R/M HNSCC refractory to anti-

ORR 38% and

Phase 3 FIERCE-HN trial

Ficlatuzumab (anti-HGF = PD-1 therapy and platinum- Median PFS mPFS 4.1 (NCT06064877) ongoin:
i
mAb) +/- Cetuximab based chemotherapy months in HPV- going
Phase 1/2 trial of
MCLA-129 (BsAl R/M HN fractory t PR 17%, DCR
C . 9 (BsAb / Ne® re' ractory to ORR %, DC Not announced
HGF/c-MET targeting EGFR and c- standard therapies 67%
MET)
Phase 1b/2 trial of
Amivant BsA R/M HN {1
mlv.an amab (BsAb / See re' ractory to Not reported Not reported Not announced
targeting EGFR and standard therapies
MET)
Phase 2 trial of CDX-
M, HPV-, i -resi .7%, mPF! . .
3379 (anti-HER3 mADb) R/ V= Cetuximab-resistant ORR ORR 6.7%, mPES Development discontinued
X HNSCC 2.2 months
and Cetuximab
ORR 22.2% with
Phase 2 trial of SI-B001 monotherapy,
(EGFRXHER3 BsAb) R/M HNSCC progressed on anti- 64.3% in

HER3 alone or in combination = PD-1 and platinum-based ORR combination Not announced
with paclitaxel or chemotherapy with paclitaxel
docetaxel and 12.2% with

docetaxel
Phase 2 trial of R/M HNSCC progressed on anti-
patritumab deruxtecan PD-1 and platinum-based ORR Not reported Not announced
(anti-HER3 ADC) chemotherapy
Phase 3 trials ongoing:
. ORR 40.4% for LiGeR-HN1: randomized study of

Phase 2 trial of i :

y tamab R/M HNSCC, progressed on 2L+ pembrolizumab versus pembrolizumab

etosemtamal
?EGFRXLGRS BsAb) as anti-PD-1 and platimun-based monotherapy + petosemtamab in 1L R/M HNSCC

EGFRxLGR5 . chemotherapy for monotherapy ORR and 63% for 1L (NCT06525220)
monotherapy or in . . . . .

L . and 1L R/M HNSCC, PD-L1 in combination LiGeR-HN2: randomized trial of

combination with - . . . 8

. CPS > 1 for combination with petosemtamab versus investigator’s
pembrolizumab i X . i

pembrolizumab choice systemic therapy in 2L+ R/M
HNSCC (NCT06496178)

Phase 1b trial of
ficerafusp (EGFRxTGEF- ORR 54% overall = Phase 2/3 trial ongoing:

EGFRxTGF- BR BR BsAb) in R/M 1L HNSCC, PD-L1 CPS 21 = ORR and 64% in FORTIFI-HNOL1 in 1L, PD-L1+, HPV-
combination with HPV- R/M HNSCC (NCT06788990)
pembrolizumab
Phase 1/2 trial of % with

ase 1/2 trial o ORR ,60/0, w1t' Randomized phase 3 trial of MRG003
MRGO003 (becotatug combination in in combination with Pucotenlimab in
with Pu i
vedotin, EGFR targeting 1L R/M HNSCC
ADC) in combination ORR for ORR 30.2% R/M NPC (NCT06976190) planned
. . Combination in 1L R/M HNSCC L R ' . Randomized phase 3 trial of MRG003
with pucotenlimab . . combination trial versus 11.5% in . )

EGFR . Randomized trial in 3L+ R/M . . . versus Cetuximab/Methotrexate in

(anti-PD-1 agent) ORR and PFS in randomized trial K i .
X R NPC R X patients with R/M HNSCC previously
Randomized trial of randomized trial. (p=0.0025) i
progressed on anti-PD-1 and
MRGO003 versus PES 5.8 versus .
. . . platinum-based chemotherapy planned
investigator choice 2.8 months
(NCT05751512)
chemotherapy (p=0.0146)
Phase 2 trial of R/M HNSCC progressed on anti- ORR 45% in Phase trial in 2L+ HPV+ R/M HNSCC

ROR2 ozuriftamab vedotin PD-1 and platinum-based ORR X

HPV+ patients planned
(ROR2-ADC) chemotherapy
Phase 2 trial of R/M HNSCC previously

Tissue Factor (TF) tisotumab vedotin (anti- | progressed on anti-PD-1 and ORR ORR 32.5% Not announced
TF ADC) platinum-based chemotherapy
Phase 2 trial of R/M HNSCC previously

Nectin-4 enfortumab vedotin progressed on anti-PD-1 and ORR ORR 23.9% Not announced
(anti Nectin-4 ADC) platinum-based chemotherapy

(Continued)
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TABLE 1 Continued

Agent(s) and

Target . Population
9 design P
Phase 2 trial of R/M HNSCC previously
Trop-2 sacituzumab govitecan progressed on anti-PD-1 and
(anti-Trop-2 ADC) platinum-based chemotherapy
Randomized phase 3
trial of buparlisib (oral
. 0. 1'1p'a i ISIA (ora R/M HNSCC previously
PI3K inhibitor) in R
PI3K pathway o i progressed on anti-PD-1 and
combination with X
) platinum-based chemotherapy
paclitaxel versus
paclitaxel alone
Phase 2 trial of
alzs:ddir; ( CODK4 6 R/M, HPV- HNSCC - platinum-
CDK4/6 P resistant and cetuximab-resistant

inhibitor) and

R cohorts
cetuximab

2 EV-202 trial, 46 patients with R/M HNSCC received treatment
with EV and were followed for a median duration of 9.3 months.
The ORR was 23.9%, with a DCR of 56.5% and a mPES of 3.9
months. Common TRAEs included alopecia, fatigue, and peripheral
neuropathy. Notably, 34.8% of patients experienced Grade three or
higher TRAEs, which included anemia and neutropenia. This data
justifies its further evaluation in phase 3 trials. Additional studies
exploring combination strategies, including EV or TV with
checkpoint blockade, may uncover further potential of these
therapies in HNSCC.

Lastly, Sacituzumab govitecan is an ADC targeting trophoblast
cell-surface antigen 2 (Trop-2) that was investigated in the phase 2
TROPiCS-03 basket trial in patients with treatment-refractory
HNSCC (88). The primary endpoint was investigator-assessed
ORR. Forty-three patients were treated and the ORR for the
cohort was 16%. Commonest treatment-emergent adverse events
were diarrhea, nausea and neutropenia.

Other targeted therapies in HNSCC

Phosphatidylinositol 3-kinase (PI3K)-mTOR signaling pathway
activation is a known mediator of treatment resistance and disease
progression in HNSCC (89). It can drive primary or secondary
resistance to paclitaxel by increase in protein kinase B (AKT)
activity (90). Buparlisib is an oral pan-PI3K inhibitor and in
HNSCC xenograft models, led to down-regulation of PI3K-
mTOR pathway signaling, with reduced tumor hypoxia and
vascular remodeling (91). The combination of buparlisib and
paclitaxel showed promising signs of clinical activity in a phase
1B trial in advanced solid tumors (92). Subsequently, a randomized,
blinded study, BERIL-1 was conducted in patients with platinum-
pretreated R/M HNSCC (93). 158 patients were enrolled and
randomized to receive paclitaxel with either buparlisib or placebo.
Median PFS was 4.6 months in the buparlisib group versus 3.5
months in the placebo group (HR 0.65, p = 0.011). commonest
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Endpoints Outcomes Development stage
ORR ORR 16% Not announced
Trial did not
oS meet p'rlmary Negative study in HNSCC
endpoint per
press release
ORR 39% i
R °m Randomized phase 3 trial of palbociclib
platinum- R i
resistant and and cetuximab versus cetuximab
ORR 19% in monotherapy in CDKN2A-altered,
o7 HPV- HNSCC following progression
cetuximab-

. . on anti-PD-1
resistant patients

grade 3-4 adverse events were hyperglycemia, cytopenias and
fatigue. Based on these findings, the confirmatory phase 3
BURAN trial enrolled 487 patients with R/M HNSCC who have
progressed on anti-PD-(L)1-based treatment (94). Primary
endpoint was OS, and the company recently announced that the
study failed to meet its endpoint compared to paclitaxel alone (95).

Dysregulated activation of the cyclin-dependent kinase 4 and 6
(CDK4/6) and cyclin D1 regulatory complex is known to drive the
cell cycle and tumor progression, especially in HPV-unrelated
HNSCC. CDK4/6 hyperactivation also mediates cetuximab
resistance. In preclinical models of HPV-negative HNSCC,
CDK4/6 inhibition decreased tumor growth and in combination
with cetuximab, synergistically reduced viability of cell lines (96).
Phase 1 and 2 trials established the safety of co-administering the
selective CDK4/6 inhibitor palbociclib and cetuximab in patients
with R/M HNSCC and showed an ORR of 19% in cetuximab-
resistant patients and 39% in platinum-resistant patients (97, 98). A
phase 3 trial (NCT04966481) is currently underway evaluating this
combination in CDKN2A-altered, HPV-unrelated HNSCC (99).

Other recent trials have explored genotype-directed therapies
for patients with HNSCC. HRAS mutations are particularly
enriched in HPV-negative HNSCC and are associated with poor
clinical outcomes (100). Tipifarnib is a new oral medication that
acts as a highly selective farnesyl-transferase inhibitor. It prevents
the farnesylation of HRAS and its anchoring to the cell membrane,
thereby inhibiting MAPK signaling and promoting tumor apoptosis
(101). In the signal-seeking RUN-HN phase 2 study
(NCT02383927) involving patients with R/M HNSCC with high
variant allele frequency (VAF) mutated HRAS, ORR was 55%, with
a mOS of 15.4 months. These results led to the pivotal AIM-HN
trial (NCT03719690), which showed an ORR of 30% based on
investigator assessment and 20% based on independent review,
along with a mPFS of 2.6 months (independent review) (102-104).
Although additional data is still pending, tipifarnib presents a
potential biomarker-driven oral therapy for a subset of R/M
HNSCC patients with HRAS mutations.
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Early phase trials of targeted therapies

There has been a notable increase in early-phase clinical trials in
HNSCC over the past decade. This surge is driven by the discovery
of new molecular targets and the introduction of innovative therapy
classes, such as BsAbs and ADCs. One example is amivantamab
(JNJ-61186372), a BsAb designed to engage EGFR and c-MET
(105). Amivantamab is mechanistically distinct from MCLA-129 in
its binding epitope and ability to induce trogocytosis (106-108). In
an ongoing multicenter phase 1/2 trial (NCT06385080),
amivantamab is currently being studied alone or in combination
with other treatment agents in R/M HNSCC. Anticipated adverse
events of amivantamab include infusion-related reactions and the
development of rash, based on NSCLC cohorts (109).

Another promising agent is the ADC, patritumab deruxtecan
(U3-1402), which is developed using an anti-HER3 IgGl
conjugated to the topoisomerase I inhibitor deruxtecan (DXd)
(110). Patritumab deruxtecan has a dual action: it downregulates
HERS3 signaling and induces DNA double-strand breaks, leading to
apoptosis. By targeting HER3, this agent addresses a key escape
mechanism observed with EGFR-directed therapies. The
HERTHENA-PanTumor01 trial (NCT06172478) is an ongoing
open-label, global phase 2 study designed to evaluate the efficacy
and safety of patritumab deruxtecan in patients with R/M solid
tumors, including HNSCC, excluding nasopharyngeal cancer (111).
Table 1 lists the key ongoing trials using targeted therapies
in HNSCC.

Discussion

The treatment landscape of HNSCC is rapidly evolving as
research continues to investigate new targets and pathways. Over
the last decade, pan-EGFR targeting has shown limited success in
improving clinical outcomes, as reflected in the poor survival rates of
patients with R/M disease. Immune checkpoint therapies have
improved outcomes for some patients. However, the majority fail
to derive clinical benefit and there is a critical unmet need for effective
and well tolerated novel agents and combinations. Genomic profiling
has identified potential targets, including tumors that are HRAS-
mutant, HER3-high, and MET-co-activated. These discoveries
present opportunities to address these escape mechanisms
associated with EGFR therapies. However, the cumulative side
effects and treatment complications associated with combination
regimens remain a significant concern, especially in a heavily pre-
treated patient population that may already be experiencing residual
side effects from previous lines of therapies.

The lack of tumor biomarkers to identify patients who would
benefit the most from targeted therapies remains a significant
unmet need in HNSCC research. Decades of clinical research has
taught us that the “one-size-fits-all” approach to treatment is
ineffective in improving outcomes for patients. HNSCC tumors
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are characteristically very heterogenous, whether by location,
etiology (HPV-related versus smoking-related), or biomarkers
(PD-L1 expressing versus not) and we have learned that these
patient and tumor traits can predict the varied biological responses
to therapies. Trials are therefore increasingly being specifically
designed based on tumor stage, biomarkers and prior lines of
therapy. Genomic analyses of high-responding patients may offer
additional predictive biomarkers for future studies. Similarly,
upcoming trials could incorporate basket trial designs and stratify
patients into subgroups based on molecular markers and clinical
features to gain deeper insights.

Finally, despite the progress made with novel cancer
therapeutics, disparities in access to these agents is a key concern,
especially in low and middle-income countries (LMICs), which
have a higher burden of HNSCC. Multiple recent publications have
highlighted the delay in launching these products in developing
countries, the dearth of real-world efficacy data in the local
populations, lack of generalized medical insurance coverage and
the prohibitively high out-of-pocket cost of newer drugs, as reasons
why few patients are able to start and stay on treatment (112-116).
Thus, as the number of clinical trials and innovative therapies
increases, it is important to simultaneously think of creative
solutions to bridge this affordability gap in developing countries.
Some possible solutions that have been suggested include designing
trials that enroll populations in LMICs, patient access and loan
programs and a multi-stakeholder approach to making novel agents
available in international markets.

Conclusion

Head and neck oncology is experiencing the introduction of a
wide array of new therapies, including RTK inhibitors, BsAbs, and
innovative ADCs. We expect that the treatment paradigm will
gradually shift from single agents targeting EGFR to genomically
informed combination regimens designed to address tumor-specific
escape mechanisms. Early-phase trials have demonstrated potential
in re-sensitizing resistant tumors; however, establishing a durable
benefit in larger confirmatory trials remains essential.
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