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Background: Pancreatic cancer remains one of the most lethal malignancies due
toits late-stage diagnosis and limited treatment options. Conventional diagnostic
methods, such as imaging and tissue biopsy, often lack sensitivity in early-stage
detection and are invasive, limiting their widespread application. There is an
urgent need for non-invasive, highly accurate biomarkers to facilitate early
diagnosis and improve patient outcomes. Circulating microRNAs (miRNAs)
have emerged as promising liquid biopsy biomarkers, offering the potential for
early detection through minimally invasive methods. This meta-analysis aims to
evaluate the diagnostic performance of blood- and saliva-derived miRNAs in
detecting pancreatic cancer.

Methods: A systematic search of PubMed, Web of Science, and Scopus databases
identified 350 relevant studies. After removing duplicates and applying eligibility
criteria, 27 studies with 1,496 patients were included. These studies contained 168
sub-studies, each assessing the diagnostic potential of individual miRNAs. Quality
assessment was conducted using the QUADAS-2 tool, and meta-analysis was
performed using a random-effects model. Sensitivity, specificity, diagnostic odds
ratio (DOR), and summary receiver operating characteristic (SROC) curves were
analyzed to determine diagnostic performance.

Results: Blood-derived miRNAs demonstrated a pooled sensitivity of 0.83 (95%
Cl: 0.78-0.88) and specificity of 0.87 (95% Cl: 0.82-0.91), while saliva-derived
mMiRNAs exhibited slightly higher sensitivity at 0.87 (95% Cl. 0.84-0.90) and
specificity at 0.86 (95% Cl: 0.82-0.89). The combined analysis yielded a
sensitivity of 0.86 (95% Cl: 0.84-0.89) and specificity of 0.85 (95% Cl: 0.83-
0.88). The area under the curve (AUC) for blood-derived miRNAs was 0.92 (95%
Cl: 0.89-0.94), whereas saliva-derived miRNAs achieved an AUC of 0.93 (95% ClI:
0.90-0.95). The combined analysis resulted in an AUC of 0.92 (95% CI: 0.90-
0.94). Diagnostic odds ratios were 33.40 (95% Cl: 17.88-62.37) for blood-derived
miRNAs, 39.94 (95% Cl: 28.66-55.67) for saliva-derived miRNAs, and 37.04 (95%
Cl: 27.66-49.60) for the combined dataset.

Conclusion: Both blood- and saliva-derived miRNAs exhibit strong diagnostic
performance for pancreatic cancer, with saliva-derived miRNAs demonstrating
slightly higher accuracy. These findings support the potential of circulating
mMiRNAs as non-invasive biomarkers that could address the current limitations
in pancreatic cancer diagnosis. Further large-scale, well-controlled studies are
warranted to confirm these results and optimize their clinical application.
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1 Introduction

Pancreatic cancer remains one of the most lethal malignancies
worldwide, characterized by a high incidence and mortality rate (1).
According to recent statistics, pancreatic cancer ranks as the third
leading cause of cancer-related deaths in the United States, with a
five-year survival rate of around 13% (2). The poor prognosis is
primarily due to the aggressive nature of the disease, late-stage
diagnosis, and limited therapeutic options (3). The disease is often
asymptomatic in its early stages, leading to delayed diagnosis and a
subsequent lack of effective curative treatment.

The incidence of pancreatic cancer has been increasing over the
past few decades (4). While its exact cause remains elusive, several
well-recognized risk factors have been identified, including smoking,
obesity, chronic pancreatitis, diabetes mellitus, and genetic
predisposition (4). Smoking is one of the most significant
modifiable risk factors, with long-term smokers exhibiting a
substantially higher risk (5-7). Chronic inflammation in conditions
such as pancreatitis promotes cellular changes that increase the
likelihood of malignant transformation (8, 9). Additionally, genetic
syndromes such as familial atypical multiple mole melanoma
(FAMMM) syndrome and BRCA mutations further contribute to
an individual’s susceptibility to pancreatic cancer (10-12).

Pathologically, pancreatic ductal adenocarcinoma (PDAC) is the
most prevalent histological type, accounting for more than 90% of
cases (13). PDAC is characterized by an abundant desmoplastic
stroma, which contributes to its resistance to treatment (13).
Genetically, pancreatic cancer is driven by key mutations in
oncogenes and tumor suppressor genes (14). The most commonly
mutated gene in PDAC is KRAS, which is found in over 90% of cases
and plays a crucial role in tumorigenesis by promoting uncontrolled
cell proliferation (14). Other frequently mutated genes include TP53,
CDKN2A, and SMAD4, all of which influence tumor progression,
cell cycle regulation, and metastatic potential (14).

The diagnosis of pancreatic cancer relies on a combination of
imaging techniques, histopathological examination, and serological
biomarkers (15). Endoscopic ultrasound-guided fine-needle aspiration
(EUS-ENA) is the gold standard for obtaining tissue for histological
confirmation (16, 17). Additionally, imaging modalities such as
computed tomography (CT), magnetic resonance imaging (MRI),
and positron emission tomography (PET) scans provide valuable
information to assess tumor stage and resectability (18-20). Serum
biomarkers such as carbohydrate antigen 19-9 (CA19-9) are
frequently used to assist in diagnosis and prognosis (21). However,
CA19-9 lacks sufficient sensitivity and specificity, particularly in early-
stage pancreatic cancer, leading to false-negative and false-positive
results (22). Moreover, CA19-9 is also elevated in benign conditions
such as pancreatitis and obstructive jaundice, further limiting its
diagnostic utility (23-25). Given these limitations, there is an urgent
need for more reliable, non-invasive biomarkers that can detect
pancreatic cancer at an early stage, improve diagnostic accuracy,
and aid in disease monitoring.

Liquid biopsy has recently emerged as a promising diagnostic
approach in oncology, providing a minimally invasive and
repeatable method for detecting cancer-related molecular changes
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(26). Unlike traditional tissue biopsies, which are invasive and often
impractical for repeated sampling, liquid biopsies allow for
continuous monitoring of tumor dynamics, enabling a more
personalized approach to treatment and disease surveillance (27).
Liquid biopsy enables the analysis of circulating biomarkers,
including circulating tumor DNA (ctDNA), circulating tumor
cells (CTCs), and circulating microRNAs (miRNAs) from bodily
fluids such as blood and saliva (27, 28). Each of these biomarkers
plays a unique role in cancer detection. ctDNA originates from
apoptotic and necrotic tumor cells and contains genetic mutations
representative of the tumor’s mutational landscape, making it a
valuable tool for detecting genetic alterations, tracking tumor
evolution, and monitoring treatment response (29). CTCs, on the
other hand, are intact tumor cells that have detached from the
primary tumor and entered the circulation, with their presence
strongly associated with metastatic potential (30). However, their
rarity poses a challenge for clinical implementation.

Among circulating biomarkers, miRNAs have gained increasing
attention due to their stability, regulatory functions, and potential as
cancer biomarkers (31). miRNAs are small, non-coding RNAs that
modulate gene expression by targeting messenger RNAs (mRNAs)
for degradation or translational repression. Dysregulated miRNA
expression is a hallmark of cancer, contributing to oncogenesis by
regulating pathways involved in proliferation, apoptosis, and
metastasis (32). miRNAs are released into bodily fluids through
different mechanisms (33). Some circulate as free-floating miRNAs,
which are unbound molecules in the bloodstream and susceptible to
rapid degradation (34). Others exist as protein-bound miRNAs,
associated with RNA-binding proteins such as Argonaute (AGO)
complexes, which protect them from degradation (35, 36). A
particularly promising category is exosomal miRNAs, which are
encapsulated within extracellular vesicles such as exosomes,
protecting them from enzymatic degradation and facilitating
intercellular communication (37-39). Among these, exosomal
miRNAs are particularly valuable as biomarkers due to their
stability and tumor-specific expression patterns (40, 41).

In cancer, miRNAs function either as oncogenes, known as
oncomiRs, or as tumor suppressors, depending on their target
genes. miRNA profiling studies have demonstrated unique
miRNA expression signatures in pancreatic cancer, distinguishing
malignant from benign conditions (42). Certain miRNAs, such as
miR-21, miR-155, and miR-196a, are upregulated in pancreatic
cancer and have been implicated in tumor progression, while
others, such as miR-200c and miR-375, are downregulated and
play roles in tumor suppression (43, 44).

A particularly novel approach to liquid biopsy involves the
analysis of saliva-derived exosomal miRNAs (45). Exosomal
miRNAs originating from pancreatic tumors can reach the saliva
through circulation, offering a non-invasive and convenient
diagnostic method (45, 46). Saliva-based diagnostics have gained
prominence, especially during the COVID-19 pandemic, when saliva
testing became widely adopted for viral detection (47). Saliva
collection is non-invasive, painless, and enables high patient
compliance, making it an attractive option for cancer screening and
disease monitoring (47).
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Saliva-based liquid biopsy offers several advantages over blood-
based biomarker detection (48). Since saliva collection does not
require needle punctures or invasive procedures, it reduces patient
discomfort and anxiety, leading to higher compliance. Additionally,
saliva samples can be collected multiple times, enabling longitudinal
disease monitoring without the need for repeated venipuncture. The
ease of at-home collection also facilitates early disease detection and
broadens accessibility to diagnostic testing.

Given the potential of miRNAs as cancer biomarkers, our study
aims to evaluate the diagnostic value of circulating miRNAs in the
blood and saliva of pancreatic cancer patients through meta-analysis.
By systematically analyzing existing data, we seek to determine the
reliability and clinical applicability of miRNA-based liquid biopsy for
early detection and disease monitoring of pancreatic cancer. This
research has the potential to contribute to the development of more
accessible, accurate, and patient-friendly diagnostic tools, ultimately
improving outcomes for pancreatic cancer patients.

2 Materials and methods
2.1 Search strategy

A systematic and comprehensive literature search was conducted
across multiple major databases, including PubMed, Web of Science,
and Scopus, to identify relevant studies investigating miRNA liquid
biomarkers in various biological fluids, such as blood, urine, saliva,
and other bodily fluids. The search strategy incorporated both
Medical Subject Headings (MeSH) terms and free-text keywords
related to “pancreatic cancer”, “microRNA”, “liquid biopsy”,
“diagnosis”, and specific fluid types (i.e., plasma, serum, or saliva)
to ensure comprehensive retrieval of relevant articles. MeSH is
standardized indexing terms used in databases such as PubMed to
improve the precision of search results. The search was restricted to
studies published between 2009 and 2024. Studies were included if
they provided or allowed calculation of essential diagnostic
performance metrics, including sensitivity, specificity, area under
the curve (AUC), and changes in miRNA expression levels. The
study selection process, including the number of articles screened at
each stage, is illustrated in the PRISMA flow diagram (Figure 1) (49).

2.2 Eligibility criteria

Studies were selected based on predefined inclusion and
exclusion criteria. Only studies involving human subjects were
considered eligible. Inclusion criteria required that studies be peer-
reviewed, non-duplicated, published within the last 15 years, and
contain sufficient data for diagnostic accuracy assessment. Studies
were included if they provided explicit data on miRNA expression
changes and diagnostic performance measures, either reported
directly or calculable from the given results for constructing a 2x2
contingency table, including true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). The inclusion criterion
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requiring a 2x2 contingency table ensures that each study provides
sufficient data to calculate sensitivity, specificity, and likelihood ratios,
which are essential for meta-analytic pooling of diagnostic accuracy
metrics. Additionally, eligible studies needed to include both case and
control groups for comparative analysis. Exclusion criteria comprised
studies involving animal models, cell lines, review articles, case
reports, conference abstracts, and studies lacking sufficient
quantitative data.

2.3 Data extraction and quality assessment

For each eligible study, two independent reviewers extracted
data using a standardized data extraction form. The extracted data
included study characteristics such as author names, year of
publication, study design, sample size for both cases and controls,
and the type of biological fluid analyzed. Additionally, miRNA
biomarker profiles were collected, including specific miRNAs
investigated, fold change in expression, and detection methods
such as qRT-PCR, microarray, or RNA sequencing. Although
studies using microarray or RNA sequencing were initially
screened, all studies ultimately included in the meta-analysis
employed qRT-PCR for miRNA quantification. Diagnostic
accuracy metrics, including TP, TN, FP, FN, sensitivity,
specificity, and AUC values with their respective 95% confidence
intervals (CI), were also recorded. Quality assessment of the
included studies was conducted using the Quality Assessment of
Diagnostic Accuracy Studies (QUADAS-2) tool, implemented via
RevMan (v5.4) (50). The risk of bias and applicability concerns were
evaluated across 4 domains: patient selection, index test, reference
standard, and flow and timing.

2.4 Statistical analysis

All statistical analyses were performed using STATA (v18.0)
software. A random-effects model was applied to calculate pooled
estimates for sensitivity, specificity, diagnostic likelihood ratios (DLR
positive and negative), diagnostic score (DS), and diagnostic odds ratio
(DOR) with corresponding 95% confidence intervals. The use of a
bivariate random-effects meta-analysis model ensures that smaller or
more variable studies are weighted appropriately and helps prevent
overestimation of pooled diagnostic performance. Summary receiver
operating characteristic (SROC) curves were generated, and the area
under the curve (AUC) was calculated to assess the overall diagnostic
accuracy of circulating miRNAs. The statistical significance of results
was determined using p-values, with a threshold of p < 0.05
considered statistically significant. Heterogeneity among studies was
assessed using Cochrane’s Q test and 12 statistics, where an 12 value
greater than 50% was considered indicative of substantial
heterogeneity (51). To investigate potential publication bias, Deeks’
funnel plot asymmetry test was performed, with a p-value of less than
0.05 indicating the presence of publication bias. These methodological
approaches ensured the inclusion of high-quality studies, minimized
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FIGURE 1
PRISMA flow diagram illustrating the study selection process.

bias, and provided a rigorous framework for evaluating the diagnostic
performance of circulating miRNA biomarkers.

2.5 Visualization of diagnostic and
biological significance of miRNAs using
Sankey plots

To comprehensively visualize the diagnostic characteristics and
biological relevance of individual miRNAs, we constructed
interactive Sankey plots as an extension of our meta-analysis
(Figure 8). The primary aim was to illustrate how frequently
reported circulating miRNAs in pancreatic cancer relate to
diagnostic accuracy (sensitivity and specificity) and to highlight
their functional involvement in cancer-related signaling pathways.

Frontiers in Oncology

Based on the extracted contingency table data (TP, FP, FN, TN)
from each sub-study (n = 168), we calculated miRNA-level
sensitivity and specificity. For each unique miRNA, all sub-studies
in which it appeared were aggregated, and true positive (TP), false
positive (FP), false negative (FN), and true negative (TN) counts
were summed. Subsequently, sensitivity and specificity values were
categorized into “High (= 0.90)”, “Moderate (0.70-0.89)”, or “Low
(< 0.70)” groups based on the predefined thresholds. The Sankey
plots were generated using Python 3.11.4 with the Plotly 5.20.0
library. Data processing and aggregation were conducted using
pandas 2.2.2 and python-docx 1.1.0 to extract structured
information from the Supplementary Table 1. Figure 8A focuses
on the most frequently reported miRNAs across included studies
(=2 sub-studies) and those known to be functionally associated with
pancreatic cancer signaling pathways (e.g., KRAS, TP53,
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CDKN2A). This visualization connects each miRNA to its
categorized specificity and sensitivity levels, emphasizing those
with both empirical and biological support. In contrast, Figure 8B
highlights a curated subset of miRNAs with established links to
major pancreatic cancer-related pathways, such as KRAS-MAPK,
TP53-mediated apoptosis, CDKN2A/pl6 tumor suppression, and
PI3K/AKT survival signaling. Each miRNA is linked to one or more
pathways based on previously published mechanistic studies, and
subsequently connected to its observed diagnostic specificity in our
meta-analysis. These layered visualizations complement the
quantitative synthesis presented in the main meta-analysis by
offering a systems-level view of miRNA relevance, combining
frequency, diagnostic metrics, and biological roles.

3 Results
3.1 Study selection

A systematic search across PubMed, Web of Science, and
Scopus databases yielded 350 studies relevant to circulating
miRNAs as liquid biopsy biomarkers for pancreatic cancer
diagnosis. After removing duplicates, 265 unique articles
remained. A preliminary screening of titles and abstracts led to
the exclusion of 133 studies that did not meet the eligibility criteria.
The remaining 132 studie s underwent full-text review, which
resulted in the exclusion of 6 studies published before 2009.
Additionally, 99 studies were removed due to insufficient data for
diagnostic performance assessment. Consequently, 27 studies with
1,496 patients were included in the final meta-analysis. Many of the
included studies contained multiple sub-studies, each investigating
different miRNAs. To ensure methodological rigor, these sub-
studies were treated as independent data points, resulting in a
total of 168 sub-studies in the final analysis. To distinguish multiple
sub-studies from the same paper, numerical designations were
appended to the publication year [e.g., Que et al, 2013 (1) and
Que et al.,, 2013 (2)]. These IDs correspond to Supplementary Table
1, Serial Numbers 162 and 163. The study selection process is
depicted in the PRISMA flow diagram (Figure 1), while study
characteristics are summarized in Table 1.

3.2 Study characteristics

Among the 168 sub-studies, 49 focused on blood-derived
miRNAs, whereas 119 investigated saliva-derived miRNAs. The
studies exhibited substantial variability in publication year,
geographic location, sample size, and the specific miRNAs
analyzed. Sample sizes ranged widely from as few as 7
participants to over 300. The dataset was deemed statistically
robust due to the large overall sample size, the diverse
representation of different populations, and the use of consistent
diagnostic criteria across studies, which minimized biases and
enhanced the reliability of the pooled results. All sub-studies
assessed the diagnostic utility of individual miRNAs rather than
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panels of multiple miRNAs. This consistency ensured comparability
across studies. A detailed summary of sub-studies characteristics,
including publication year, sample size, and miRNAs analyzed, is
provided in Supplementary Table 1.

To enhance transparency and contextual interpretation of diagnostic
performance across studies, we extracted and summarized available
patient demographic and clinical information from each included study
(Supplementary Table 2). This included geographic location, cohort
setting, miRNA type, mean patient age, sex distribution, cancer type, and
disease stage, providing a comprehensive overview of cohort
characteristics and potential sources of heterogeneity in the included
literature. Patient characteristics across the included studies were
heterogeneous in terms of geographic origin, age, sex distribution, and
cancer stage. Where reported, the majority of cohorts were hospital-
based and involved patients with pancreatic ductal adenocarcinoma
(PDAC) across a range of clinical stages (0-IV). Mean patient ages
generally ranged from the mid-50s to late 60s, with male predominance
in most studies. A detailed breakdown of these attributes outlines key
cohort-level characteristics relevant to the interpretation of
diagnostic outcomes.

3.3 Quality assessment

The quality of the included studies was assessed using the
QUADAS-2 tool. This assessment covered four key domains:
patient selection, index test, reference standard, and flow and
timing. The risk of bias and applicability concerns were
categorized as low, unclear, or high, with the results summarized
in Figure 2. The risk of bias assessment indicated that patient
selection had an unclear risk of bias (yellow), suggesting possible
variability in recruitment methods across studies. However, the
index test and reference standard domains were rated as having a
low risk of bias (green), ensuring the reliability of the diagnostic
tests and gold-standard comparisons. The flow and timing domain
also exhibited an unclear risk of bias, reflecting potential
inconsistencies in study design or patient follow-up protocols.
Regarding applicability concerns, all three domains (i.e., patient
selection, index test, and reference standard) were rated as having a
low risk, confirming that the included studies were relevant and
applicable to the research question. Overall, the QUADAS-2
assessment validated the acceptability of the included studies,
supporting the robustness and relevance of the findings.

3.4 Meta-analysis

To assess heterogeneity, the I* statistic was employed. Blood-
derived miRNAs demonstrated high heterogeneity, with an I* value
of 84.79 for sensitivity and 86.16 for specificity (Figure 3A). In
contrast, saliva-derived miRNAs exhibited lower heterogeneity,
with > values of 34.36 for sensitivity and 52.01 for specificity
(Figure 3B). The combined analysis of blood- and saliva-derived
miRNAs showed moderate heterogeneity, with I* values of 67.61 for
sensitivity and 73.05 for specificity (Supplementary Figure 1). Due
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TABLE 1 Characteristics of the studies included in the meta-analysis.

10.3389/fonc.2025.1642727

Location No. of patients Sample
Ishige et al., 2020 Japan miR-1246 41 Serum, Saliva (60)
Liu et al., 2020 China miR-196a 40 Plasma (61)
Wei et al., 2020 China miR-1246 120 Serum (62)
Goto et al., 2018 Japan miR-21 24 Serum (63)
Kawamura et al., 2018 Japan miR-21 26 Blood (64)
Lai et al,, 2017 USA miR-10b, 202, 21, 30c, 106b, 29 Plasma (65)
181a, 483
Xu et al, 2017 USA miR-1246 15 Plasma (66)
Akamatsu et al., 2016 Japan miR-7, 34a, 181d, 193b 69 Serum (67)
Alemar et al,, 2016 Brazil miR-21, 34a 24 Serum (68)
Deng et al., 2016 China miR-25 303 Serum (69)
Hussein et al., 2016 Egypt miR-22, 642b, 885 35 Plasma (70)
Machida et al., 2016 Japan miR-1246, 4644 12 Saliva (71)
Qu et al,, 2016 China miR-21 56 Serum (72)
Humeau et al., 2015 France 315_123;52;:22;; 2252’ 22252‘)22926; 7 Saliva (73)
Komatsu et al.,, 2015 Japan miR-223 94 Plasma (74)
Miyamae et al., 2015 Japan miR-744 94 Plasma (75)
Xie et al., 2015 China miRNA panels* 8 Saliva (76)
Chen et al., 2014 China miR-182 109 Plasma (77)
Cote et al., 2014 USA miR-10b, 30c, 106b, 155, 212 40 Plasma (78)
Ganepola et al., 2014 USA miR-22, 642, 885 11 Plasma (79)
Gao et al., 2014 China miR-16 70 Plasma (80)
Slater et al., 2014 Germany miR-196a 19 Serum (81)
Zhang et al., 2014 China miR-192, 194 70 Serum (82)
Kawaguchi et al., 2013 Japan miR-221 47 Plasma (83)
Que et al, 2013 China miR-21, 17 22 Serum (84)
Zhao et al., 2013 China miR-192 70 Serum (85)
Wang et al., 2009 USA miR-21, 155, 196a, 210 28 Plasma (86)

*miRNA panels consist of 103 miRNAs, the details of which are provided in Supplementary Table 1.

to this variability, a random-effects model was applied to ensure
appropriate pooled estimates.

The pooled sensitivity for blood-derived miRNAs was 0.83
(95% CI: 0.78-0.88), while saliva-derived miRNAs demonstrated a
slightly higher pooled sensitivity of 0.87 (95% CI: 0.84-0.90)
(Figures 3A, B). The combined analysis yielded a pooled
sensitivity of 0.86 (95% CI: 0.84-0.89) (Supplementary Figure 1).
Similarly, the pooled specificity was high across all categories, with
blood-derived miRNAs achieving 0.87 (95% CI: 0.82-0.91), saliva-
derived miRNAs at 0.86 (95% CI: 0.82-0.89), and the combined
analysis at 0.85 (95% CI: 0.83-0.88) (Figure 3, Supplementary
Figure 1). To further evaluate diagnostic accuracy, SROC curve
analysis was conducted. It provides a composite visualization of the
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trade-off between sensitivity and specificity across different
thresholds and studies, and the area under the curve (AUC) offers
a summary metric of overall diagnostic performance. The AUC for
blood-derived miRNAs was 0.92 (95% CI: 0.89-0.94), while saliva-
derived miRNAs achieved an AUC of 0.93 (95% CI: 0.90-0.95)
(Figures 4A, B). The combined analysis yielded an AUC of 0.92
(95% CI: 0.90-0.94), demonstrating strong diagnostic performance
across all categories (Figure 4C).

To further assess the clinical utility of circulating miRNAs, we
calculated diagnostic likelihood ratios (DLRs), which integrate both
sensitivity and specificity to provide a more practical metric for
evaluating diagnostic value in real-world settings. The diagnostic
likelihood ratio positive (DLR positive) reflects how much the odds
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FIGURE 2

Quiality assessment of the included studies using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool.

of pancreatic cancer increase following a positive test result, while
the diagnostic likelihood ratio negative (DLR negative) indicates
how much the odds decrease following a negative result. A DLR
positive greater than 5 and a DLR negative less than 0.2 are
generally considered to provide moderate-to-strong evidence for
ruling in or ruling out disease, respectively (52). In our meta-
analysis, the DLR positive for blood-derived miRNAs was 6.36 (95%
CI: 4.41-9.19), while for saliva-derived miRNAs it was 6.09 (95% CI:
4.84-7.65) (Figures 5A, B). The combined analysis showed a DLR
positive of 5.92 (95% CI: 4.96-7.05) (Supplementary Figure 2). The
DLR negative was 0.19 (95% CI: 0.14-0.26) for blood-derived
miRNAs, 0.15 (95% CI: 0.12-0.19) for saliva-derived miRNAs,
and 0.16 (95% CI: 0.13-0.19) for the combined analysis (Figure 5,
Supplementary Figure 2).

The diagnostic score (DS) was calculated as 3.51 (95% CI: 2.88-
4.13) for blood-derived miRNAs, 3.69 (95% CI: 3.36-4.02) for
saliva-derived miRNAs, and 3.61 (95% CI: 3.32-3.90) for the
combined analysis (Figure 6, Supplementary Figure 3).
Correspondingly, the diagnostic odds ratio (DOR) was 33.40
(95% CI: 17.88-62.37) for blood-derived miRNAs, 39.94 (95% CI:
28.66-55.67) for saliva-derived miRNAs, and 37.04 (95% CI: 27.66-
49.60) for the combined dataset (Figure 6, Supplementary Figure 3).
These findings indicate that while saliva-derived miRNAs exhibited
slightly superior diagnostic accuracy compared to blood-derived
miRNAs, both types demonstrated strong potential as diagnostic
tools for pancreatic cancer.

3.5 Publication bias

To assess potential publication bias, Deeks’ funnel plot
asymmetry test was performed. The p-value for blood-derived
miRNAs was 0.78, indicating no significant publication bias
(Figure 7A). Saliva-derived miRNAs exhibited a p-value of less
than 0.01, suggesting the presence of publication bias (Figure 7B).
The combined blood- and saliva-derived miRNA analysis yielded a
p-value of 0.35, indicating no significant publication bias
(Figure 7C). The presence of bias in saliva-derived studies may be
attributed to the selective publication of positive results or the
underreporting of negative findings. Nonetheless, the absence of
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significant bias in blood-derived and combined analyses reinforces
the reliability of the overall findings.

3.6 Diagnostic performance and biological
significance of circulating miRNAs

To further explore the diagnostic utility and biological significance
of circulating miRNAs identified through our meta-analysis, we
constructed two layered Sankey plots that integrate both
quantitative metrics and mechanistic associations (Figure 8).
Figure 8A presents a diagnostic landscape of the 20 most frequently
reported miRNAs, each mapped to its corresponding specificity and
sensitivity category (Figure 8A). These miRNAs were selected based
on two criterja: 1) appearance in at least two independent sub-studies,
and 2) known involvement in pancreatic cancer-related molecular
pathways. This dual criterion ensured inclusion of both empirically
robust and biologically plausible markers. The most frequently
reported miRNA, miR-21, was associated with moderate sensitivity
and specificity, aligning with its well-documented role in oncogenic
processes including KRAS and PI3K/AKT signaling. Other highly
ranked miRNAs, such as miR-196a, miR-92a, and miR-1246, also
exhibited moderate-to-high diagnostic performance.

Figure 8B focuses exclusively on miRNAs with established
mechanistic involvement in key signaling pathways relevant to
pancreatic cancer biology, including KRAS, TP53, and CDKN2A.
Each miRNA was linked to the pathway in which it is functionally
implicated, followed by its observed specificity category derived from
our pooled meta-analytic data. For instance, miR-34a, a known
transcriptional target of TP53, demonstrated moderate specificity,
while miR-155, which regulates both the NF-kB and PI3K/AKT
pathways, was associated with high specificity. Although miR-145 and
miR-125b are involved in tumor suppressive signaling, they were only
reported in one or two studies and therefore remain underrepresented
despite their mechanistic importance. Among the signaling pathways
represented in Figure 8B, the PI3K/AKT/mTOR axis emerged as the
most enriched, encompassing five miRNAs (ie., miR-21, miR-155,
miR-221, miR-223, and miR-20a). These miRNAs are functionally
linked to cellular proliferation, apoptosis resistance, and survival
signaling. The EMT/metastasis program was also well represented,

frontiersin.org


https://doi.org/10.3389/fonc.2025.1642727
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Wilson and Nonaka

FIGURE 3

10.3389/fonc.2025.1642727

12008 (1) Wang ot a. 2009 (1) -
okl ot | e
otal. 2013 0.76{0.64 - 0.85] hao et al. 2013 —_——— | 0.56(0.40-0.72]
nang ot 2014 (1) 075 0.64- 0.8 Zhang et ol 2014 (1) — 1 055058071
Ganepola et al. 2014 (1) G la et al. 2014 (1) 1
it e !
T oty T oty e I N
Cote etal, 2014 (2) Coloetal. 2014 (2) L 0:86(067-1.00]
Cote etal. 2014 (3) 1.00[0.91 - 1.00] Cote et al. 2014 (3) | — 0.98(0.90 - 1.00]
ot ] Forirbons] 3 e
Geas Bl e Genadonl R b
Chenstal. 2014 064[054-073 Chen etal. 2014 —_—
Miyamae et al. 2015 My —t— X
Husseinet al. 2016 (1) 087085 -1.00] Hussein etal. 2016 (1) ———L & | owpss-100
Hussein et al. 2016 (2) 1.00[0.90 - 1.00] iussein et al. 2016 (2) —t 1.00 [0.78 - 1.00]
b 1oy e s - (7154
o bt Beaiee B
Gea e BN FRRE B
Kanammea o1 ) ; Koo vy
s s P — e e b
e oty 1 o]
Wei et al. 202 — 0.84[0.76 - 0.90] Wei et al. 202 —_— ] 0.64[052-0.74]
T i g T !
COMBINED — 0.83(0.78 - 0.88] COMBINED —r 087(0.82-0.91]
) O e 000 s O o ap- 000
! e peya ! ettt
‘Studyld | SENSITIVITY (95% CI) Studyld 'SPECIFICITY (95% Cl)
oyt | Sebeem o]
ol I el I enaton Tty
o et al. 2015 jﬁ 00[0.63 - 1.00] . 201! 1.000.83 - 1.0¢
Xie et al. 2015 (¢ 0. 47 -1.00] Xie et al. 2015 (6) 1.00 [0.63 - 1.0¢
Xie et al. 2015 (7) —_— 00 [0.63 - 1.00) . 201! 0.88[0.47 - 1.0¢
oot 201 ——————— | omoan \ i or 1%0[083 1o
17) :':. 1.00[0.63 - 1.00] e 015 (1 0.88(0.47 - 1.0¢
! e - 4 i et
¥ i ot
(25) -~ 0.8 [0.47 - 1.00] Xie et al. 2015 (25) 0.88[0.47 - 1.00]
(3: — 0.75[0.35 - 0.97) (e et al. 201! —_— 0.75[0.35 - 0.97]
- 1.00(0.63- 1. Xie et al. 2015 (39) —_— 0.75[0.35 - 0.97]
(48 1’—&— 0.75 (0.35 - 0.97) Xie et al. 2015 (48) —_—— 0.75[0.35 - 0.97]
59 ——f—=| rwowiw ool 2015 61
: 3| ek Koo atn T | Rhuan
(8¢ 1.00[0.63 - 1.00] 01!
5 eban p—— S A
if—n 1.00[0.63- 1 3 —_————— 062[024-091
o e - 3558 o S —— S
o :‘:‘ by~ s
o 3| imben
o e s I3
(71) :.:o 1.00 [0.63 - 1.00] (71 _— 0,62 (0.24 - 0.91]
o - IRV o e ——
i P el I o e ———— N 1 vt
r s - [ R o
i ———F—, | cpeang o
o ; el ety
z . 2 e
o TN = e
g e
1. 2015 (10¢ 1.00(0.63 - Xie et al. 2015 (100) 0.88[0.47 - 1.0C
Xie et al. 2015 (101) 0.75[0.35 - 0.97) Xie et al. 2015 (101, 1.00 [0.63 - 1.00]
e brg 410 im0 b Prber
e sk et o4 e sta 2ot . 1o
e o s Rt Himeas ot 3018 Ry
Fimens oo 30131 nba b I ——
e e il oo
e ot Rty e o
J. couneD ossiose-ase)
| 34.36 [19.44 - 49.27] 12=5201 [41.93 - 62.10]
SENSITIVITY 'SPECIFICITY

Pooled sensitivity and specificity for circulating miRNA-based diagnostics of pancreatic cancer. (A) Blood-derived miRNAs (Sensitivity: 0.83,
Specificity: 0.87). (B) Saliva-derived miRNAs (Sensitivity: 0.87, Specificity: 0.86).

Frontiers in Oncology

08

frontiersin.org


https://doi.org/10.3389/fonc.2025.1642727
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Wilson and Nonaka

10.3389/fonc.2025.1642727

A SROC with Prediction & Confidence Contours B SROC with Prediction & Confidence Contours ~ C SROC with Prediction & Confidence Contours
1.0-89 . ® © 60 [} 3 1.0 ® 0@ @ ()
g; ® . B R
° ° ) °
€] ® E 5} B
° e ©
: @
@
Z 2 2 g
= 2 2 @
= 2 B -
% 054 Z 2 .
[= c i =4
(o3 73 73
0 [77] 7]
O Observed Data O Observed Data
o S8 258 o SERLIITH o SREIERTIICI
-091] 'SPEC = 0.86 [0.62 - 0.89] SPEC =0.85 [0.83 - 0.88]
_ sAocCuve _ sAoccune _ sAoccue
A2 6B Toss-090 00258 T0s0-008 R00% 58 os0-000
— o5% Confidence Contour — s5% Confidence Contour — 55% Confidence Contour
95% Prodiction Contour 98% Prociction Contour 969% Prociction Contour
0.0-t T 1 T 1 T 1
1.0 0.5 0. 0.5 0. 0.5 0.0
Specificity Specificity Specificity
FIGURE 4

Summary receiver operating characteristic (SROC) curve analysis for circulating miRNA-based pancreatic cancer diagnostics. (A) Blood-derived
miRNAs (AUC: 0.92, 95% Cl: 0.89-0.94). (B) Saliva-derived miRNAs alone (AUC: 0.93, 95% CI: 0.90-0.95). (C) Combined blood- and saliva-derived

miRNAs (AUC: 0.92, 95% CI: 0.90-0.94)

including miR-10b, miR-21, miR-25, and miR-30c, all of which have
been implicated in epithelial-mesenchymal transition (EMT) and cancer
dissemination. Additional pathways included the NF-kB pathway (miR-
21, miR-155, miR-223), the Wnt/B-catenin pathway (miR-34a, miR-
92a, miR-194), and the KRAS pathway (miR-21, miR-193b). Pathways
related to TP53 (miR-34a, miR-192) and CDKN2A/pl16 (miR-221)
were less populated, but still represented by biologically relevant
miRNAs. Although SMAD4-TGF signaling is a critical tumor
suppressor pathway in pancreatic cancer, none of the miRNAs
known to regulate this axis (e.g., miR-130a, miR-421, miR-494) were
reported across the included studies and were therefore not included in
Figure 8B. This likely reflects a gap in the current biomarker literature
rather than biological insignificance.

Taken together, these visual analyses highlight a subset of
circulating miRNAs that not only show consistent diagnostic
performance across studies but also align with known molecular
mechanisms of pancreatic tumorigenesis. This layered approach
offers a clearer rationale for prioritizing miRNAs in future
translational studies, particularly those that converge on survival,
inflammatory, and metastatic signaling pathways.

4 Discussion

Pancreatic cancer is one of the most lethal malignancies, largely
due to its asymptomatic nature in the early stages, which makes
timely diagnosis extremely challenging (3). By the time symptoms
appear, the disease is often at an advanced stage, limiting treatment
options and reducing survival rates. Therefore, the development of
reliable, non-invasive diagnostic methods for early detection is of
paramount importance (53). Liquid biopsy, utilizing blood or saliva
as a source of biomarkers, represents a promising solution for early
detection, offering a minimally invasive alternative to traditional
tissue biopsies (26, 27, 48). In this context, circulating miRNAs have
emerged as highly valuable biomarkers, capable of reflecting tumor
presence and progression.
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This meta-analysis represents the most comprehensive study to
date, incorporating 168 sub-studies and a total of 1,496 patients,
making it the largest comparative analysis of blood-derived
miRNAs, saliva-derived miRNAs, and their combined use for
pancreatic cancer detection. Notably, this study includes 119 sub-
studies on saliva-derived miRNAs, the highest number reported in
the field, making it the first meta-analysis to directly compare the
diagnostic performance of blood-based, saliva-based, and combined
miRNA biomarkers. By systematically evaluating their diagnostic
potential, this study provides critical insights into their clinical
utility and highlights the advantages of integrating both biofluids
for pancreatic cancer detection.

Our findings confirm that blood-derived miRNAs exhibit
strong diagnostic performance, with a pooled sensitivity of 0.83
(95% CI: 0.78-0.88) and specificity of 0.87 (95% CI: 0.82-0.91)
(Figure 3A). The area under the curve (AUC) of 0.92 (95% CI: 0.89-
0.94) reinforces their reliability as liquid biopsy biomarkers
(Figure 4A). Furthermore, the diagnostic odds ratio (DOR) of
33.40 (95% CI: 17.88-62.37) indicates their effectiveness in
distinguishing pancreatic cancer patients from non-cancer
individuals (Figure 6A). These results validate the well-established
role of blood-based miRNA testing as a highly accurate diagnostic
tool. Similarly, saliva-derived miRNAs demonstrated excellent
diagnostic capabilities, with a pooled sensitivity of 0.87 (95% CI:
0.84-0.90) and specificity of 0.86 (95% CI: 0.82-0.89) (Figure 3B).
Notably, the AUC for saliva-derived miRNAs was slightly higher at
0.93 (95% CI: 0.90-0.95), suggesting that saliva-based tests may be at
least as effective as blood-based assays, if not slightly superior
(Figure 4B). Additionally, the DOR for saliva-derived miRNAs
was 39.94 (95% CI: 28.66-55.67), surpassing that of blood-derived
miRNAs, indicating a potential diagnostic advantage (Figure 6B).
The lower diagnostic likelihood ratio negative (DLR negative) for
saliva-derived miRNAs (0.15 vs. 0.19 for blood-derived miRNAs)
further suggests that saliva-based testing may reduce false-negative
rates, a crucial factor for early pancreatic cancer detection
(Figures 5A, B). The combined analysis of blood- and saliva-
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Diagnostic score (DS) and diagnostic odds ratio (DOR) for circulating miRNA-based pancreatic cancer diagnostics. (A) Blood-derived miRNAs
(DS: 3.51, DOR: 33.40). (B) Saliva-derived miRNAs alone (DS: 3.69, DOR: 39.94).
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Deeks’ funnel plot assessing publication bias in circulating miRNA-based pancreatic cancer diagnostics. (A) Blood-derived miRNAs (p = 0.78). (B)
Saliva-derived miRNAs alone (p < 0.01). (C) Combined blood- and saliva-derived miRNAs (p = 0.35).

derived miRNAs revealed a sensitivity of 0.86 (95% CI: 0.84-0.89)
and specificity of 0.85 (95% CI: 0.83-0.88), with an AUC of 0.92
(95% CI: 0.90-0.94) (Supplementary Figure 1, Figure 4C). The DOR
of 37.04 (95% CI: 27.66-49.60) suggests that integrating both
biofluids may offer an additional diagnostic advantage by
capturing complementary miRNA profiles (Supplementary
Figure 3). This approach provides a broader representation of
disease-associated miRNAs, as certain biomarkers may be
differentially expressed in blood and saliva. Consequently,
combining both sources could enhance diagnostic accuracy and
robustness across diverse clinical scenarios.

miRNAs are small, non-coding RNA molecules that play a
pivotal role in post-transcriptional gene regulation (54). Their
biogenesis involves transcription into primary miRNAs (pri-
miRNAs), processing into precursor miRNAs (pre-miRNAs), and
further cleavage by the Dicer enzyme to generate mature miRNAs
(55). Once incorporated into the RNA-induced silencing complex
(RISC), they regulate gene expression through mRNA degradation or
translational repression (55). Under normal physiological conditions,
miRNAs govern critical cellular functions such as differentiation,
proliferation, apoptosis, and immune responses (56, 57). However, in
cancer, miRNA expression is frequently dysregulated, promoting
tumor progression, metastasis, and therapy resistance (58). Some
miRNAs function as tumor suppressors by inhibiting oncogene
expression, while others act as oncomiRs, downregulating tumor
suppressor genes (42). This dysregulation is a hallmark of cancer and
supports the value of miRNAs as liquid biopsy biomarkers.

Given this dual biological role of miRNAs in both tumor
suppression and oncogenesis, understanding their diagnostic
potential requires not only statistical validation but also
mechanistic context. In this study, we addressed this need by
integrating pooled diagnostic performance with biological
pathway relevance through the use of layered Sankey diagrams
(Figure 8). These visualizations provide a systems-level perspective
on how specific circulating miRNAs operate at the intersection of
diagnostic utility and pancreatic cancer biology. In Figure 8A, we
prioritized miRNAs that were both frequently reported and
biologically plausible, revealing a cluster of candidates, such as
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miR-21, miR-196a, miR-92a, and miR-1246, with moderate-to-high
diagnostic performance. miR-21 was not only the most frequently
studied miRNA but also consistently associated with moderate
sensitivity and specificity, reinforcing its candidacy as a robust
diagnostic marker. Its established roles in KRAS and PI3K/AKT
signaling further support its relevance in pancreatic tumorigenesis.
Other miRNAs, such as miR-34a and miR-155, were included
despite their lower frequency because of their strong functional
ties to TP53 and inflammatory signaling, respectively, highlighting
the importance of balancing study frequency with biological
significance in biomarker prioritization.

Figure 8B extended this analysis by explicitly linking each miRNA
to known signaling pathways implicated in pancreatic cancer. Among
the pathways represented, PI3K/AKT/mTOR was the most enriched,
comprising miR-21, miR-155, miR-221, miR-223, and miR-204a, all of
which have been implicated in survival signaling and chemoresistance.
Pathways related to EMT and metastasis, NF-kB, and Wnt/B-catenin
were also represented, indicating that many of the top circulating
miRNAs converge on processes related to invasion, inflammation, and
cell survival. In contrast, tumor suppressor pathways such as TP53
and CDKN2A/p16 were represented by fewer miRNAs, and SMAD4-
TGE signaling, despite its established relevance in pancreatic cancer,
was not reflected in our figure due to the limited reporting of related
miRNAs in circulating biomarker studies. This distribution highlights
an important gap in the literature: while miRNAs associated with
oncogenic and inflammatory signaling are frequently studied and
consistently show diagnostic value, miRNAs involved in canonical
tumor suppressor networks remain underrepresented in the
circulating miRNA field. This may be attributable to technical
detection biases or to the lower abundance of tumor-suppressive
miRNAs in blood-derived compartments. Taken together, these
findings emphasize the importance of integrating biological context
into diagnostic meta-analyses. Visual frameworks like Sankey plots
not only enhance interpretability of pooled results but also help
identify promising, pathway-informed miRNA candidates for future
validation. Our analysis suggests that miRNAs converging on PI3K/
AKT, NF-kB, and EMT-related signaling hold particular promise for
translational application, whereas mechanistically important yet
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FIGURE 8

Integrated visualizations of diagnostic performance and biological relevance of circulating miRNAs in pancreatic cancer. (A) Sankey plot illustrating
the 20 most frequently reported miRNAs across the 168 sub-studies included in this meta-analysis. Each miRNA is linked to its corresponding
pooled diagnostic performance category, based on sensitivity and specificity thresholds derived from our meta-analysis. Only miRNAs reported in at
least two independent sub-studies and functionally associated with pancreatic cancer were included, highlighting miRNAs with both empirical
recurrence and diagnostic potential. (B) Sankey plot mapping selected circulating miRNAs to major pancreatic cancer-related molecular pathways in
which they are mechanistically implicated. Each miRNA is grouped by its associated pathway (e.g., KRAS, NF-kB, PI3K/AKT/mTOR, EMT/metastasis,
CDKN2A/pl16, Wnt/B-catenin, TP53), followed by its observed specificity category based on meta-analytic data. This figure emphasizes the biological
plausibility of diagnostic miRNAs by linking them to oncogenic or tumor-suppressive signaling cascades relevant to pancreatic tumorigenesis.

infrequently studied miRNAs should be prioritized in future  bilayers, protecting them from enzymatic degradation and ensuring
experimental designs. stability as biomarkers (37). These exosomes can travel systemically

In cancer, miRNAs are released into circulation through passive  and interact with salivary gland epithelial cells through endocytosis or
leakage from apoptotic or necrotic cells and active secretion via ~ membrane fusion, enabling the transfer of tumor-derived miRNAs
exosomes (40). Exosomal miRNAs are particularly relevant because  into saliva (45). This biological mechanism supports the feasibility of
they are actively secreted by cancer cells and encapsulated within lipid ~ saliva-based diagnostics and explains the strong correlation between
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salivary miRNAs and pancreatic cancer. Further understanding of
these exosomal trafficking pathways may open up valuable diagnostic
opportunities beyond early detection. Specifically, salivary miRNAs
may be leveraged in the future for real-time monitoring of disease
progression, predicting metastatic potential, or guiding treatment
selection based on molecular signatures that reflect tumor dynamics
in a non-invasive manner.

Previous studies have demonstrated that salivary biomarkers
reliably reflect systemic disease states, reinforcing saliva’s potential
as a viable diagnostic biofluid (48, 59). Our findings further
substantiate that saliva-derived miRNAs not only mirror the
diagnostic performance of blood-derived miRNAs but may offer
additional advantages due to their ease of collection, non-
invasiveness, and potential for reducing false-negative results.
Importantly, the combined use of blood- and saliva-derived
miRNAs provides a promising strategy to maximize diagnostic
performance by leveraging complementary molecular information.

Despite these promising findings, certain limitations must be
acknowledged. Our analysis detected publication bias in saliva-
derived miRNA studies (p < 0.01), while no significant bias was
found in blood-derived (p = 0.78) or combined analyses (p = 0.35)
(Figure 7). One plausible explanation is that saliva-based miRNA
diagnostics remain a relatively nascent area compared to blood-based
approaches, with fewer studies overall and a higher proportion of
exploratory or proof-of-concept research. In such early-stage fields,
there may be a greater tendency for investigators and journals to
preferentially report positive or promising findings, especially given the
novelty and clinical appeal of non-invasive diagnostics. Studies with
null or negative results may be less likely to be submitted or accepted
for publication, contributing to an imbalance in the published
literature. Moreover, technical factors specific to saliva, such as lower
RNA vyield, variable exosomal content, and higher susceptibility to
degradation or contamination, may result in inconsistent results across
studies. These challenges may increase the likelihood that only studies
with particularly strong or favorable diagnostic signals are published,
while technically inconclusive studies remain unpublished. This bias
suggests a tendency toward selective reporting of positive results in
saliva studies, necessitating future research with balanced reporting of
both positive and negative findings. In addition, study heterogeneity
remains a concern, although a random-effects model was applied to
mitigate this issue. The lack of standardized miRNA panels across
studies further limits comparability, emphasizing the need for
consensus on key miRNA signatures. Larger, more standardized
cohorts are essential to validate these findings and confirm the
clinical utility of blood- and saliva-derived miRNAs.

Notably, our study also highlights a broader challenge in the field:
the absence of universally reproducible circulating miRNA biomarkers
across studies. Despite pooling data from 168 sub-studies involving
over 1,400 patients, no single miRNA consistently demonstrated both
high diagnostic performance and cross-study reproducibility. This
inconsistency likely arises from technical factors (e.g., differences in
sample type, RNA extraction, and quantification platforms), biological
variability (e.g., tumor stage, stromal interaction, host immune
response), and selective reporting biases. These limitations are
especially pronounced in circulating miRNA research, where inter-
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study variation is high and standardization remains limited. To
partially address this, we incorporated two layered Sankey plots
(Figures 8A, B) that visualize the diagnostic performance and
biological relevance of individual miRNAs. Although no “universal
marker” emerged, several miRNAs such as miR-21, 155, 223, and 34a
were identified as both more frequently reported and mechanistically
linked to critical pathways in pancreatic cancer, including KRAS, NF-
kB, and PI3K/AKT. These miRNAs may not function as standalone
markers but could serve as reliable components of multi-marker
panels tailored for pancreatic cancer detection. By integrating
empirical diagnostic data with functional annotations, the Sankey
plots offer a systems-level perspective that improves biomarker
interpretability and prioritization.

Future research should therefore prioritize large-scale, prospective
multi-center studies that apply standardized protocols for sample
processing, RNA extraction, and miRNA quantification. Particular
attention should be given to pathway-informed candidate miRNAs
with consistent biological relevance. For saliva-based diagnostics,
developing optimized multi-miRNA panels, along with rigorous
validation in independent cohorts, will be essential. Furthermore,
economic feasibility analyses comparing saliva- and blood-based
testing modalities are warranted to assess cost-effectiveness in real-
world clinical settings. Until such standardization and validation
efforts are realized, reproducibility will remain a critical barrier to
the clinical translation of circulating miRNA biomarkers.

5 Conclusion

In conclusion, this meta-analysis provides compelling evidence
that both blood- and saliva-derived miRNAs serve as highly
effective biomarkers for pancreatic cancer detection. Saliva-
derived miRNAs demonstrate comparable, if not superior,
diagnostic performance to blood-derived miRNAs, offering a non-
invasive and potentially more accessible diagnostic alternative. The
combined assessment of both biofluids presents a promising
strategy to enhance diagnostic accuracy by integrating
complementary miRNA profiles. These findings indicate the
potential of miRNA-based liquid biopsies to revolutionize
pancreatic cancer diagnostics, emphasizing the need for further
validation and standardization to facilitate clinical implementation.
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