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Precision Radiation Oncology, Wuhan, China, 4Department of Radiation Oncology, Shandong Cancer
Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences,
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Purpose: Immunotherapy has revolutionized the treatment of lung cancer, yet

many patients experience limited or transient benefits. Identifying those most

likely to benefit remains a critical challenge. This study aims to establish a

predictive model based on peripheral blood lymphocyte subsets to evaluate

treatment responses in locally advanced and advanced lung cancer patients

receiving chemotherapy with or without immunotherapy.

Methods: We prospectively enrolled 171 patients, peripheral blood lymphocyte

subsets were analyzed pre-treatment, post-treatment, and at disease

progression using flow cytometry, focusing on CD3–CD16+CD56+ cells, CD3–

CD19+ cells, CD3+CD4+ T cells, CD4+/CD8+ T-cell ratio, and CD3+CD8+ T cells.

We assessed correlations between these subsets and treatment efficacy and

constructed a nomogram to predict outcomes.

Results: Baseline lymphocyte profiles were closely associated with treatment

responses. Elevated CD3–CD16+CD56+ cells, increased CD4+/CD8+ T cell ratio,

and higher CD3–CD19+ cells correlated with favorable treatment outcomes,

particularly in patients receiving combined therapy. Conversely, higher CD3+ and

CD3+CD8+ T cell counts were linked to poorer short-term efficacy. A nomogram

integrating five immune parameters achieved an area under the receiver

operating characteristic curve (AUC) of 0.778, outperforming individual marker.

In the combination therapy subgroup, a four-parameter model achieved an AUC

of 0.725. Furthermore, baseline and progression-stage lymphocyte profiles in

responder and non-responder cohorts, exhibit no significant differences,

indicating stable immune parameters over the disease course.
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Conclusion: Peripheral blood lymphocyte subsets are promising non-invasive

biomarkers for predicting treatment responses in locally advanced and advanced

lung cancer patients, particularly with immunotherapy. The developed

nomogram models enhance predictive accuracy, supporting personalized

treatment decisions.
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Introduction

Lung cancer ranks among the most frequently diagnosed

malignancies worldwide and continues to be a leading cause of

cancer-associated mortality, accounting for 18.7% of all cancer-

related deaths globally (1–3). While surgical resection is considered

the cornerstone of curative treatment in early-stage disease, the

aggressive nature of lung cancer often results in delayed diagnosis.

More than 75% of patients are diagnosed at locally advanced or

metastatic stages, rendering them ineligible for radical surgery and

contributing to the overall poor prognosis. Despite the

implementation of multimodal treatment approaches—including

chemotherapy, radiotherapy, targeted therapy, and more recently

immunotherapy—the five-year overall survival (OS) rate for lung

cancer remains below 20%, with only marginal improvement

observed over recent decades (4, 5). The recent introduction of

immune checkpoint inhibitors (ICIs), such as agents targeting

programmed cell death-1 (PD-1) or programmed death-ligand 1

(PD-L1), has significantly altered the therapeutic landscape (6, 7).

By restoring T cell functionality and dismantling immune tolerance,

these agents can initiate durable antitumor responses. Nonetheless,

merely about 30% of patients achieve substantial and enduring

benefits from ICIs, leaving most individuals confronted with

adverse events, substantial financial burdens, and suboptimal

clinical outcomes (8). Refining approaches to extend survival and

pinpointing patient subgroups most likely to benefit remain central

challenges in lung cancer treatment. Under these circumstances,

determining which individuals stand to gain the most from

immunotherapy is a critical priority for optimizing clinical

outcomes. To this end, various biomarkers—such as tumor
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mutational burden (TMB) and PD-L1 expression—have been

leveraged to guide efficacy predictions (9, 10). However, due to

their invasiveness, spatial heterogeneity and limited reproducibility,

it`s challenging to utilize them as dynamic, real-time predictors of

efficacy in clinical practice.

Peripheral blood, reflecting the overall status of circulatory

system, serves as a valuable resource for monitoring and

forecasting disease trajectories during cancer treatment (11).

Lymphocytes, as the primary cell type in peripheral blood, are

integral to both innate and adaptive immunity, collaboratively

contributing to antitumor activities (12). Classical lymphocyte

subpopulations include T cells (CD4+ and CD8+), B cells, and

natural killer (NK) cells, all of which contribute to controlling

tumor growth (13). However, directly assessing the immune

environment within tumor tissue, particularly through measuring

tumor-infiltrating lymphocytes, poses considerable practical

difficulties for many patients with advanced disease, given the

inherent challenges of acquiring repeated tumor specimens (14).

The systematic anti-tumor therapies remain a cornerstone in

managing locally advanced or advanced lung cancer. However, their

biological effects are multifaceted (15). On the one hand, the

cascade of molecular events triggered by chemotherapy-induced

tumor cell apoptosis can enhance lymphocyte activation and

proliferation, contributing to tumor eradication. On the other

hand, the intrinsic vulnerability of rapidly renewing lymphocytes

to cytotoxic agents leads to significant myelosuppression. This

reduction in lymphocyte quantity and functional capacity

manifests clinically as lymphopenia, ultimately undermining

sustained tumor control (16, 17). Under circumstances where

functional lymphocyte populations are insufficient, the addition of

PD-1/PD-L1 inhibitors may fail to yield therapeutic advantages.

Recent studies have suggested that peripheral blood lymphocyte

subsets correlate with the immune status of patients with cancer,

and the analysis of lymphocyte subset can serve as a non-invasive

tool for treatment efficacy and prognosis assessment in cancer

patients. However, few studies have investigated the heterogeneity

in the predictive value of different lymphocyte subsets for lung

cancer treatment, especially across various subgroups, considering

the impact of different treatment regimens and dynamic changes

during treatment. A nomogram is a reliable and convenient tool for

predicting patient outcomes in oncology. By quantifying and
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integrating multiple prognosis factors, it provides more accurate,

individualized predictions compared to traditional single-

marker approaches.

In this study, we collected baseline and follow up peripheral

blood lymphocyte subset data from patients with locally advanced

or advanced lung cancer. We analyzed their relationship with short

term treatment response and prognosis in different patients’

subgroups, sought to determine whether lymphocyte subset

counts could serve as reliable indicators for anticipating

therapeutic benefit in patients undergoing systemic therapies,

particularly those receiving chemo-immunotherapy. Additionally,

we aimed to construct nomograms that could accurately predict

clinical efficacy, providing valuable evidence for the use of

lymphocyte subsets as biomarkers to predict the efficacy of anti-

tumor therapies.
Methods

Patients

From May 2018 to February 2024, we prospectively enrolled

171 individuals at Shandong Cancer Hospital and Institute who had

been diagnosed with lung cancer and received chemotherapy with

or without the addition of PD-1/PD-L1 inhibitors (Supplementary

Figure S1). Peripheral blood lymphocyte of enrolled patient’s pre-

treatment, post-treatment and at disease progression were collected.

Flow cytometry was used to assess key lymphocyte populations,

such as CD3–CD16+CD56+ cells, CD3-CD19+ cells, CD3+CD4+ T

cells, CD4+/CD8+ T cell ratio, and CD3+CD8+ T cells. Patient

survival outcomes were monitored through a combination of

scheduled clinic visits, monthly telephone assessments, and

verification of mortality records. Primary treatment response was

evaluated by two radiologists who were blinded to clinical data, and

discordant cases were adjudicated by third expert with access-

restricted PACS. Progression-free survival (PFS) was defined as

the interval from the initiation of systemic anti-cancer therapy until

either radiologically confirmed disease progression or death from

any cause. After two treatment cycles, comprehensive radiological

evaluations were performed using computed tomography (CT).

Treatment responses were then categorized according to the

Response Evaluation Criteria in Solid Tumors (RECIST) version

1.1. This scheme classifies outcomes into complete response (CR),

partial response (PR), stable disease (SD), or progressive disease

(PD). In this study, the response group included patients who

achieved CR, PR, while the non-response group consisted of

individuals exhibiting SD, or PD.

All patient-related information was fully anonymized to

maintain privacy, and strict confidentiality protocols were

adhered to throughout the research process. Before enrollment,

each participant was thoroughly briefed on the objectives and

methods of the study, and written informed consent was obtained

from all participants.
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Criteria of inclusion and exclusion

The inclusion criteria included: 1. Age between 18 and 80 years;

2. Histopathological confirmation of lung cancer; 3. Exhibit an

ECOG performance status score of 0–2, and possess an anticipated

survival exceeding six months; 4. Have completed a minimum of

two chemotherapy cycles; 5. Peripheral blood lymphocyte subset

data available for baseline and at least one follow-up time point.

Exclusion criteria were:1. Presenting with any secondary

primary malignancies; 2. Death, loss to follow-up, or

discontinuation of standard treatments or scheduled evaluations;

3. Baseline lymphocyte data showed ≥20% missing values. 4. Use of

any immunomodulators agents at any point during the treatment

interval, including but not limited to thymopeptides or

placental polypeptides.
Flow cytometry detection method

A qualified flow cytometry specialist, who was blinded to the

clinical data, performed the assays using a BD FACS Canto™ (10-

color) flow cytometer (BD, USA). The BD Multitest™ IMK kit was

employed with following fluorochrome conjugated monoclonal

antibodies: CD3-FITC/CD8-PE/CD45-PerCP/CD4-APC and

CD3-FITC/CD16+CD56-PE/CD45-PerCP/CD19-APC, along with

the matched isotype controls and corresponding lysis solution. All

steps followed the BD operating manual instructions.
Sample collection and data acquisition

Fresh peripheral blood (2mL) was collected from each enrolled

patient into K2EDTA Vacutainer tubes (BD, Cat# 367841) and

processed within 4 hours. The well-mixed blood sample was

combined with an appropriate volume of lysis solution and

incubated at room temperature in darkness for 15 minutes. Prior

to antibody staining, the samples were centrifuged (1500 rpm, 5

minutes), and the supernatant was discarded. Aliquots of 100 mL
whole blood were incubated with 20 mL antibody cocktails for 15

min at 20 °C in darkness. Centrifugation at 300g for 5 min followed

by two washes with phosphate-buffered saline (PBS). The final cell

pellet was resuspended in 0.5 mL of PBS.
Flow cytometry analysis

The samples were then analyzed on the BD FACS Canto flow

cytometer. Lymphocytes were identified by side scatter (SSC-A) and

forward scatter (FSC-A) parameters; CD45 positivity and scatter

properties were then used for more precise gating, with at least

10,000 lymphocyte events acquired per sample. Each lymphocyte

subset was further delineated based on fluorescence signals, and the

percentage of each subset was recorded. Total T Cells (T): CD3+,
frontiersin.org

https://doi.org/10.3389/fonc.2025.1642829
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yin et al. 10.3389/fonc.2025.1642829
Helper T Cells (Th): CD3+CD4+, Cytotoxic/Suppressor T Cells (Tc/

Ts): CD3+CD8+, Natural Killer Cells (NK): CD3−CD16+CD56+, B

Cells (B): CD3−CD19+. Samples with <90% CD45+ cell viability

were excluded.
Statistical analyses and nomogram
construction

Baseline characteristics between response and non-response

groups were compared using Chi-square tests or Fisher’s exact

tests, as appropriate. Treatment efficacy in the overall cohort and

subgroups was evaluated using t-tests. Logistic regression was

employed to analyze the combined predictive indicators of

lymphocyte subsets. The predictive capability of each subset was

analyzed using receiver operating characteristic (ROC) curves, and

optimal cut-off values were determined by maximizing the Youden

index (sensitivity + specificity – 1). Patients were then stratified into

high and low groups based on these thresholds.

Independent predictors of treatment response (P < 0.05 in

multivariate logistic regression) were incorporated into a

nomogram to estimate the probability of therapeutic efficacy.

Model performance were assessed using the area under the ROC

curves (AUC-ROC) and the concordance index (C-index) to

discrimination. Calibration curves were generated to assess the

agreement between predicted and observed treatment response,

with mean absolute error (MAE) and calibration slope calculated to

assess model fit. Internal validation was conducted using bootstrap

resampling (1,000 iterations) to ensure model stability. Sensitivity

and specificity trade-offs were examined, and optimal cutoff values

for lymphocyte subsets were determined by maximizing the Youden

index, a pre-specified approach in the study design.

To ensure model reproducibility, the predictive formulas

derived from logistic regression were as follows:
Fron
Entire cohort: p = 1/(1 + exp(-(-12.4210771597087 + 0.111 * a

+ 0.065 * b + 0.164 * c + -0.019 * e + -0.507 * f)))

Immunotherapy combination subgroup (IO): p = 1/(1 + exp

(-(-6.08574866155402 + 0.023 * a + 0.094 * c + 0.027 * e +

-0.487 * f)))

Chemotherapy subgroup (Chemo): p = 1/(1 + exp

(-(1.82821229336954 + 0.064 * b + -0.034 * c)))
Decision curve analysis (DCA) was performed to assess the

clinical utility of the nomogram by quantifying net benefit across

different threshold probabilities. All the statistical analyses were

performed using R software (version 4.2.2) and SPSS 22. 0. A two-

tailed P < 0.05 was considered statistically significant.
tiers in Oncology 04
Results

Patient demographic and clinical
characteristics

A total of 171 patients were included, comprising 133 males and

38 females. The baseline characteristics of patients are shown in

Table 1. Of the enrolled individuals, 75 (43.86%) were histologically

diagnosed with adenocarcinoma (ADC), representing the

predominant histological subtype. ADC prevalence differed

significantly between those who responded to treatment and those

who did not (p = 0.004). According to the 8th edition of the American

Joint Committee on Cancer (AJCC) staging criteria, 62 patients

(36.26%) presented with stage III disease, and 109 (63.74%) had

stage IV disease, showing a statistically significant distributional

difference between the two groups (p < 0.001). Among the 39

patients (22.81%) who underwent immunohistochemical evaluation

for PD-L1 expression, 20 (51.28%) tested positive while 19 (48.72%)

were negative. No other baseline characteristic demonstrated a

statistically significant relationship with treatment response (p >

0.05). In terms of therapeutic approaches, 90 patients (52.63%)

received a combination of chemotherapy plus immunotherapy, and

81 (47.37%) received chemotherapy alone. The response rates did not

differ significantly between these two treatment strategies (p = 0.117).
Predictive value of baseline lymphocyte
subsets for treatment efficacy

We examined whether pre-treatment levels of peripheral

lymphocyte subsets could distinguish patients who would benefit

from systemic therapy, including chemotherapy administered alone or

in combination with immunotherapy. To this end, we assessed baseline

lymphocyte profiles in all 171 enrolled patients and then compared these

parameters between those classified as responders (CR, PR) and non-

responders (SD, PD). As illustrated in Figure 1, the scatter plots illustrate

that several lymphocyte subsets differed significantly between the two

groups. Patients achieving favorable responses demonstrated higher

absolute counts of CD3-CD16+CD56+ cells (p = 0.026) and CD3-

CD19+ cells (p = 0.0044), as well as an elevated CD4+/CD8+ ratio (p

= 0.032) (Figures 1A, B, F). Conversely, these individuals exhibited lower

baseline levels of CD3+ (p < 0.001) and CD3+CD8+ cells (p < 0.001)

(Figures 1C, E). No significant difference was detected in the absolute

CD3+CD4+ cell count between responders and non-responders

(Figure 1D). Subsequent receiver operating characteristic (ROC)

analyses supported the predictive utility of these subsets. Specifically,

the baseline frequencies of CD3-CD16+CD56+, CD3-CD19+, CD3+, and

CD3+CD8+ cells, along with the CD4+/CD8+ ratio, all displayed
frontiersin.org
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measurable predictive power, with corresponding AUC values of 0.587,

0.618, 0.679, 0.665, and 0.604, respectively (Figures 1G-K).

We further explored whether these baseline lymphocyte

characteristics could forecast survival outcomes. Notably, elevated

counts of CD3-CD16+CD56+ cells were correlated with a

significantly prolonged PFS (p = 0.0041), as depicted in

Figure 2A. These findings suggest that pretreatment lymphocyte

profiles may serve as valuable biomarkers for anticipating both

immediate responses and longer-term therapeutic benefits.
Predictive value of baseline lymphocyte
subsets for therapeutic outcomes in
patients receiving chemotherapy combined
with immunotherapy

Chemotherapy integrated with immunotherapy represents an

essential therapeutic approach for patients with locally advanced or
Frontiers in Oncology 05
metastatic lung cancer. To clarify whether baseline peripheral

lymphocyte subset profiles can predict treatment efficacy within this

specific regimen, we evaluated 90 patients undergoing combination

therapy, of whom 37 exhibited treatment responses. Our analysis

revealed that patients demonstrating that elevated baseline counts of

CD3-CD16+CD56+ cells (p = 0.02) and a higher CD4+/CD8+ T cell

ratio (p = 0.037) were linked to increased efficacy of immunotherapy

(Figures 3A, F). Conversely, lower baseline levels of CD3+ T cells (p <

0.001) and CD3+CD8+ T cells (p < 0.001) correlated with better

therapeutic responses, indicating an inverse relationship between

these cell populations and short-term efficacy (Figures 3C, E). No

other lymphocyte subsets, such as CD3-CD19+ cells or CD3+CD4+

cells, were significantly linked to response outcomes. ROC curve

analysis supported these findings, showing that pretreatment levels of

CD3-CD16+CD56+ cells, CD3+ T cells, CD3+CD8+ T cells, and the

CD4+/CD8+ ratio could serve as predictive indicators for the efficacy of

combined therapy, with AUC values of 0.617, 0.696, 0.75, and 0.648,

respectively (Figures 3G-J).
TABLE 1 Baseline characteristics of enrolled patients.

Variables Total (n = 171)
Non-Response

(n = 91)
Response (n = 80) Statistic P value

Sex, n(%) c²=1.05 0.306

Female 38 (22.22%) 23 (25.27%) 15 (18.75%)

Male 133 (77.78%) 68 (74.73%) 65 (81.25%)

Age, n(%) c²=0.05 0.828

≤ 65 114 (66.67%) 60 (65.93%) 54 (67.50%)

>65 57 (33.33%) 31 (34.07%) 26 (32.50%)

Histology, n(%) – 0.004

SCC 38 (22.22%%) 12 (13.19%) 26 (32.50%)

ADC 75 (43.86%) 42 (46.15%) 33 (41.25%)

SCLC 52 (30.41%) 35 (38.46%) 17 (21.25%)

Others 6 (3.51%) 2 (2.20%) 4 (5.00%)

PDL1, n(%) – 0.751

Negative 19 (48.72%) 10 (45.45%) 9 (52.94%)

Positive 20 (51.28%) 12 (54.55%) 8 (47.06%)

Stage, n(%) c²=22.85 <0.001

III 62 (36.26%) 18 (19.78%) 44 (55.00%)

IV 109 (63.74%) 73 (80.22%) 36 (45.00%)

ICI, n(%) c²=2.46 0.117

No 81 (47.37%) 38 (41.76%) 43 (53.75%)

Yes 90 (52.63%) 53 (58.24%) 37 (46.25%)

ECOG, n(%) c²=1.88 0.171

0-1 157 (91.81%) 86 (94.51%) 71 (88.75%)

2 14 (8.19%) 5 (5.49%) 9 (11.25%)
SCC, squamous cell carcinoma; ADC, adenocarcinoma; SCLC, small cell lung cancer. The numbers and percentages of each characteristic in the response and non-response groups were shown.
Differences in each characteristic between the two groups were analyzed using c²: Chi-square test, -: Fisher exact. P < 0.05 was considered statistically different.
Bold values indicate statistical significance (P < 0.05).
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These baseline lymphocyte features also corresponded with PFS

in patients receiving combined modalities. Kaplan–Meier survival

analysis demonstrated that elevated CD3-CD16+CD56+ cell counts

(p = 0.017) and higher CD4+/CD8+ T-cell ratios (p = 0.029) were

significantly associated with superior survival outcomes, while

lower levels of CD3+CD8+ T cells (p = 0.0052) also predicted

improved survival (Figures 3K-N). In sum, these data suggest that

evaluating specific baseline lymphocyte subsets may help forecast

both immediate and longer-term benefits in patients undergoing

chemotherapy combined with immunotherapy, thereby providing a

valuable tool for therapeutic decision-making and optimization.
Frontiers in Oncology 06
Predictive value of baseline lymphocyte
subsets on the efficacy of chemotherapy in
patients

In addition to exploring patients treated with combined

chemotherapy and immunotherapy, we further evaluated whether

baseline peripheral lymphocyte subsets could predict treatment

responses in individuals receiving chemotherapy alone. This analysis

aimed to determine the extent to which these immune parameters

could serve as independent indicators of clinical benefit in the absence

of immunotherapy. In the cohort receiving chemotherapy alone,
FIGURE 1

Predictive value of baseline lymphocyte subsets for treatment efficacy in enrolled patient. (A-F) The correlation between specific baseline
lymphocyte subsets levels and treatment response in enrolled lung cancer patients. (G-K) The ROC curves of specific baseline lymphocyte subsets
levels and treatment response in enrolled lung cancer patients. * P<0.05, **P<0.01, *** P<0.001, NS, Not significant.
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elevated baseline CD3-CD19+ T cell counts (Figure 4B, p = 0.026) and

reduced CD3+ T cell counts (Figure 4C, p = 0.022) were significantly

associated with improved response rates. In contrast, no statistically

meaningful connections were identified between other examined

lymphocyte subsets, including CD3-CD16+CD56+, CD3+CD4+,

CD3+CD8+ T cells, or the CD4+/CD8+ ratio and chemotherapy

outcomes. These observations imply that chemotherapy may

predominantly influence innate immune responses, while exerting

comparatively limited effects on adaptive immunity.

ROC curve analyses further supported the predictive potential of

CD3-CD19+ T-cell and CD3+ T cell counts, with AUC values of 0.629

and 0.667 (Figures 4G, H), respectively. Nevertheless, subsequent

survival assessments revealed no significant associations between

these particular baseline lymphocyte parameters and long-term

survival, as depicted in Figures 4I, J. By examining the pretreatment

lymphocyte profiles, we assessed their correlation with therapeutic

outcomes and PFS. This evaluation allowed us to discern whether

similar patterns observed in combination therapy cohorts persisted in

patients managed solely with chemotherapy, thus identifying a
Frontiers in Oncology 07
broader applicability of these biomarkers as predictors of

clinical efficacy.
Predictive value of second cycle
lymphocyte subsets on the therapeutic
efficacy

We further explored whether alterations in lymphocyte subsets

over two treatment cycles could forecast therapeutic responses

among patients undergoing chemotherapy alone or chemotherapy

combined with immunotherapy. A total of 104 patients provided

longitudinal lymphocyte subset data spanning two consecutive

cycles. Evaluation of these second-cycle values revealed that lower

CD3+ (p < 0.001) and CD3+CD8+ T cell counts (p = 0.023)

remained positively associated with favorable responses,

consistent with our baseline observations (Figures 5C, E). No

other subsets displayed significant relationships with therapeutic

efficacy at this time point (Figures 5A, B, D, F).
FIGURE 2

Kaplan-Meier survival curve analysis showing the relationship between values of CD3-CD16+CD56+ cells (A), CD3-CD19+ (B), CD3+ T cells (C),
CD3+CD8+ T cells (D), CD4+/CD8+ ratio (E) and PFS in enrolled patients.
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When focusing on the 59 patients receiving combined

chemotherapy and immunotherapy, we noted that higher CD3-

CD16+CD56+ cell counts (p = 0.05) and lower CD3+ (p = 0.003) and

CD3+CD8+ T cell levels (p = 0.0061) in the second cycle correlated
Frontiers in Oncology 08
with improved outcomes, mirroring the baseline trends

(Figures 5G, I, K). Interestingly, the CD4+/CD8+ T cell ratio,

which at baseline had demonstrated predictive value, did not

show a significant second-cycle association with treatment
FIGURE 3

Predictive value of baseline lymphocyte subsets for therapeutic outcomes in patients receiving chemotherapy combined with immunotherapy.
(A-F) The correlation between specific baseline lymphocyte subsets levels and combination response in lung cancer participants. (G-J) The ROC
curves of specific baseline lymphocyte subsets levels and combination response in lung cancer participants. Kaplan-Meier survival curve analysis
showing the relationship between values of CD3-CD16+CD56+ cells (K), CD3+ T cells (L), CD3+CD8+ T cells (M), CD4+/CD8+ ratio (N) and PFS.
NS, Not significant.
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efficacy (Figures 5H, J, L). Among the 45 patients treated exclusively

with chemotherapy, only reduced CD3+ T cell counts predicted a

better response, and no significant correlations emerged for other

subsets (Supplementary Figure S2).
Dynamic changes in lymphocyte subsets
between responders and non-responders

To further elucidate the link between dynamic peripheral

lymphocyte fluctuations and treatment efficacy, we assessed

changes in lymphocyte subsets across two successive treatment

cycles in both responder and non-responder groups. Data were

collected at baseline and following treatment initiation. Among

the 59 patients treated with chemotherapy or combination

immunotherapy, 34 achieved a response, while 25 did not.

Analysis of pre- and post-treatment values did not reveal
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significant shifts in any lymphocyte subset within either group

(Supplementary Figure S3). Similarly, in the 45 patients receiving

combination immunotherapy (23 responders, 22 non-

responders) , no significant al terat ions were detected

(Supplementary Figure S4).

Additionally, to further investigate the relationship between

disease progression and lymphocyte subsets, we innovatively

examined baseline lymphocyte profiles and their levels at the time

of disease progression in both responder and non-responder

cohorts. A total of 41 patients recorded lymphocyte profiles in

both baseline and disease progression, among them 17 patients were

in responder cohort, while 24 in non-responder cohort.

Comparative analysis revealed no significant differences in

lymphocyte subsets between these two time points in both two

cohorts, indicating that these immune parameters remained

relatively stable throughout the disease course, irrespective of

treatment outcomes (Supplementary Figure S5).
FIGURE 4

Predictive value of baseline lymphocyte subsets on the efficacy of chemotherapy in patients. (A-F) The correlation between specific baseline
lymphocyte subsets levels and chemotherapy response in lung cancer participants. (G, H) The ROC curves of specific baseline lymphocyte subsets
levels and chemotherapy response in lung cancer participants. Kaplan-Meier survival curve analysis showing the relationship between values of CD3-

CD19+ cells (I), CD3+ T cells (J). * P<0.05, NS, Not significant.
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Construction of nomogram models for
predicting efficacy

To further explore, we included all variables identified as significant

in the univariate logistic regression analysis (Supplementary Tables S1,

S2). Leveraging these key predictors, we constructed two nomograms

to estimate response likelihood (Figure 6).

In the entire cohort, the nomogram integrated five parameters

—CD3-CD16+CD56+, CD3-CD19+, CD3+, CD3+CD8+ T cells, and

the CD4+/CD8+ T cell ratio. The AUC-ROC demonstrated

discriminative ability with an AUC of 0.778, surpassing the

predictive value of any individual factor (Figures 6A, B). The

calibration curve indicated good agreement between predicted

and observed probabilities, with a mean absolute error (MAE) <

0.05, confirming the reliability of the model.
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In the subgroup receiving chemo-immunotherapy, a similar

nomogram incorporating four variables—CD3-CD16+CD56+,

CD3+, CD3+CD8+T cells, and the CD4+/CD8+ ratio—achieved an

AUC of 0.725 (Figures 6C, D). The model effectively stratified

patients into high and low-risk groups, with a statistically significant

separation in PFS (P = 0.029) (Supplementary Figure S6), further

supporting its utility in predicting immunotherapy outcomes.

Calibration analyses showed excellent consistency between

predicted and actual responses, reinforcing the robustness of the

model in this subset (Supplementary Figure S7).

However, in the chemotherapy-only subgroup, the nomogram

model demonstrated limited predictive capability. Notably, the

model integrating both CD3+ and CD3-CD19+ cell subsets yielded

similar predictive accuracy to the CD3+ subset alone, with AUC

values of 0.66, indicating that the addition of B cell parameters did
FIGURE 5

Predictive value of second cycle lymphocyte subsets on the therapeutic efficacy. (A-F) The correlation between specific post-treatment lymphocyte
subsets levels and treatment response in enrolled lung cancer participants. (G-L) The correlation between specific baseline lymphocyte subsets
levels and chemo-immunotherapy combination response in lung cancer participants. NS, Not significant.
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not enhance prognostic discrimination in chemotherapy-treated

patients (Supplementary Figure S8). These findings suggest that

chemotherapy-treated patients, peripheral lymphocyte subsets

alone may not fully capture the determinants of treatment response.
Discussion

Immunotherapy has markedly transformed the treatment

landscape for locally advanced and metastatic lung cancer, yet a

subset of patients experiences limited or transient benefits (18, 19).

Identifying reliable predictive biomarkers is crucial to refining patient

selection and optimizing therapeutic strategies. While tumor tissue–

based biomarkers have received considerable attention, challenges

related to acquisition and representation limit their practical utility.

By contrast, peripheral blood offers a more accessible sample source

and may reflect the systemic immune milieu in a manner that

complements localized tumor information (20–22). In this condition,

assessing peripheral blood lymphocyte subsets, which are integral to

both innate and adaptive immune responses, holds promise as a

noninvasive method for gauging the likelihood of a favorable outcome.

Lymphocytes are integral to immune surveillance and tumor

control (16). The three major subsets, T, B, and NK cells, are the

primary effector of the adaptive immune system (23). T cells,

identifiable by the CD3 surface marker, differentiate into CD4+ and

CD8+ T cells upon antigen recognition, both of which are crucial for

antitumor immunity. Previous studies have demonstrated that patients
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responding to immunotherapy often exhibit reduced baseline levels of

circulating T cells compared to non-responders (24). CD4+ T cells, as

the main helper cells, enhance B cell antibody production and regulate

immune responses mediated by other T cells. Recent evidence suggests

that the CD4+ T cell subset plays a protective role against cancer

progression by augmenting the tumoricidal activity of other antitumor

effector cell subsets (25). However, CD8+ T cells are functionally

heterogeneous (26). Differences in the expression levels of molecular

markers linked to T cell exhaustion (PD-1, CTLA-4, CD160) and T cell

senescence (CD57, absence of CD28) in CD8+ T cells may influence the

efficacy of immunotherapy in distinct ways (27). Notably, CD8+ T cells

can be further subdivided based on CD28 expression, which modulates

the immune response either positively or negatively (28). An increase

in CD8+ CD28− T cells is associated with impaired immune function

(26). Maintaining a homeostatic balance between these subsets is

essential for a robust immune response. In our study, higher

circulating levels of total CD3+CD8+ T cells were unexpectedly

associated with poorer short-term treatment outcomes. This may be

attributed to an increased proportion of dysfunctional or non-tumor-

reactive CD8+ subsets, such as CD8+CD28− cells, which are linked to

impaired immune function. Previous studies have shown that

moderately elevated CD8+CD28+ T cell counts may predict favorable

responses, while excessive elevations may increase the risk of immune-

related adverse events (irAEs), ultimately compromising therapeutic

benefit. Given that without further functional stratification, the

observed association likely reflects expansion of ineffective or

exhausted CD8+ T cell populations rather than active cytotoxic
FIGURE 6

Nomogram model predicts treatment efficacy of lymphocyte subsets between the response and non-response groups. A nomogram predicting the
value of lymphocyte subsets and treatment efficacy for enrolled patients. (B) The ROC curves of nomogram and different risk factors for enrolled
patients. (C) A nomogram predicting the value of lymphocyte subsets and treatment efficacy for patients with chemo-immunotherapy combination
treatment. (D) The ROC curves of nomogram and different risk factors for patients with chemo-immunotherapy combination treatment.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1642829
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yin et al. 10.3389/fonc.2025.1642829
immunity. These findings highlight the importance of incorporating

functional profiling—such as immune checkpoint expression and

antigen specificity—into future analyses. Furthermore, A decreased

CD4+/CD8+ ratio often signifies an immunosuppressive state,

commonly observed in cancer patients, where compromised cellular

immune function diminishes the body’s ability to recognize and

eliminate malignant cells (29).

B cells, characterized by the CD19 surface marker, primarily secrete

antibodies against tumor-associated antigens and coactivate CD8+ T

cells in conjunction with CD4+ T cells (30, 31). NK cells, identified by

the CD56 marker, constitute the first line of defense against tumors and

pathogens (32). The cytotoxic and immunomodulatory effects of them

are critical to the overall status of the tumor microenvironment (33).

Current research is actively exploring NK cell–based immunotherapies

as a complementary strategy to enhance antitumor responses (32, 34–

36). Various factors released from tumor cells facilitate the activation

and proliferation of lymphocytes, thereby contributing to tumor

eradication during cancer treatment, particularly immunotherapy (37,

38). However, the presence of large numbers of inactive or “bystander”

lymphocytes within the tumor immune microenvironment can

undermine therapeutic efficacy (39). Consequently, assessing specific

lymphocyte subsets may not fully capture the actual immune capacity,

highlighting the need for comprehensive immune profiling (40).

In this study, we systematically analyzed the predictive value of

peripheral blood lymphocyte subsets across different treatment

modalities. Our findings indicate that specific lymphocyte subsets

measured before and shortly after treatment initiation hold

significant potential in identifying patients who are more likely to

benefit from these treatments while the combination of several

lymphocyte subsets can be more crucial. These insights contribute

to the growing body of evidence supporting the use of peripheral

blood immune profiling as a valuable tool in personalizing

cancer immunotherapy.

By analyzing the baseline and early-treatment peripheral blood

lymphocyte profiles in patients with advanced lung cancer receiving

chemotherapy alone or in combination with immunotherapy, one

key finding was that distinct subsets at baseline, including CD3-

CD16+CD56+ cells, CD3-CD19+ cells, and an increased CD4+/

CD8+ T cell ratio, were more frequently associated with favorable

responses. In contrast, higher levels of CD3+ and CD3+CD8+ T cells

tended to correlate with poorer short-term efficacy. These patterns

persisted after additional treatment cycles, particularly in those

receiving immunotherapy-containing regimens, underscoring the

relevance of these immune parameters as early predictors.

Our study further highlights differences based on treatment

modalities. In patients who received immunotherapy-containing

regimens, baseline elevations in CD3-CD16+CD56+ cells and a

higher CD4+/CD8+ ratio were linked to improved outcomes.

Conversely, in individuals treated with chemotherapy alone, only

certain subsets, such as CD3-CD19+ cells and lower CD3+ T-cell

counts, showed predictive value for short-term responses. Although

these associations did not translate into significant survival

advantages for the chemotherapy-only group, they still indicate that

early immune subsets could help refine patient selection and timing

of treatment adjustments. Meanwhile, we innovatively examined the
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link between dynamic peripheral lymphocyte fluctuations and

treatment efficacy, especially the relationship between disease

progression and lymphocyte subsets. However, the dynamic

assessments of peripheral blood lymphocyte subsets did not reveal

substantial shifts correlated with long-term efficacy once the disease

progressed, suggesting that these biomarkers might be more relevant

at the initiation and early stages of therapy. While the absence of

significant alterations at progression may reflect complex host-tumor

interactions that evolve over time, it underscores the importance of

evaluating immune parameters before or shortly after therapy begins,

rather than later in the disease course.

Based on the identified predictive factors, we developed a

nomogram model that integrated multiple lymphocyte subsets. This

model demonstrated robust discrimination (AUC = 0.778 in the entire

cohort) and calibration, outperforming single biomarkers. The model

was particularly effective in patients receiving immunotherapy-

containing regimens (AUC = 0.725), underscoring the relevance of

systemic immune profiling in predicting response to immune

checkpoint inhibitors. These findings support the integration of

lymphocyte subset analysis into clinical decision-making to refine

patient selection and therapeutic strategies. By enhancing predictive

capacity, such multifactorial tools could support personalized

treatment decisions, allowing clinicians to identify patients most

likely to benefit from immunotherapy-containing regimens and

consider early therapeutic modifications if immune parameters

suggest limited gains.

Interestingly, in the chemotherapy-only cohort, the nomogram

model performed poorly, with no substantial advantage of

integrating B cells over CD3+ T cells alone. Several factors may

explain this finding. Unlike immunotherapy, which relies on

immune activation, chemotherapy exerts direct cytotoxic effects,

making lymphocyte profiles less reflective of response. Limited role

of B cells in chemotherapy: While B cells contribute to

immunotherapy efficacy through antigen presentation and

antibody production, their role in chemotherapy response is less

defined. And also, the lack of strong predictive power suggests that

chemotherapy response may be influenced by tumor-intrinsic

factors or inflammatory markers beyond peripheral lymphocyte

subsets. Future studies should explore the integration of

inflammatory markers (e.g., CRP, IL-6), tumor-intrinsic features,

or functional immune assays to enhance prediction accuracy in

chemotherapy-treated patients.

Our findings demonstrated that peripheral blood lymphocyte

subsets could serve as dynamic, non-invasive biomarkers for

assessing treatment efficacy in patients with lung cancer. The

nomogram we developed provides a reliable, individualized

approach to predicting treatment outcomes, particularly in

patients receiving chemotherapy and immunotherapy. This

predictive model can be integrated into routine oncology practice

to stratify patients and guide treatment decisions. Specifically,

patients with higher immune activation may benefit from

combination therapies, while those with lower immune responses

may require alternative strategies or more intensive monitoring.

Additionally, the non-invasive nature of peripheral blood tests

allows for frequent and dynamic monitoring, enabling clinicians
frontiersin.org

https://doi.org/10.3389/fonc.2025.1642829
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yin et al. 10.3389/fonc.2025.1642829
to adjust regimens in real time based on evolving immune profiles.

Given the promising potential of this model, we believe it could

guide early therapeutic modifications.

Despite these encouraging findings, certain limitations warrant

consideration. First, this study was conducted at a single center,

necessitating further validation in multicenter, prospective cohorts to

enhance the generalizability of our findings. Second, we primarily

analyzed baseline peripheral blood lymphocyte subsets, whereas

functional immune assessments, including detailed analyses of T-cell

subsets (such as regulatory T cells, Th17 cells) and tumor antigen-specific

T or NK cells, were not included, limiting our understanding of the

functional dynamics underpinning immune responses. Third, while PD-

L1 and TMB are recognized biomarkers for predicting immunotherapy

outcomes, this study specifically focused on peripheral blood lymphocyte

subsets as a complementary and non-invasive predictive tool. Future

studies integrating these established indicators, including PD-L1 and

TMB, may enhance the predictive performance. Furthermore, the

divergent roles of B cells in chemotherapy versus immunotherapy

remain to be elucidated, particularly through high-resolution

techniques such as single-cell RNA sequencing to delineate functional

heterogeneity within B cells. Lastly, we focused on peripheral blood,

which may not mirror the full complexity of the tumor

microenvironment. Future investigations should incorporate tissue-

based correlatives and spatial immune profiling to gain a more holistic

understanding of tumor–immune interactions.

To further advance this line of research, future studies should

explore dynamic immune monitoring strategies that integrate

peripheral and tumor-infiltrating immune components across

multiple treatment stages. Incorporating machine learning or

artificial intelligence-based modeling may enhance the predictive

accuracy of nomogram tools by capturing nonlinear interactions

among immune variables. Moreover, functional characterization of

circulating lymphocyte subsets—such as cytotoxicity assays or immune

checkpoint expression analysis—could provide mechanistic insights

into their role in modulating treatment response. From a translational

perspective, the peripheral immune signature identified in this study

has the potential to guide real-time treatment stratification, helping

clinicians identify patients more likely to benefit from immunotherapy

or combination regimens. Ultimately, this may enable more

personalized, adaptive treatment strategies that improve clinical

outcomes while minimizing unnecessary toxicity and cost.

Overall, by emphasizing individualized therapy, early

intervention, and dynamic monitoring, the proposed nomogram-

based strategy could enhance patient outcomes and resource

allocation in advanced lung cancer management. Nonetheless,

larger and more heterogeneous validation studies remain essential

to confirm its broader clinical utility.
Conclusion

In conclusion, our study proposes that selected baseline and early-

treatment peripheral lymphocyte characteristics may serve as

noninvasive predictive indicators of therapeutic efficacy in advanced

lung cancer. Moreover, a composite predictive framework
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incorporating multiple lymphocyte subset parameters can more

reliably forecast treatment outcomes compared to reliance on a

single biomarker. Integrating these immune parameters into clinical

practice could inform more personalized treatment strategies, guide

early therapeutic modifications, and ultimately improve patient

outcomes. Future research should focus on validating these findings

in larger, multi-institutional cohorts and refining nomogrammodels to

include additional biological and clinical factors.
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SUPPLEMENTARY FIGURE 1

Flowchart of the study.

SUPPLEMENTARY FIGURE 2

The correlation between specific post-treatment lymphocyte subsets levels
and chemotherapy response in chemotherapy-only patients (A-F).

SUPPLEMENTARY FIGURE 3

Dynamic changes of lymphocyte subsets Between responders and non-
responders in patients with chemotherapy or combination immunotherapy.

(A-F) The correlation between changes of specific lymphocyte subsets levels

across two successive treatment cycles in responder groups. (G-L) The
correlation between changes of specific lymphocyte subsets levels across

two successive treatment cycles in non-responder groups.
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SUPPLEMENTARY FIGURE 4

Dynamic changes of lymphocyte subsets between responders and non-
responders in patients with combination treatment. (A-F) The correlation

between changes of specific lymphocyte subsets levels across two
successive treatment cycles in responder groups. (G-L) The correlation

between changes of specific lymphocyte subsets levels across two

successive treatment cycles in non-responder groups.

SUPPLEMENTARY FIGURE 5

Different time point of lymphocyte subsets between responders and non-

responders in lung cancer patients. (A-F) Association between specific
lymphocyte subsets at baseline and disease progression in responder

groups. (G-L) Association between specific lymphocyte subsets at baseline

and disease progression in non-responder groups.

SUPPLEMENTARY FIGURE 6

Kaplan-Meier Curves for PFS Based on Nomogram-Derived Risk

Stratification. (A) Kaplan-Meier curves for PFS in the entire cohort, stratified
by nomogram derived risk groups. (B) Kaplan-Meier curves for PFS in the

chemo-immunotherapy cohort, stratified by nomogram derived risk groups.

SUPPLEMENTARY FIGURE 7

Decision curve analysis and calibration curves for nomogram model. (A, B)
DCA and Calibration curves for the nomogram model in the entire cohort.

(C, D) DCA and Calibration curves for the nomogram model in the chemo-
immunotherapy cohort.

SUPPLEMENTARY FIGURE 8

Predictive performance of the nomogram model for chemotherapy-only

patients. (A) Nomogram predicting treatment efficacy based on lymphocyte
subsets in chemo-only patients. (B) The ROC curves comparing the

predictive accuracy of the Nomogram model and individual risk factors.
(C, D) DCA and Calibration curves of nomogram for the established

nomogram. (E) Kaplan-Meier curves for PFS based on nomogram derived

risk stratification.

SUPPLEMENTARY FIGURE 9

Graphic abstract.

SUPPLEMENTARY TABLE 1

(A) Univariate Logistic regression of lymphocyte subsets for treatment
efficacy in enrolled patients. (B) Multivariate Logistic regression of

lymphocyte subsets for treatment efficacy in enrolled patients.

SUPPLEMENTARY TABLE 2

(A) Univariate Logistic regression of lymphocyte subsets for treatment

efficacy in combination patients. (B) Multivariate Logistic regression of
lymphocyte subsets for treatment efficacy in combination patients.
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