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Background: Gastric cancer (GC) remains one of the most common

malignancies worldwide with high mortality rates despite advances in

treatment approaches. Patients frequently develop drug resistance to current

therapies, highlighting the critical need for novel prognostic biomarkers that can

enhance survival rates and guide immunotherapy decisions in patients with GC.

Methods:We conducted a comprehensive bioinformatics analysis using integrated

clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus

(GEO) databases. GC cases were categorized into two prognostic-related gene

(PRG) clusters, and differentially expressed genes were identified. We established a

prognostic model based on 11 key genes, stratified patients into high-risk and low-

risk groups, and developed a nomogram model for survival prediction. Expression

of selected genes was validated through quantitative real-time polymerase chain

reaction (qRT-PCR) and immunohistochemistry in clinical samples.

Results: The identified PRGs and gene clusters strongly associated with patient

survival, immune system functions, and cancer-related pathways. Risk scores

significantly correlated with immune cell abundance, checkpoint expression, and

responses to immunotherapy and chemotherapy. For instance, the area under

the curve (AUC) values of patients at 1-year, 3-year, and 5-year survival were all

greater than 0.6 in the ROC curves (p < 0.05), which makes our prediction more

accurate, and the line graphs predicted a 1-year survival rate exceeding 0.907, a

3-year survival rate exceeding 0.726, and a 5-year survival rate exceeding 0.633;

the calibration curves are almost close to the predicted ones (p < 0.05). This

implies that patients in the high-risk group demonstrated significantly poorer

prognosis. Univariate Cox (UniCox) analysis and multivariate Cox (MultiCox)

analysis indicate that CTHRC1 (Collagen Triple Helix Repeat Containing 1),

CST6 (Cystatin E/M), and AKR1B1 (Aldo-Keto Reductase Family 1 Member B)

are independent prognostic factors, and all are associated with poor survival
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prognosis (HR > 1, p < 0.05). Gene set enrichment analysis (GSEA) and single-cell

analysis revealed significant enrichment of multiple biological pathways and

variability in expression of these genes across different cell types within the

tumor microenvironment. qRT-PCR and immunohistochemistry confirmed

significant differences in mRNA and protein expression of CTHRC1, CST6, and

AKR1B1 between normal and GC tissues (p < 0.05).

Conclusion:Our research establishes a robust molecular signature for predicting

survival of patients with GC and characterizing the tumor immune

microenvironment. It aims not only to establish a prognostic model, but also

to explore immunobiological functions. The identified prognostic features and

key genes (CTHRC1, CST6, and AKR1B1) offer potential as biomarkers and

therapeutic targets, potentially guiding more effective personalized treatment

strategies for patients with GC.
KEYWORDS

gastric cancer, molecular clustering, prognostic features, immune microenvironment,
biomarkers
Introduction

Gastric cancer (GC) is a major global health challenge, ranking as

the fifth most commonly diagnosed cancer and the fourth-leading

cause of cancer-related deaths worldwide (1). Each year,

approximately 1 million individuals worldwide are diagnosed with

GC, leading to an estimated 738,000 deaths (2). The disease exhibits

remarkable molecular and phenotypic heterogeneity, with risk factors

including Helicobacter pylori infection, advanced age, high salt intake,

and a diet low in fruits and vegetables (3). Despite advancements in

surgical techniques, radiotherapy, and immunotherapy over the past

decade, the mortality rate associated with GC remains alarmingly high

(4). The pathogenesis of GC involves genetic mutations, chromosomal

abnormalities, differential gene expression, and epigenetic

modifications. The tumor microenvironment (TME) facilitates

immune evasion, which contributes to resistance against

conventional and immunotherapeutic treatments (5, 6). Therefore, a

deeper understanding of the molecular characteristics of GC and the

role of immunosuppressive systems within this specific environment is

imperative (7). This not only aids in elucidating the mechanisms of

GC progression but also is crucial for developing innovative

treatment strategies.

As high-throughput sequencing technologies continue to

advance, researchers now have access to a wealth of sequencing

data from public databases such as The Cancer Genome Atlas

(TCGA) and the Gene Expression Omnibus (GEO). In recent years,

numerous studies have focused on leveraging these data to

construct tumor classifications or prognostic features, aiming to

predict survival and immune status in various malignancies. For

instance, Yao et al. developed techniques to identify the immune

infiltration microenvironment in cervical cancer and constructed an

immune scoring system, analyzing their correlations with patient
02
prognosis and immune therapy responses (8). These prognostic

indicators are valuable for predicting the survival rates and immune

characteristics of patients with cervical cancer, as well as their

potential benefits from immune checkpoint inhibitor (ICI)

therapy. Wang et al. utilized hepcidin antimicrobial peptide

(HAMP) to identify pivotal genes associated with HAMP and

developed a prognostic prediction model. They explored the

synergistic effects of HAMP with immune cells and chemokines,

and its potential role in inhibiting the progression of gallbladder

cancer (CHOL) (9). Furthermore, a previous study using TCGA

data identified six immune subtypes, covering all types of human

malignancies, namely, wound healing, IFN-g dominant,

inflammatory, lymphocyte-depleted, immune quiet, and

transforming growth factor-b (TGF-b) dominant. These subtypes

are closely associated with patient prognosis, as well as genetic and

immune features. Additionally, genes related to cell death and long

non-coding RNAs have also been employed to construct tumor

classifications and prognostic features, further expanding the

boundaries of cancer biology research.

Although many of the algorithms used in machine learning

were developed decades ago, the emergence of big data and

significant advancements in computational power over the past

20 years have rekindled interest and broadened the application of

this technology (10). This is particularly evident in the field of

medicine, where the potential of machine learning is being fully

exploited, especially in oncological pathology. Machine learning

algorithms are capable of processing complex datasets and

performing crucial tasks such as tumor diagnosis, subtyping,

pathological grading, clinical staging, and prognosis prediction

(11). Moreover, these algorithms can effectively identify

pathological features, biomarkers, and genetic variations

associated with tumors, which are vital for developing
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personalized treatment strategies. By analyzing pathological images

and genetic information in depth, machine learning not only

enhances the accuracy of diagnoses but also accelerates the

optimization of treatment protocols and the development of new

drugs (12). The further advancement of this technology is expected

to revolutionize traditional pathological methods, making them

more automated, precise, and efficient.

Our research demonstrates that molecular clustering and

prognostic features derived from combined data from the TCGA

and GEO databases can predict the prognosis and intratumoral

immune landscape of patients with GC. Initially, data downloaded

from TCGA and GEO were merged and organized, and two discrete

prognostic-related gene (PRG) clusters were constructed based on

expression levels. Subsequently, patients were divided into two

clusters based on differentially expressed genes (DEGs) identified

from the two PRG clusters. Further calculations of risk scores were

conducted and validated, and prognostic features were established

to predict the overall survival (OS) and response to immunotherapy

in patients with GC. Next, we used immunohistochemical (IHC)

staining from the Human Protein Atlas (HPA) website to validate

the three genes [CTHRC1 (Collagen Triple Helix Repeat

Containing 1), CST6 (Cystatin E/M), and AKR1B1 (Aldo-Keto

Reductase Family 1 Member B)] of prognostic models. Finally, we

applied quantitative real-time polymerase chain reaction (q-PCR)

to validate CTHRC1, CST6, and AKR1B1 expression levels in

clinical GC tissue samples to verify our results. This signature not

only serves as an independent prognostic marker for patients with

GC and a predictor of clinical characteristics, but also significantly

differentiates patients who are more sensitive to chemotherapeutic

agents and immunotherapy.
Materials and methods

Downloading transcriptome data and
acquiring clinical information

A total of 162 tumor tissues and 50 normal tissues of patients

with GC were first sourced from transcriptomic data and gathered

from GEO datasets (microarray platforms) (https://www.ncbi.

nlm.nih.gov/geo/) (GSE65801 and GSE66229); subsequently, we

downloaded clinical data of patients with GC and integrated the

data. We translated the gene symbol ID to gene name in

transcriptome data, and used Perl software (v5.30.0) and R

software (v4.1.2) to collate the downloaded data. Sex, age,

grading, and pathological TNM staging were obtained from the

clinical data and integrated. Incomplete clinical information

was removed.
Acquisition of DEGs and visualization

DEGs of GC-related genes were found using the “limma”

package of R software to visualize DEGs in normal and tumor

samples in GC. The critical value standard for identifying DEGs was
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set as p-value < 0.05 and |logFC (fold change)| > 1. Heatmaps and

volcano plots were constructed to visualize the expression of

the DEGs.
Protein–protein interaction network
analysis

The STRING database (http://string-db.org) was utilized to

construct the protein–protein interaction (PPI) network of DEGs.

PPI visualization of the association of proteins encoded by

differential GC-related genes (interaction score > 0.40) was

limited to “Homo sapiens”. We utilized the Cytoscape software to

import the data files for visual editing (https://cytoscape.org/).
WGCNA analysis

Weighted gene correlation network analysis (WGCNA) with

the expression profile using the R package “WGCNA” was used to

construct the gene coexpression networks of TCGA-GC (tumor and

normal samples). The process of network construction primarily

involves the following steps: (1) Define the matrix. (2) Transform

the matrix into a topological overlap matrix (TOM). (3) Layer the

dissTOM based on Tom Cluster to acquire a hierarchical clustering

tree. (4) A dynamic tree-cut method was applied to extract modules

from the hierarchical clustering dendrogram. (5) The module

eigengenes (MEs) were calculated for each module, which

represent the overall expression level of the module. The Pearson

correlation coefficient was calculated for the MEs of each module,

and the average distance between the MEs of each module was

defined as 1−Pearson correlation coefficient. We used the average

linkage hierarchical clustering method to cluster the MEs of all

modules, and the minimum value (genome) was set to 100. Next,

using the PickSoft threshold function, we initially evaluated the

scale-free topology fit index (R2) and mean connectivity across a

range of 1–20. At soft threshold = 9, R2 stably exceeded 0.80

(approaching 0.84) for the first time, while the slope of the curve

approached a plateau. This value represents an optimal trade-off

between approximating scale-free topology and retaining sufficient

network connectivity.
The construction of the risk scoring system

We divided the GC data into two cohorts: a training cohort,

which was employed to construct the prognostic model, and a test

cohort, which was employed to validate the accuracy of the

prognostic model values for GC-related genes. Risk score formula:

risk score = ∑i1 (Coefi*ExpGenei). “Coefi”, regression coefficient;

“ExpGenei”, gene expression. Samples were categorized into high-

and low-risk groups based on the median value of risk score for each

sample. By 10-fold cross-validation, prognosis-related false-positive

GC-related genes were first eliminated by least absolute shrinkage

and selection operator (LASSO) Cox regression analysis. We found
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that the characteristic genes of the model are the set of genes

corresponding to the point with the smallest error. Then, the

prognosis-related GC-associated genes were evaluated using a

multifactorial Cox regression analysis model to analyze OS and

clinical outcomes in patients with GC. Finally, we used the

predicted independent prognostic gene sets to further construct

the prognostic model. Between the two cohorts, we used the

“survival” and “monitor” packages to plot Kaplan–Meier curves

to analyze survival differences (including 5-year survival), and used

the “timeROC” package to plotROC curves to predict the predictive

accuracy of the two cohort characteristics.
Evaluation and validation of prognostic
models

We included the genes screened from WGCNA, input each

gene individually, and compared it with survival time and survival

status to screen out independent predictors of prognosis in patients

with GC by univariate Cox (UniCox) regression analyses. p < 0.01

was regarded significant. Time-dependent ROC curves were utilized

to assess the ability of the risk score to predict OS. The C-index was

used to compare differences in the efficiency of risk scores and

clinicopathological factors in predicting the prognosis of patients

with GC. Factors with significant outcomes in multivariate analysis

were used to construct the nomogram to facilitate individualized

assessment of each case. We plotted calibration curves to assess

whether the predicted patient (1-year, 3-year, and 5-year) survival

probabilities of the nomogram were close to the true probabilities.
Immunotherapy prediction and
immunohistochemical staining

To evaluate the relationship between immune cell content and risk

score, the immune cell infiltration data files for all TCGA tumor types

were obtained from the TIMER 2.0 database (http://timer.

cistrome.org/). ggplot2, ggtext R, Limma, and scales packages were

used to generate bubble plots to reveal the correlation between

immune cell content and risk scores. The official LM22 signature

(v2023-06-15) was applied for CIBERSORT, with input data

formatted as a log2(TPM+1) matrix. Quantile normalization was

disabled (QN=FALSE), and permutation was set to 1,000. Only

samples with p < 0.05 were retained for downstream analysis. xCell

(v1.1.0), TIMER (v2.0), QUANTISEQ (v1.3), MCPCOUNTER

(v1.2.0), and EPIC (v1.1.5) were run concurrently, gene set

versions matched their respective software defaults, and a

uniform threshold of p < 0.05 was applied for filtering. The

“limma” R software package was used to analyze the difference in

immune cell content between the high-risk group and low-risk

group and generate a heatmap by utilizing the pheatmap R software

package. We used immune cell difference analysis to evaluate the

grade of tumor immune infiltration in different types. The

differences in immune cells and immune function between the

high-risk and low-risk groups were shown by the Wilcoxon
Frontiers in Oncology 04
signature rank test with boxplots. We calculated the immune and

stromal scores by using the ESTIMATE algorithm in GC to predict

the content of immune and stromal cells. In addition, we used

Wilcoxon signed rank test to compare the immune checkpoint

expression between the high-risk and low-risk groups. Analyses

were performed using the TIDE web platform (v2.0) with default

parameters, with internal TPM-scale normalization. Responder

probability thresholds were set at the officially recommended

cutoff of 0.25. We obtained IHC staining images of different

proteins CTHRC1, CST6, and AKR1B1 in GC and normal tissues

from the HPA website (https://www.proteinatlas.org/).
Gene set enrichment analysis

We stratified samples into high-expression and low-expression

groups based on CTHRC1, CST6, and AKR1B1 expression levels

first. Specifically, the top 30% of samples with the highest CTHRC1,

CST6, and AKR1B1 expression were designated as the high-

expression group, while the bottom 30% were assigned to the

low-expression group. To identify DEGs between the two groups,

differential expression analysis was conducted using “limma” in the

R package. During this analysis, we calculated log2 fold change

(log2FC). Following DEG analysis, genes were ranked based on

log2FC, and the ranked gene list enabled a clearer representation of

expression trends and served as the input for gene set enrichment

analysis (GSEA); GSEA was performed using the GSEA function

from the “clusterProfiler” package, leveraging multiple gene set

databases including GO Biological Process (GO-BP), GOMolecular

Function (GO-MF), GO Cellular Component (GO-CC), Reactome,

and WikiPathways. The analysis computed the normalized

enrichment score (NES) for each gene set and assessed statistical

significance using both permutation testing and multiple hypothesis

correction. p < 0.05 was considered statistically significant.
The clinical correlation analysis of genes
CTHRC1, CST6, and AKR1B1

In this study, we performed UniCox and multivariate Cox

(MultiCox) proportional hazards regression analyses to evaluate

the hazard ratio (HR) for predicting the clinical relevance of these

genes. We used the “survival” package in R to evaluate the

association between gene expression and clinical variables. For

each variable, the HR and the corresponding 95% confidence

interval (CI) were calculated to quantify relative risk. To facilitate

visualization, forest plots were generated using the “forestplot”

package, illustrating effect sizes along with their CIs.
Single-cell analysis

In this study, single-cell RNA sequencing data from the GEO

datasets EMTAB8107 and GSE167297 were used to analyze

CTHRC1, CST6, and AKR1B1 expression across stomach
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adenocarcinoma (STAD) tissues. After analyzing the data by using

the Seurat R package, uniform manifold approximation and

projection (UMAP) was applied to visualize CTHRC1, CST6, and

AKR1B1 expression in various cell clusters, with focus on cells such

as CD8+ T, epithelial, and pit mucous cells. AUCell was used to

score biological pathways in CTHRC1-, CST6-, and AKR1B1-

expressing cells, specifically proliferation-related pathways.

Spearman’s correlation analysis further revealed the relationship

between CTHRC1, CST6, and AKR1B1 expression and

pathway activity.
Quantitative real-time PCR

Paired cancer tissue samples from nine patients with GC were

collected from the Department of General Surgery, The First

Affiliated Hospital of Anhui Medical University. Informed consent

was obtained from all participants or their authorized representatives,

and the study design complied with the ethical standards stipulated

by the institutional review board. All patients had no previous

immune-related diseases and no preoperative neoadjuvant

chemotherapy. TRIzol reagent was employed to isolate total RNA

from the tissue samples, which was subsequently reverse transcribed

into cDNA for quantitative real-time polymerase chain reaction

(qRT-PCR). Following the activation of the CT value for the target

sample, the relative expression level of the target gene was assessed by

2−DDCt with the adjacent tissue as the control. Human GAPDH was

used as an internal reference. The differential expression of three pairs

of GC-related genes between GC tissues and adjacent non-cancerous

tissues were assessed by using t-test. Graphs were generated by using

the GraphPad Prism 8.0 software. The primer sequences used in this

study are listed in Supplementary Table S1.
Statistical data analysis

We analyzed the data by using R 4.1.0 software and used

Strawberry Perl-5.32.1.1 to run the script in the script analysis,

followed by analyzing normal distribution by using Student’s t-test

and non-normal distribution parameters by using Wilcoxon rank

sum test. Pearson chi-square test was used to analyze statistical data.

*p < 0.05, **p < 0.01, and ***p < 0.001 were considered

statistically significant.
Results

Objectives and study workflow

This study aims to demonstrate that molecular clustering and

prognostic features derived from integrated data from the TCGA

and GEO databases can effectively predict the prognosis and

intratumoral immune landscape of patients with GC for

elucidating the mechanisms of GC progression and developing
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bioinformatics methodology, functional analysis, and some

experimental validation; the flowchart of this study is shown

in Figure 1.
Identification of differentially expressed
genes in GC

In the GEO database, we obtained gene expression data for a

cohort of 162 GC samples from GSE65801 and GSE66229. By

comparing the expression patterns across GC samples and normal

samples (logFCfilter = 1, fdrFilter < 0.05), we successfully identified 263

DEGs (Supplementary Table S2), as shown in volcano plots

(Figure 2A) and heatmaps (Figure 2B). The horizontal axis

represents Log2 (fold change), with points farther from the center

indicating a greater fold difference. The vertical axis represents −Log10

(adjusted p-value), where points positioned higher on the axis

correspond to a more statistically significant difference. Among these,

the red dots represent upregulated genes, and the green dots represent

downregulated genes. In comparison to the upregulated genes marked

in red, the downregulated genes represented in green exhibit more

significant differences and greater fold differences. To identify DEG-

associated interacting proteins, we input 263 DEGs into the STRING

website, then constructed gene interaction networks and PPI networks

potentially associated with GC-related genes. Data files were imported

into Cytoscape software for visual editing. The core functional modules

of the PPI network consist of 20 genes, namely, UBE2C, MELK,

KIF18A, HJURP, CENPF, DLGAP5, KIF14, ANLN, TTK, KIF4A,

NEK2, TPX2, NUF2, BUB1, PBK, BIRC5, CEP55, AURKB, EXO1, and

ASPM (Figure 2C).
Identification of key pivotal hub genes via
weighted gene correlation network
analysis

DEGs were screened using the “DESeq2/edgeRpackage” software

from the GEO database (logFCfilter = 1, fdrFilter < 0.05). Subsequently,

WGCNA (R package v1.72) was employed to construct a genome-wide

co-expression network for all DEGs (the minimum module genome

value was set to 100), identifying clinical trait-associated modules (soft

threshold = 9, R2 = 0.84), to explore key genes with biological

significance in GC samples. As shown in Figure 3B, the optimal soft

threshold was set to 9 (goodness of fit R2 = 0.84; Supplementary

Figure S1). Gene clustering was performed using a predefined

threshold, ensuring a minimum of 60 genes per module, which

ultimately resulted in four distinct modules (Figures 3A, C, D). Next,

we computed the correlation coefficients between each gene module

and the samples derived from both training set and test set of DEGs.

Through a meticulous evaluation of correlation coefficients and related

p-values, we identified a significant association between the brown

module and clinical traits, with a correlation coefficient of 0.65 and p-

value of <0.001 (Figure 3C, Supplementary Figure S2).
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Construction and evaluation of prognostic
characterization of DEGs in GC

We further assessed the predictive reliability of DEGs in

assessing the prognosis of patients with GC. After identifying

significant clinical trait-associated modules, we extracted hub

genes from the most significant brown module (0.65 correlation

coefficient, p < 0.001), and we further assessed the prognostic value

of hub genes in patients with GC by UniCox regression analysis of

the TCGA dataset. A total of 15 GC-associated DEGs were found to

be associated with GC prognosis by UniCox analysis (p < 0.05).
Frontiers in Oncology 06
AKR1B1, COL10A1, COL1A1, and other related genes (totaling 12

genes) had significantly high expression and were negatively

associated with OS of patients with GC (HR>1.1, p < 0.05);

CYP4X1, KCNQ1, and VSNL1 had significantly low expression

and were positively associated with OS of patients with GC (HR <

0.9, p < 0.05) (Figure 4A). Then, patients were divided into training

and test groups. We further analyzed these 15 genes by LASSO Cox

regression 10-fold cross-validation and screened out 11 DEGs

correlated with GC prognosis (Figures 4B, C). We divided

patients into high-risk and low-risk groups based on the risk

score of each GC patient and respectively used the risk score and
FIGURE 1

The flowchart of this study.
FIGURE 2

Identification of differentially expressed genes in gastric cancer. (A) Volcano map of 263 differentially expressed genes [|logFC (fold change)| > 1, p <
0.05]. (B) Heatmap for differentially expressed genes in GC identified using the GEO database (microarray platforms). (C) Network circle diagram
depicting protein–protein interactions among GC-associated genes.
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survival correlation map, patient survival scatter plot (Figure 4E),

the correlation heatmap (Figure 4I), and the Kaplan–Meier survival

curves (Figures 4D, G) to evaluate the reliability of the prognostic

models. In the scatter plot of patient survival, survival was

significantly negatively correlated with risk score (p < 0.05). In

the correlation heatmap, we found AKR1B1, CST6, CTHRC1, and

MAP7D2 with high risk scores, which were associated with lower

survival (p < 0.05). VSNL1 had low risk scores, which was associated

with higher survival (p < 0.05). The Kaplan–Meier survival curves

showed that patients with high risk scores had significantly shorter

survival time than patients with low risk scores. Then, we evaluated

the accuracy of prognostic models; the AUC values of patients at 1-

year, 3-year, and 5-year survival were all greater than 0.6 in the ROC

curves, which makes our prediction more accurate (Figure 4F).

Finally, we found that the actual 1-year, 3-year, and 5-year survival

rates were generally consistent with those predicted by comparing

the calibration curves, and the maximum area under the ROC curve

in the risk plot was 0.629, which demonstrates the precision of our

model in predicting survival in patients with GC (Figure 4H).
Assessing the predictive accuracy of
prognostic models in patients with GC

We further validated the predictive accuracy of prognostic

models, in both UniCox and MultiCox regression analyses, with

marked differences; the p-values of risk scores were less than 0.001,
Frontiers in Oncology 07
indicating that risk scores can be an independent prognostic factor

for patients with GC, irrespective of other clinical characteristics

(Figures 5A, C). Next, we constructed line graphs to predict the

survival of patients with GC. With a total of 366 patients with GC,

our model predicted a 1-year survival rate exceeding 0.907, a 3-year

survival rate exceeding 0.726, and a 5-year survival rate exceeding

0.633 for patients with GC; the calibration curves are almost close to

the predicted ones (Figures 5B, E). Subsequently, we used fan charts

to illustrate the variation in risk score expression across different

clinical prognostic stages (Figure 5D). In different clinical stages in

patients with GC, we found that the G1 stage accounts for 2%, the

G2 stage accounts for 41%, and the G3 stage accounts for 57% with

low risk scores. In high risk scores, the G1 stage accounts for 3%, the

G2 stage accounts for 33%, and the G3 stage accounts for 64%;

obviously, a greater risk score is associated with a poorer prognosis

in patients with GC (Figure 5F).
Immune cell infiltration and
microenvironment analysis

Tumor immune microenvironment plays a crucial role in the

development and progression of GC and may influence patient

prognosis and response to immunotherapy. Therefore, we sought to

explore whether our risk score was also linked to immune cell

infiltration, immune checkpoint expression, and immunotherapy

response. First, we investigated the tumor immune microenvironment
FIGURE 3

Detection of hub genes in gastric cancer through the application of the WGCNA framework. (A) Clustering analysis for the identification of outlier
samples. (B) The soft threshold is ascertained by function. The left panel illustrates the correlation between the scale-free topology fit index (R²) and
the soft threshold, and the right panel depicts the association between mean connectivity and the soft threshold. (C) Correlation analysis between
merged modules and clinical traits, correlation coefficients, and p-values presented within the respective color modules. (D) Hierarchical clustering
of genes was visualized as a dendrogram through the aggregation of homologous modules.
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in GC. We found that the expression of resting dendritic cells (DCs) (R

= 0.13, p = 0.025) and M2 macrophages (R = 0.22, p = 0.00018) was

positively correlated with the risk score, and the expression of CD4

memory-activated T cells (R = −0.19, p = 0.0017) and follicular helper T

cells (R = −0.25, p = 2.3e−05) was negatively correlated with the risk

score (Figure 6A). We then evaluated the correlations of the five DEGs

and risk score used for clustering with 43 immune cells and found that

all five genes and risk score of the included genes were significantly

associated with at least one immune cell (p < 0.05) (Figure 6B). The

immune cell bubble plots illustrate a stronger correlation between

various immune cells on different algorithms (XCELL, TIMER,

QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and

CIBERSORT) (Figure 6C). Subsequently, we compared the stromal,

immune, and ESTIMATE scores between groups with high- and low-

risk groups. The results revealed that risk scores had a significant

upregulation in high-risk groups (Figure 6D) (p < 0.001).

We then investigated the correlation between the expression of

21 immune checkpoint genes and risk scores; some genes are highly

expressed in the high-risk score group, such as NOD2, PLCG1,

NLRP1, CHMP6, and IL1A, and some genes are highly expressed in
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the low-risk score group, such as CYCS, CHMP4C, CASP1, CASP5,

and CASP6 (p < 0.05) (Figure 7A). Then, we mapped the different

risks on immune cell sensitivity using a violin plot; apparently, we

found that dysregulation, exclusion, and TIDE scores were higher in

the high-risk groups of patients with GC than in the low-risk groups

(p < 0.05) (Figures 7B–D). Meanwhile, immunotherapy reactivity

analysis showed that low expression of risk scores was related to

better immunotherapy efficacy of patients with GC; specifically,

lower risk scores were associated with improved therapeutic efficacy

of PD-1-targeted treatments (p < 0.05). This suggests that the risk

score may serve as a predictive biomarker for patient stratification

in PD-1-based immunotherapy (Figures 7E–H).
Validation of the expression levels of
AKR1B1, CST6, and CTHRC1

To further evaluate the robustness and clinical relevance of the 11

DEGs correlated with GC prognosis, we prioritized the top three

genes (AKR1B1, CST6, and CTHRC1) with the lowest p-values in
FIGURE 4

The characterization of prognostic models of DEGs in GC. (A) A total of 15 GC-associated genes associated with GC prognosis were drawn on forest
plots (p < 0.05). (B, C) A total of 15 associated GC DEGs verified by (LASSO) Cox regression analysis. (D, G) Kaplan–Meier survival analysis comparing
high- and low-risk score groups among all patients with GC uncovered that individuals with high risk scores exhibited significantly reduced overall
survival compared to those with low-risk scores (p < 0.05). (E) The risk status of patients with GC is shown by plot of correlation between risk score
and survival rate, and patient survival in the high and low survival groups of all GC samples is shown by the scatter plot (p < 0.05). (I) Heatmap of risk
in all GC samples; AKR1B1, CST6, CTHRC1, and MAP7D2 increased with increasing risk scores, and VSNL1 reduced with low risk scores (p < 0.05).
(F) ROC curve (AUC) area predicts the trait of prognostic models for 1-, 3-, and 5-year overall survival. AUC at 1 year: 0.629, 3 years: 0.698, and 5
years: 0.681. (H) Calibration ROC curve in the risk plot was 0.629.
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UniCox regression analysis for a series of validation analyses, and

explored their potential therapeutic implications. First, we analyzed

the signaling pathways associated with these genes. In our correlation

analysis, AKR1B1 exhibits a positive correlation with 19 signaling

pathways, including the Wnt, VEGF, and Toll-like receptor signaling

pathways (p < 0.05). CST6 demonstrates a significant positive

correlation with four distinct signaling pathways, including Wnt,

TGF-b, MAPK, and HEDGEHOG signaling pathways, and displays a

negative correlation with T-cell receptor, P53, and FC-EPSILON-RI

signaling pathways (p < 0.05). CTHRC1 exhibits a positive

correlation with 12 signaling pathways, including Wnt, VEGF, and

Toll-like receptor, and displays a negative correlation with PPAR

signaling pathways (p < 0.05). Next, we found that risk score

demonstrates a significant positive correlation with 14 signaling

pathways, such as Wnt, TGF-b, and MAPK signaling pathways,

and displays a negative correlation with P53 signaling pathways (p <

0.05) (Figure 8A). In the KEGG enrichment score, a total of seven

signaling pathways, including cell adhesion molecules cams,

chemokine-signaling pathway, and other related pathways in

cancer, are active in the high AKR1B1 expression group, while

olfactory transduction is active in the low AKR1B1 expression
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group. Analogously, the KEGG pathways olfactory transduction

and regulation of autophagy are active in the high CST6 expression

group, while ether lipid metabolism, fatty acid metabolism,

glycerolipid metabolism, peroxisome, ribosome, and valine, leucine,

and isoleucine degradation are active in the low CST6 expression

group (Figures 8K, O). Among the GC-related genes, CTHRC1,

CST6, and AKR1B1 were significantly differentially expressed in GC

samples from the GEO database. With statistically significant

differences, CTHRC1, CST6, and AKR1B1 were highly expressed in

the tumor and lowly expressed in the normal in both paired and

unpaired samples of patients with GC (p < 0.05) (Figures 8B–G).

Elevated gene expression demonstrated a significant correlation with

prognosis, with higher expression levels being associated with

markedly poorer clinical outcomes (HR>1.5, p < 0.01)

(Figures 8H–J). To validate the protein-level expression of the

prognostic biomarkers, we used IHC staining data from the HPA

database for AKR1B1, CST6, and CTHRC1, which were identified as

key genes in our prognostic model. The results showed that the

protein levels were significantly elevated in GC tissues compared to

normal tissues (Figures 8L–R), indicating that these three GC-

associated genes have the potential to serve as tumor biomarkers.
FIGURE 5

(A) Univariate Cox regression analysis of the risk score. (C) Multivariate Cox regression analysis of the risk score. (B) Line graphs to predict the
survival of patients with GC. (E) The calibration curve for the nomogram-predicted OS. The X-axis is the nomogram-predicted survival and the Y-
axis is the actual survival, and the calibration curves are almost close to the predicted ones. (D) Fan charts to illustrate the variation in risk score
expression across different clinical prognostic stages. (F) The percent weight of high risk scores and low risk scores in different clinical stages in
patients with GC. ***p < 0.001.
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FIGURE 6

(A) The relationship between risk score and various immune cells. (B) Correlation between five DEGs, risk score, and 43 immune cells. (C) Immune
cell bubble plots. (D) Differences in stromal, immune, and ESTIMATE scores between high- and low-risk groups were examined. *p < 0.05, **p <
0.01, and ***p < 0.001.
FIGURE 7

(A) Differential expression of 21 immune checkpoint expressions in high- and low-risk groups (p < 0.05). (B–D) The difference of dysregulation,
exclusion, and TIDE scores between high- and low-risk groups (p < 0.05). (E–H) Violin plot shows the correlation between risk score and
immunotherapy (p < 0.05). *p < 0.05, **p < 0.01, and ***p < 0.001.
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GSEA results for CTHRC1, CST6, and
AKR1B1

In this study, bar plots with distinct colors were used to represent

different categories of gene sets. Specifically, red indicates the

c2.cp.reactome gene sets, light blue represents c2.cp.wikipathways,

green corresponds to c5.go.bp, dark blue denotes c5.go.cc, and

orange refers to c5.go.mf. The direction of each bar reflects the

enrichment pattern of the gene set in the sample groups: bars

extending to the left indicate significant enrichment in the low-

expression group, while bars extending to the right indicate

significant enrichment in the high-expression group. As shown in

Figures 9A–C, the CTHRC1 GSEA revealed significant enrichment of

multiple biological pathways. Specifically, pathways associated with

collagen degradation (NES = 2.1, p < 0.05), degradation of the

extracellular matrix (NES = 2, p < 0.05), and extracellular matrix

structural constituent (NES = 2.2, p < 0.05) were significantly

upregulated, and pathways associated with tRNA processing in the

nucleus (NES = −2.5, p < 0.05), DNA damage and cellular response via

Atr (NES = −2.4, p < 0.05), and mitochondrial RNA metabolic process
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(NES = −2.6, p < 0.05) were significantly downregulated. The CST6

GSEA revealed that pathways associated with cornified envelope (NES

= 2, p < 0.05), cell–cell adhesion via plasma membrane adhesion

molecules (NES = 1.6, p < 0.05), and extracellular matrix structural

constituent (NES = 1.6, p < 0.05) were significantly upregulated, and

pathways associated with activation of Atr in response to replication

stress (NES = −3.4, p < 0.05), DNA replication (NES = −3.5, p < 0.05),

and DNA replication initiation (NES = −3.4, p < 0.05) were

significantly downregulated. The AKR1B1 GSEA revealed that

pathways associated with immunoregulatory interactions between

lymphoid and non-lymphoid cells (NES = 2, p < 0.05), extracellular

matrix organization (NES = 1.7, p < 0.05), and cytokine binding

(NES = 1.9, p < 0.05) were significantly upregulated, and pathways

associated with activation of Atr in response to replication stress

(NES = −2.4, p < 0.05), cholesterol biosynthesis (NES = −2.4, p <

0.05), and DNA replication (NES = −2.1, p < 0.05) were

significantly downregulated.

These results indicate that CTHRC1, CST6, and AKR1B1 high

expression are characterized by enhanced immune activity and

upregulation of extracellular matrix organization, accompanied by
FIGURE 8

(A) Correlation between 23 KEGG pathways and 5 GC-related genes and risk score (p < 0.05). (K, O) The relationship between KEGG signaling
pathways and the high- and low-expression groups of AKR1B1 and CST6 gene. (B–G) In both paired and unpaired samples of patients with GC,
protein expression levels of CTHRC1, CST6, and AKRIB1 were highly expressed in cancer and lowly expressed in normal samples, with statistically
significant differences (p < 0.05). (H–J) Effect of CTHRC1, CST6, and AKRIB1 expression on the survival of Kaplan–Meier mapper gastric cancer
(HR>1.5, p < 0.01). (L–R) Representative immunohistochemical staining results of CTHRC1, CST6, and AKR1B1 protein in gastric cancer tissue and
normal tissue. *p < 0.05, **p < 0.01, and ***p < 0.001.
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suppression of DNA repair and cell division-related pathways. Such

a shift may reflect a remodeling of the tumor immune

microenvironment or a disruption of cellular homeostasis,

potentially contributing to tumor progression or therapeutic

response heterogeneity.
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Evaluation of the prognostic and survival
analysis for CTHRC1, CST6, and AKR1B1

The aberrant expression of these three genes correlates with

clinical outcomes in GC. Therefore, comprehensive survival and
FIGURE 9

GSEA results for CTHRC1, CST6, and AKR1B1. GSEA was performed to identify signaling pathways associated with the expression of (A) CTHRC1,
(B) CST6, and (C) AKR1B1. The bar plots show the top significantly enriched pathways (|NES| > 1, p < 0.05), grouped by functional category. The X-
axis indicates the NES. Pathway categories are color-coded: red indicates the c2.cp.reactome gene sets, light blue represents c2.cp.wikipathways,
green corresponds to c5.go.bp, dark blue denotes c5.go.cc, and orange refers to c5.go.mf.
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prognostic analyses of these genes are essential to elucidate their

potential clinical utility. We visualized the results of UniCox

survival analysis performed using the “survival” package on gene

expression (CTHRC1, CST6, and AKR1B1) and conventional

clinical variables (age, gender, and stage). CTHRC1, CST6, and

AKR1B1 are all associated with poor survival prognosis (HR > 1, p <

0.05), with CTHRC1 consistently identified across multiple

datasets. Similarly, MultiCox regression analysis revealed that the

expression levels of CTHRC1, CST6, and AKR1B1, along with

certain clinical variables, were significantly associated with poor

survival outcomes (HR > 1, p < 0.05). Notably, even after adjusting

for other clinical factors, these genes remained statistically

significant (p < 0.05), indicating that AKR1B1, CST6, and

CTHRC1 are independent prognostic factors potentially critical to

patient survival (Figures 10A–C).
Single-cell expression levels of CTHRC1,
CST6, and AKR1B1in gastric cancer tissues

To further investigate the types of cells expressing CTHRC1,

CST6, and AKR1B1 in tumor tissues, we utilized the GEO database

datasets EMTAB8107 and GSE167297 to conduct a detailed

analysis of CTHRC1, CST6, and AKR1B1 expression in STAD.

Through single-cell, single-gene UMAP visualization (Figures 11A,

B), we observed significant variability in CTHRC1 expression

across different tissue components within STAD, showing positive

expression in plasma, pit mucous, and malignant cells, and negative

expression in pit mucous, gland mucous, and plasma cells

(Figure 11C). Additionally, using the AUCell package to score

various biological pathways, we found higher mitochondria-

related pathway scores in cells positively expressing CTHRC1

(−0.1 < logFC < 0.05, FDR < 0.01) (Figure 11D). Similarly,

through CST6-related single-cell, single-gene UMAP visualization

(Figures 11E, F), we found significant variability in CST6

expression across different tissue components within STAD,

particularly positively expressed in epithelial cells, mast cells, and

DCs, and negatively expressed in CD8 T cells, B cells, and

plasma (Figure 11G). We also observed higher mitochondria-

related pathway scores in cells positively expressing CST6 (−0.04

< logFC < 0.12, FDR < 0.01) (Figure 11H). In AKR1B1, we also

applied single-cell, single-gene UMAP visualization (Figures 11I, J),

showing positive expression in CD8 T cells, plasma, and B cells,

and negative expression in CD8 T cells, B cells, and epithelial

cells (Figure 11K), and in cells positively expressing AKR1B1, scores

related to mitochondria pathways were also higher (0 < logFC <

0.125, FDR < 0.01) (Figure 11L). These results indicate that

CTHRC1, CST6, and AKR1B1 expression exhibits significant

variability in GC, especially within key immune cell populations

such as CD8 T cells, B cells, and DCs. Moreover, our data

suggest a potential crucial role for CTHRC1, CST6, and AKR1B1

in the mitochondria process of tumor cells. These findings

offer critical insights to further investigate the potential

roles of CTHRC1, CST6, and AKR1B1 within the tumor

immune microenvironment.
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Validation of CTHRC1, CST6, and AKR1B1
expression levels in clinical gastric cancer
tissue samples by quantitative real-time
polymerase chain reaction

Among the three genes with prognostic characteristics, the

expression levels in GC and adjacent normal tissues were detected

by qRT-PCR; CTHRC1, CST6, and AKR1B1 were all more highly

expressed in GC tumor tissues (p < 0.05) (Figures 12A–F).
Discussion

GC represents one of the most common malignancies worldwide,

characterized by significant molecular and phenotypic heterogeneity

with persistently high mortality rates despite therapeutic advancements

(3, 4). The complex pathogenesis involves genetic mutations,

chromosomal abnormalities, differential gene expression, and

epigenetic modifications that create a tumor microenvironment

facilitating immune evasion and treatment resistance (13–15).

Therefore, understanding these molecular characteristics and

immunosuppressive mechanisms is essential for developing

innovative therapeutic strategies (5–7). Our research demonstrates

that molecular clustering and prognostic features derived from

integrated TCGA and GEO databases can effectively predict patient

outcomes and characterize the immune landscape in GC.We identified

two distinct PRG clusters and established an 11-gene signature that

stratified patients into high-risk and low-risk groups with significant

differences in survival outcomes and immune profiles. Through

comprehensive bioinformatics analysis, we identified 11 DEGs

significantly associated with GC prognosis, with CTHRC1, CST6,

and AKR1B1 selected for experimental validation based on their

strong prognostic significance. The risk score calculated from these

DEGs demonstrated robust predictive power for patient survival

outcomes, consistent with approaches used by other researchers

developing molecular signatures for cancer prognosis (16, 17).

Based on the identified prognostic genes, we constructed a risk score

model for predicting survival outcomes in patients with GC. The

Kaplan–Meier survival analysis revealed that patients with high risk

scores had significantly poorer OS compared to those with low risk

scores across both training and validation cohorts, with our model

achieving solid predictive accuracy (AUC values of 0.629, 0.698, and

0.681 for 1-year, 3-year, and 5-year survival, respectively). The model’s

predictive performance was rigorously evaluated using several

approaches. The UniCox and MultiCox regression analyses confirmed

that the risk score is an independent prognostic factor (p < 0.001),

independent of age, gender, grade, and TNM stage, even after adjusting

for established clinicopathological features. To enhance clinical

applicability, a nomogram incorporating the risk score was developed

to predict individual patient survival probabilities, exhibiting excellent

predictive performance as evidenced by calibration curves that showed

good agreement between predicted and actual survival rates. In a cohort

of 366 patients with GC, the model predicted 1-year, 3-year, and 5-year

survival probabilities of >0.907, >0.726, and >0.633, respectively,

outperforming other clinical features in prognostic capability.
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Our analysis also revealed significant associations between risk

scores and immune cell infiltration patterns within the tumor

microenvironment. Specifically, we observed positive correlations

between risk scores and both resting DCs (R = 0.13, p = 0.025) and

M2 macrophages (R = 0.22, p = 0.00018), while activated CD4

memory T cells (R = −0.19, p = 0.0017) and follicular helper T cells

(R = −0.25, p = 2.3e−05) showed negative correlations. Additionally,

we found that risk scores correlated with the expression of

important immune checkpoint genes (including PD-1, CTLA-4,

and LAG3), and TIDE analysis showed higher scores for

dysregulation, exclusion, and overall TIDE in the high-risk group,

suggesting potential utility in predicting immunotherapy responses.

To validate our computational findings, we performed experimental

validation using qRT-PCR, confirming significant overexpression of

CTHRC1, CST6, and AKR1B1 in GC tissues compared to adjacent

normal tissues (p < 0.05), with HPA data further confirming

elevated protein levels in tumor tissues. We further investigate the

types of cells expressing CTHRC1, CST6, and AKR1B1 in tumor

tissues, and the results indicate that CTHRC1, CST6, and AKR1B1

expression exhibits significant variability in GC, especially within

key immune cell populations such as CD8 T cells, B cells, and DCs.

Existing literature demonstrates that AKR1B1 has been reported to

modulate reactive oxygen species and inflammatory responses,

which could affect immune cell recruitment and function in the

tumor microenvironment (18). CST6, as a cysteine protease

inhibitor, may influence antigen presentation and extracellular
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matrix remodeling. By inhibiting cathepsin activity, CST6 could

alter DC maturation and function, thereby affecting T cell priming

and infiltration (19). In addition, CTHRC1 may indeed play a

functional role in shaping the tumor immune microenvironment.

Recent studies suggest that CTHRC1 has been shown to enhance

the recruitment and polarization of tumor-associated macrophages

toward an M2 phenotype, which is commonly associated with

immunosuppression and tumor progression. For example, Zhuo

et al. (20) demonstrated that CTHRC1 can activate the PI3K-Akt

signaling pathway and modulate cytokine secretion (IL-10 and

TGF-b), facilitating M2 macrophage polarization and immune

escape. Taken together, our prognostic model offers several

valuable clinical applications, including the identification of high-

risk patients requiring more aggressive treatment or closer follow-

up, the selection of patients likely to respond to immunotherapy

based on immune infiltration patterns, and the identification of

potential therapeutic targets based on dysregulated genes and

pathways, with our nomogram incorporating both molecular and

clinical characteristics demonstrating good calibration between

predicted and actual survival probabilities.

Our findings were validated against relevant published

literature, demonstrating consistent results with prior studies.

CTHRC1 is a secreted glycoprotein that functions as an

extracellular matrix protein involved in tissue remodeling, wound

healing, and cell migration processes (21). It has been identified as a

critical regulator of multiple signaling pathways relevant to cancer.
FIGURE 10

Univariate and multivariate Cox regression analyses of AKR1B1, CST6, and CTHRC1 in gastric cancer across multiple cohorts. (A) Univariate and
multivariate Cox regression analyses of AKR1B1 in the TCGA cohort. (B) Cox regression results for CST6 in the TCGA and GSE15459 datasets. (C) Cox
regression analyses for CTHRC1 in the TCGA, GSE13861, GSE84433, and GSE84437 cohorts. HR, 95% CI, and p-values are presented. Red dots
indicate variables with HR > 1, while blue dots represent HR < 1. Statistically significant results (p < 0.05) are emphasized. Both UniCox and MultiCox
methods were used to assess the prognostic value of gene expression and clinical parameters.
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FIGURE 11

Detailed analysis of CTHRC1, CST6, and AKR1B1 expression in STAD, using single-cell sequencing data. (A, B) Single-cell, single-gene UMAP
visualization highlighting significant variability in CTHRC1 expression across different cell clusters within STAD, (C) with notable expression in plasma,
pit mucous, and malignant cells. (D) AUCell scoring of various biological pathways in STAD, showing higher mitochondria-related pathway scores in
cells positively expressing CTHRC1 (−0.1 < logFC < 0.05, FDR < 0.01). (E, F) Single-cell, single-gene UMAP visualization highlighting significant
variability in CST6 expression across different cell clusters within STAD, (G) with notable expression in epithelial, mast, and DC. (H) AUCell scoring of
various biological pathways in STAD, showing higher mitochondria-related pathway scores in cells positively expressing CST6 (−0.04 < logFC < 0.12,
FDR < 0.01). (I, J) Single-cell, single-gene UMAP visualization highlighting significant variability in AKR1B1 expression across different cell clusters
within STAD, (K) with notable expression in CD8 T cells, plasma, and B cells. (L) AUCell scoring of various biological pathways in STAD, showing
higher mitochondria-related pathway scores in cells positively expressing AKR1B1 (0 < logFC < 0.125, FDR < 0.01).
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CTHRC1 is notably upregulated in gastric carcinoma tissues

compared to normal gastric tissues, with its elevated expression

correlating with advanced stages of the disease, including deeper

tumor invasion and lymph node metastasis. This overexpression is

associated with poorer overall and disease-free survival in patients

with GC, highlighting CTHRC1 as a significant independent

prognostic marker (22). Furthermore, CTHRC1 has been shown

to enhance GC metastasis via the HIF-1a/CXCR4 signaling

pathway; it upregulates CXCR4 expression through HIF-1a and

facilitates the migration and invasion of cancer cells, promoting

tumor spread to distant organs, thus playing a crucial role in

metastasis (23). Some studies indicated that the expression of

CTHRC1 is also modulated by epigenetic changes, such as

promoter demethylation, which can be reversed by treatment

with demethylating agents, suggesting that CTHRC1 ’s

upregulation is linked to both tumor progression and metastasis

(24). Additionally, TGF-b1 has been identified as a key regulator

that enhances CTHRC1 expression, further contributing to the

aggressive nature of GC (25). Given its significant correlation

with tumor aggressiveness, high CTHRC1 expression serves as a

reliable predictor of poor prognosis in patients with GC, making it a

valuable biomarker for early detection and a potential therapeutic

target. In conclusion, CTHRC1 plays a pivotal role in the

progression and metastasis of GC, through promoting tumor
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invasion, regulating immune cell infiltration, and enhancing

angiogenesis. Its expression levels not only serve as an important

prognostic indicator but also present a promising therapeutic target

to improve patient outcomes in GC (26).

CST6 is a cysteine protease inhibitor that demonstrates complex

and context-dependent functions in cancer pathogenesis (27–29). In our

analysis, we observed significant upregulation of CST6 in GC tissues

compared to normal tissues. Our qRT-PCR validation confirmed the

significant upregulation of CST6 in GC tumor tissues compared to

adjacent normal tissues (p < 0.05), supporting its potential as a

diagnostic marker. As supported by Xu et al. (30), CST6 might play a

tumor-promoting role by contributing to immune evasion and

facilitating metastatic processes. Our pathway analysis indicated that

CST6 expression was significantly associated with olfactory transduction

and autophagy regulation, while low expression was related to various

metabolic pathways, including lipid and amino acid metabolism.

Interestingly, some previous studies have reported contrasting

findings regarding CST6 expression in GC. For instance, Lalmanach

et al. (28) identified cases where CST6 was downregulated in certain GC

subtypes, with epigenetic silencing through DNA methylation in its

promoter region being proposed as one mechanism contributing to its

reduced expression. Similarly, Qiu et al. (27) also demonstrated that

CST6 gene silencing can occur in GC due to promoter

hypermethylation. The apparent contradiction between these findings
FIGURE 12

Validation of CTHRC1, CST6, and AKR1B1 expression levels in clinical tissue samples by quantitative real-time polymerase chain reaction (A–F). *p < 0.05,
**p < 0.01.
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and our results highlights the complex and possibly subtype-dependent

role of CST6 in GC biology. The dysregulation of CST6-associated

pathways in high-risk patients may explain the varied prognosis

associated with altered CST6 expression observed across different

studies. The expression heterogeneity of CST6 across different GC

studies and tumor types suggests its potential as a novel target for

further research.

AKR1B1, an NADPH-dependent oxidoreductase, plays a

multifaceted role in GC through several interlinked molecular

mechanisms. It modulates oxidative stress by reducing aldehydes

and ketones, thereby disrupting cellular redox balance and triggering

inflammatory signaling pathways that promote tumorigenesis (31).

Moreover, AKR1B1 is implicated in prostaglandin metabolism,

particularly in the synthesis of PGF2a, which stimulates cell

proliferation, while also modulating pro-apoptotic pathways

activated by agents such as 15-deoxy-PGJ2, collectively influencing

tumor cell survival and proliferation (32). In addition, its

overexpression was found to be associated with increased immune

cell infiltration, suggesting a role in remodeling the tumor

microenvironment and potentially impacting the efficacy of

immunotherapeutic strategies (33). Furthermore, AKR1B1 is

involved in regulating gene expression at both transcriptional and

post-transcriptional levels, affecting key genes involved in metastasis

and cell survival; this dysregulation correlates with adverse

clinicopathological features including larger tumor size, lymph

node metastasis, and advanced TNM stages, ultimately serving as

an indicator of poor prognosis (34, 35). Collectively, these findings

underscore the critical involvement of AKR1B1 in GC progression

and highlight its potential as a prognostic biomarker and

therapeutic target.

Compared with traditional TCGA molecular classifications, which

are biologically driven taxonomies derived from unsupervised

clustering of multi-omics data, our prognostic models employ

machine learning or methods (like Cox regression) to estimate

clinical outcomes like survival or treatment response, requiring

rigorous validation of predictive performance and generating

actionable risk scores for clinical decision-making. In contrast, the

TCGA classification primarily serves mechanistic investigations, with

prognostic value being a secondary finding. However, in practical

implementation, prognostic models and TCGA classification serve

distinct but complementary roles in cancer research, TCGA offers

raw data for analysis, and prognostic models synthesize these data into

actionable insights. The current integrative approaches often

benchmark novel prognostic models against established TCGA

classifications to enhance both biological interpretability and

clinical utility.

Several limitations should be acknowledged, and their

implications for clinical translation must be carefully considered:

(1) In our study, we utilized retrospective data analyses, offering

important insights into the molecular landscape of GC, but they

also come with significant limitations. One of the primary concerns

is the potential for bias inherent in the use of pre-existing datasets.

Retrospective studies often rely on historical clinical data, which

may not always represent the full spectrum of the disease or capture

the full genetic and phenotypic diversity of the patient population.
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The datasets we used, such as those from TCGA and GEO, focus on

specific cohorts of patients with GC that may not be fully

representative of the global GC population, particularly when

considering differences in ethnic backgrounds, environmental

factors, and disease stages. Additionally, retrospective datasets

often suffer from incomplete patient information, missing clinical

data, or inadequate follow-up, which limits the ability to assess

causality or to explore the temporal dynamics of gene expression

and disease progression. (2) Without experimental validation, we

cannot conclusively determine the exact mechanisms by which

these genes contribute to the altered tumor phenotype. For

example, certain genes might regulate immune cell infiltration,

potentially influencing tumor growth or the response to therapy.

These immune cell interactions could affect key signaling pathways

involved in cell proliferation, differentiation, and apoptosis, all of

which are pivotal for maintaining tumor homeostasis. However,

computational analyses alone cannot clarify how these pathways are

activated or inhibited in the context of GC. To understand these

processes, functional validation is necessary to experimentally test

the role of the identified genes in modulating these cellular

processes. (3) We cannot confirm the translational potential of

these findings in clinical settings without validation. While the

associations with prognosis and immune status are promising, the

lack of functional data means that these biomarkers cannot yet be

reliably used to guide therapeutic decisions or predict

treatment efficacy.

Given these limitations, future experimental studies are

essential to validate the functional roles of these genes in GC. We

plan to conduct experimental validation in vitro and in vivo to

confirm the impact of these genes on key cellular processes such as

cell proliferation, apoptosis, and epithelial–mesenchymal transition,

as well as their involvement in immune modulation. Such studies

will enable us to better understand how these genes contribute to

tumor progression and immune evasion and assess their potential

as therapeutic targets. Ultimately, these experimental findings will

provide the necessary evidence to translate our bioinformatics

predictions into clinically actionable insights.
Conclusion

Our study established a robust prognostic model based on

molecular clustering and gene expression profiles that effectively

predicts survival and immune status in patients with GC. The

identified genes (CTHRC1, CST6, and AKR1B1) and their

associated pathways provide insights into GC progression

mechanisms and could serve as high-priority candidates for further

validation as predictive biomarkers. Simultaneously, the process of

gene screening highlights the value of integrating multi-omics data

(e.g., TCGA/GEO databases) to improve biomarker robustness,

reducing false positives common in single-gene biomarkers. Our

prognostic model’s association with PD-1 signaling suggests their

potential utility in stratifying patients likely to respond to ICIs. In

addition, these findings could be adapted into targeted next-

generation sequencing and other technologies for clinical
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application, and the strong association between our risk model and

immune infiltration patterns suggests its utility in guiding

immunotherapy decisions, potentially contributing to more

effective personalized treatment strategies for patients with GC.
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