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Cancer therapies are limited by tumor heterogeneity, complex tumor
microenvironments (TME), and treatment resistance. Traditional 2D cell
cultures cannot replicate tumor 3D architecture and dynamic interactions,
reducing clinical relevance. Organoid-on-a-Chip (OoC) technology overcomes
these gaps by integrating microfluidics, tissue engineering, and cell biology to
create physiologically accurate 3D models. This platform simulates TME
dynamics—including vascularization and multi-organ interactions—surpassing
static conventional models. Key advancements: (1) Three development phases:
basic 3D culture (2009-2015), multi-organ coupling (2016-2020), and clinical
translation (2021-present); (2) FDA Modernization Act 2.0 (2022) enabling OoC
data as sole preclinical evidence for clinical trials; (3) Patient-derived organoids
(PDOs) retaining parental tumors’ features with >87% drug-response accuracy in
colorectal cancer. Vascularized tumor chips further study angiogenic dynamics
and drug efficacy. While OoC excels in drug screening, toxicity testing, and
personalized oncology, challenges persist in simulating systemic immune
responses. Advancing multi-organ integration and policy alignment remains
critical to replace animal models and advance precision cancer therapy.

KEYWORDS

in vitro model, biomedical engineering, drug screening, personalized medicine, organ-
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Introduction

Cancer, one of the most common fatal diseases globally, poses a heavy burden on society.
Current cancer therapies, while saving numerous lives, have limitations in improving patients’
quality of life and reducing side effects. Enhancing therapeutic efficacy while reducing side
effects has become a critical focus in cancer research (1). Traditional radiotherapy and
chemotherapy can inhibit tumor growth but inevitably damage normal cells, causing severe
side effects. Moreover, intratumoral heterogeneity and the complex tumor microenvironment
(Tumor Microenvironment, TME) influence therapeutic responses, and drug resistance
further limits treatment efficacy. Conventional in vitro models, lacking involvement of live
animals or humans, have obvious limitations in fully reproducing the biological characteristics
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and microenvironment of tumors (2). Traditional 2D cell culture
models lack three - dimensional structures and the complexity of the
tumor microenvironment. This leads to distorted cell behavior and
loss of tumor heterogeneity (2-4). Cell morphology, polarity, and
signal transduction are inconsistent with in vivo conditions, causing
experimental results to deviate from clinical situations and limiting
their application in drug screening and personalized medicine (5, 6).

Organoid-on-a-Chip (OoC), a novel in vitro model, utilizes
microfluidic chip systems as carrier platforms to construct three -
dimensional tissue - like structures. It integrates principles of
tissue engineering, microfluidics, and cell biology to establish
miniature in vitro organ models that mimic the physiological
functions and pathological states of organs (5). By addressing the
limitations of traditional 2D cell culture models in simulating
intercellular interactions and the dynamic changes of the Tumor
Microenvironment (TME), OoC provides more authentic
experimental data. It offers a more precise platform for exploring
tumor biology (6). In recent years, this technology has demonstrated
significant potential in cancer therapy research, providing new insights
and approaches to address challenges in cancer treatment (Figure 1).

Development of Organoid-on-a-Chip
technology

Since the Dutch scientist Hans Clevers and his team first used
mouse intestinal adult stem cells to successfully cultivate intestinal
organoids with a crypt - villus structure, laying the foundation for
organoid technology development (7, 8), OoC technology has
experienced three stages of development: the basic research stage
focusing on static 3D organoid culture and initially exploring
microfluidic technology (2009 - 2015); the multi - organ coupling
stage achieving vascularization, multi - organ interaction, and
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patient - specific modeling (2016 - 2020); and the clinical
translation stage entering clinical trials under FDA Act 2.0 (from
2021 to present).

0oC technology has evolved from simple cell aggregates to in -
depth research on 3D structures with functional vascular networks
(5,9, 10). The integration of 3D in vitro models with Multi - Organ -
on - a - Chip (MOC) technology has greatly enhanced the in - vitro
drug evaluation level (11). By connecting multiple organ - type
models to study the crosstalk between different organs, it can better
assess drug safety and efficacy than single - culture models.
Organoid research has expanded from the intestine to encompass
more complex organs such as the liver, pancreas, and lungs.
However, it remains largely confined to culturing single tissue
types isolated from within these organs and lacks the ability to
recapitulate the dynamic microenvironment found within intact
organs. Researchers are actively pursuing strategies to address this
fundamental limitation.

Patient - Derived Xenografts (PDX) and Genetically Engineered
Mouse Models (GEMM) essentially reflect the unique properties of 3D
tumor tissues, compensating for the shortcomings of traditional 2D in
- vitro cell cultures that fail to maintain the original tumor
morphology and polarity. They provide a more systematic analysis
of tumor occurrence, progression, and therapeutic responses. 3D
spheroid tumor models can closely replicate in - vivo tumor
characteristics, bridging the gap between 2D cell cultures and living
tissues and offering more realistic information on tumor internal
structure, multicellular composition, and dynamic interactions
between cancer cells and the microenvironment. Patient-derived
tumor organoids (PDOs) retain key histopathological, genetic, and
phenotypic features of the parent tumor with higher fidelity and
preserve cancer cell heterogeneity to a greater extent compared to 2D
cell lines and PDX models. This superior recapitulation, combined
with their favorable balance of success rate and reduced maintenance
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Human tissue samples are isolated, reprogrammed into induced pluripotent stem cells (iPSCs), and subsequently embedded in 3D culture matrices
(such as Matrigel) to generate organoids. Following stabilization, these organoids can facilitate the addressing of clinical challenges including disease
modeling, drug testing, and organ replacement [Created in http://BioRender.Com].
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costs, makes PDOs particularly suitable for large-scale drug screening
studies (12). OoC technology models and analyzes diverse
pathological states of human organs, drug screening, and
therapeutic testing. It enables the creation of patient-specific disease
models, presenting unique opportunities to advance inhalation
toxicology and drug development by providing a novel, highly
biomimetic tool with reduced reliance on animal models (13).
Organoid biobanks with associated genomic data offer useful
resources for studying cancer cell biology and precision cancer
therapy (14, 15). Although tumor organoids have revolutionized
cancer research by capturing the cellular structure and behavior of
real tumors in vitro, their lack of a functional vascular system has
hindered their attainment of full physiological capacity. A recently
proposed innovative vascularized patient - derived tumor organoid
chip, featuring a stratified, tumor - specific microvascular system,
provides a versatile platform for exploring tumor vascular dynamics
and anti - angiogenic drug efficacy (16).

Technological advances have not only promoted in - depth
research on OoC but also driven its applications in drug
development and precision medicine (12, 17). In 2013, Science
magazine recognized OoC technology as one of the top ten scientific
breakthroughs of the year, acknowledging its potential in disease
modeling (18). The initial integration of organoids with
microfluidic technology enabled the transition from static 3D
culture to dynamic microenvironment simulation. In 2017,
Nature Methods selected OoC technology as the Method of the
Year (19) recognizing its potential in simulating human complex
physiological and pathological aspects, especially in drug screening
and disease modeling (17). In 2022, the enactment of the FDA
Modernization Act 2.0 (20) marked a pivotal regulatory
advancement. This legislation sanctioned the first investigational
new drug to enter clinical trials based exclusively on preclinical data
generated from OoC studies. It eliminated the mandatory animal
testing requirement in drug development and established a
framework for alternative testing methodologies (21). These
provisions accelerate the development of alternative models such
as OoC platforms and significantly advance the application of OoC
technology in innovative drug discovery (20, 22). For example,
PDOs have recently become powerful preclinical models. Georgios
Vlachogiannis’s team achieved an 87% accuracy in predicting
colorectal cancer drug responses (23).

Currently, OoC technology has made a huge leap from
simplicity to complexity, from cells to organs, and from structural
simulation to physiological function recreation. Its application
scenarios are continuously expanding, covering drug screening,
mechanism of action, toxicity studies, disease modeling, precision
medicine, and identification of biomarkers and novel toxicity
endpoints (6, 24, 25), making it an indispensable tool in
biomedical research and drug development. However, the debate
over its replacement of animal models continues. Supporters
highlight the ethical and cost advantages of OoC (26) while critics
question its inability to simulate systemic immune responses (27).
Future resolution of this controversy will require technological
iteration and policy coordination.
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Applications of Organoid-on-a-Chip
in cancer therapy

OoC technology can construct miniaturized organ models with
certain physiological functions in vitro, mimic cell - cell
interactions, and reproduce the dynamic changes of the tumor
microenvironment. It has shown significant advantages in exploring
tumor mechanisms, drug screening, and disease model
establishment (11).

Research on tumor biological mechanisms

As OoC technology has advanced in simulating tumor
microenvironments, it has become more refined in tumor biology
research, primarily through two approaches: extrusion-based or
photo-crosslinking-based bioprinting using bioinks to fabricate
organoids (28) and integrating microfluidic systems into chips
(29). Despite partially replicating the tumor microenvironment,
both have flaws (Table 1). Moreover, integrating complex
vascular networks and immune cells with organoids remains a
key challenge.

Lai et al. established a co-culture system of fibroblasts with
pancreatic tumor organoids, which significantly enhanced collagen
deposition and tissue stiffness, thereby recapitulating key aspects of
the complex in vivo PDAC microenvironment. This engineered 3D
vascularized model consequently provided a superior platform for
simulating in vivo drug transport and distribution. Furthermore,
the model revealed differential drug response profiles between direct
static administration and perfusion-based vascular delivery,
highlighting the critical role of vascular dynamics in therapeutic
efficacy (30). Wang Qi’s team at Dalian Medical University
Affiliated Hospital successfully simulated lung cancer brain
metastasis by constructing upstream “lung” and downstream
“brain” units. They discovered that during brain metastasis,
intrinsic cellular changes are the primary cause of drug resistance.
PC9 - Br cells develop resistance to chemotherapy and EGFR - TKIs
through enhanced GSH metabolism, upregulated ALDHs, and
inactivated EGFR, which may become key targets for future drug
development (31).

Lee’s team employed a bone - on - a - chip model to study breast
cancer bone metastasis and revealed that in osteoporotic conditions,
increased vascular permeability and reduced mineralization promote
bone metastasis (32). Similarly, Christine Trinkle’s team utilized a
bone metastasis model and found that in bone microenvironments
containing osteoblasts, the extravasation rate of breast cancer cells is
significantly increased. The CXCL5 signal enhances tumor cell
migration distance, while CXCR2 signal - blocking antibodies
decrease extravasation (6). Tang et al. demonstrated that colorectal
cancer organoids maintain fidelity to the Wnt/B-catenin signaling
expression levels of the original tumor even during long-term culture.
This observation suggests that this pathway likely underpins the
preservation of cancer stem cell properties and contributes to drug
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TABLE 1 Technological comparison and limitations.

Technology

Full name & core
mechanism

Key advantages

Major limitations

10.3389/fonc.2025.1643230

Primary application
scenarios

3D-Bioprinted
Organoids

Microfluidic
Organ-Chips

PDO Models

Extrusion-based 3D bioprinting of
stem cell-laden bioinks

Polydimethylsiloxane (PDMS)
chips with
perfusable microchannels

Patient-derived organoids from
tumor biopsies

« High structural complexity &
anatomical fidelity

« Excellent batch reproducibility
« Customizable architecture

« Dynamic fluid shear stress
simulation

» Multi-tissue interface modeling
o Real-time imaging compatibility

o Preserves patient-specific genetic
heterogeneity

« Maintains tumor
microenvironment features

« Extremely high production cost
« Low throughput capacity
« Limited vascularization

« Poor immune cell compatibility
» Material-dependent drug
absorption

o Scaling limitations

« Prolonged culture duration (4 -
8 weeks)

« Variable success rates

« Limited immune

« Static drug permeability assays
« Developmental biology models
« Tissue morphogenesis studies

« Cancer metastasis mechanisms
« Nanoparticle drug delivery
testing

« Vascular barrier

function analysis

« Personalized therapy screening
« Drug resistance profiling
« Cancer biomarker discovery

« High clinical relevance

resistance. Furthermore, their findings show that HDAC inhibitors
suppress Wnt/B-catenin signaling and significantly reduce cell
viability, indirectly suggesting that downregulation of the Wnt/B3-
catenin pathway may be associated with heightened drug
sensitivity (22).

Moorman’s team utilized patient - derived organoid models to
study colorectal cancer metastasis and found that phenotypic plasticity
is a key mechanism for colorectal cancer metastasis and therapeutic
resistance. Tumor cells adapt to environmental stress by dynamically
switching states, such as the fetal - like intermediate state, which is a
conserved regenerative intermediate state. Its high expression is
associated with poor prognosis, suggesting that targeting this state
may improve treatment outcomes (25). Ma et al. successfully
established an organoid line from tumor cells isolated from a
patient’s primary signet-ring cell carcinoma (SRCC) of the colon.
Screening this model against an 88-compound library in vitro
revealed a JAK2 gene mutation, suggesting JAK2 as a potential
therapeutic target in colorectal SRCC (33). Furthermore, the study
demonstrated that these tumors utilize y-aminobutyric acid (GABA) as
an alternative energy source, enhancing their invasive capacity and
conferring a survival advantage (16, 33, 34). This finding not only
deepens our understanding of metabolic mechanisms in colorectal
cancer but also provides crucial insights for developing novel
therapeutic strategies. For instance, interventions targeting the GABA
signaling pathway or mechanosensitive pathways may emerge as
significant components of future personalized medicine approaches,
offering potential new treatments for patients with refractory KRAS-
mutant colorectal cancer (35).

Jaehun et al. successfully developed the CATOC system, which
recapitulates key features of the in vivo tumor microenvironment,
including vascular-tumor interactions. By separately developing
vascular and tumor modules, this approach minimizes molecular
crosstalk, thereby enhancing system stability and reliability (36).
Additionally, Yang et al. engineered a vascularized patient-derived
tumor OoC platform featuring hierarchical, tumor-specific
microvascular networks. Using this model, they discovered that
tumor cells with high metastatic potential promote angiogenesis via
the Notch signaling pathway and exhibit vasculotropism. Intervention
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studies with VEGFR2 inhibitors (e.g., apatinib/Apatinib) validated the
platform’s utility for evaluating anti-angiogenic therapeutics (16).
These findings collectively demonstrate that OoC platforms
effectively recapitulate organ-specific microphysiological
environments. These systems are capable of modeling cell-
autonomous responses, local tissue microenvironment interactions,
absorption, distribution, metabolism, excretion (ADME) processes,
and immune system engagement. Consequently, OoC technology
serves as a more physiologically relevant platform for in vitro
screening and a powerful tool for mechanistic investigations. It
exhibits a complementary nature with computational models, animal
models (particularly those with high translational value), and early-
stage clinical research, collectively advancing more accurate and
human-relevant drug development and safety assessment.

Drug screening and clinical translation

The conventional drug discovery pipeline typically initiates with
high-throughput screening conducted in 2D cell cultures. This is
followed by critical preclinical in vivo evaluation using animal
models to assess efficacy and safety before advancing to human
clinical trials. While these methods can assess drug efficacy and
toxicity to some extent, they have notable limitations. Firstly, 2D cell
cultures fail to accurately reflect the complexity of the tumor
microenvironment, leading to inaccurate predictions of drug
responses. Secondly, although animal models are more
physiologically similar to humans, species differences often result in
disparate drug responses between animals and humans, causing high
clinical trial failure rates. Moreover, the prohibitive costs and prolonged
culture durations of traditional methods compromise the efficiency and
feasibility of drug screening. Consequently, there is an urgent need for
higher-throughput, physiologically relevant alternative models to
improve success rates and streamline drug development (37).

OoC technology, which combines the advantages of organoids
and microfluidic chips, can reconstruct the tumor microenvironment
in vitro, offering a more authentic platform for testing drug responses
(26), at the early stages of drug development, OoC technology can
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facilitate the identification of drug targets and streamline the drug
screening process (38). By preserving the tissue structure and genetic
characteristics of patient tumors, organoid chips enable more
personalized and precise drug screening (2, 15, 39). Compared to
traditional methods, OoC shows higher physiological relevance and
lower costs, enabling high - throughput screening in a shorter time,
for example, when integrated with the OrBITS high-throughput
expansion technology, it can propel the application of PDOs in
drug development, therapeutic screening, and personalized
treatment guidance (26, 39). Additionally, it allows real - time
monitoring of drug effects on cells, providing dynamic data that is
unattainable in static cultures (15, 39). OoC has two major
applications in drug development: high - throughput drug
screening and analysis of drug - resistance mechanisms (26).

Pioneering research by Tang et al. systematically mapped the
global transcriptional response landscape of colorectal cancer
organoids to 36 therapeutic agents, identifying five universal
drug-response patterns: differentiation induction, growth arrest,
metabolic suppression, immune activation, and cell cycle
blockade. This framework provides molecular signatures for
subsequent mechanistic investigations and combinatorial therapy
design. Notably, 34 clinically approved or trial-stage drugs were
validated for the first time to exhibit significant tumor-suppressive
activity in organoids (22). Separately, Minsuh’s team established 80
lung cancer organoids (LCOs) from five histopathological subtypes
(adenocarcinoma, squamous cell carcinoma, small cell lung cancer,
etc.), which recapitulated the histological and genomic features of
primary tumors while preserving tumor heterogeneity. These LCOs
demonstrate clinical predictive validity for drug responses: BRCA2-
mutant LCOs exhibited sensitivity to olaparib, while EGFR-mutant
LCOs showed differential responses to erlotinib contingent upon
MET amplification status (40). Regmi’s team designed a droplet
microfluidic system for high - throughput drug testing at the single -
cell level. They tested the dose - dependent killing of doxorubicin on
breast cancer organoids and evaluated the efficacy of tyrosine kinase
inhibitors in lung cancer chips (26). Bryan A utilized a microfluidic
lung cancer chip system to summarize in - situ cancer growth,
treatment responses, and tumor dormancy, finding that EGFR - Ics
are currently the preferred treatment for NSCLC (13).

Haque et al. engineered a tumor-on-a-chip platform that
recapitulates the pancreatic ductal adenocarcinoma (PDAC) tumor
microenvironment (TME). This system maintained PDO
functionality and viability long-term, demonstrating that pancreatic
stellate cells (PSCs) and U937 monocytes significantly enhance PDO
growth and invasiveness. These findings validate the critical role of
TME in tumor progression and reveal that stromal-targeting agents
(against PSCs and macrophages) potentiate chemotherapeutic
efficacy against cancer cells, providing novel strategies for precision
therapy in pancreatic cancer (41).Jang’s team devised a microfluidics-
based 3D microtumor model to investigate gastric cancer cell
behavior and drug resistance. This platform better mimics in vivo
conditions, elucidating the pivotal role of epithelial-mesenchymal
transition (EMT) in tumor progression and chemoresistance.
While certain limitations persist, the study establishes a valuable in
vitro platform for gastric cancer research and provides experimental
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foundations for developing novel therapeutic approaches (42).Rusyn
et al. developed a three-dimensional micro-physiological system
(MPS) emulating in vivo vascular networks and TME, overcoming
constraints of conventional 2D cultures. This integrated platform
enables concurrent assessment of drug effects on endothelial and
tumor cells, offering comprehensive pharmacological evaluation (43)
Zhao’s group established a SARS-CoV-2 infection model using
human organoids, creating a new toolset for investigating viral
tissue tropism, replication mechanisms, and host-virus interplay.
The model uncovered direct SARS-CoV-2-induced impairment of
cholangiocyte function, providing mechanistic insights into COVID -
19-associated liver injury pathogenesis (44).

In summary, the organoid - on - a - chip platform provides an
ideal testing environment and is emerging as an excellent preclinical
drug development platform.

Personalized and precision medicine

As genomics, proteomics, and metabolomics have advanced in
recent years, personalized medicine has found increasing applications,
particularly in oncology (45). By analyzing the molecular features of
patients” tumors, physicians can select the most effective treatments,
improving patients’ survival rates and quality of life (46). OoC
technology, which combines organoid culture and microfluidics, can
simulate patient-specific tumor microenvironments in vitro. Its
advantage lies in preserving tumor heterogeneity and biological
characteristics, strongly supporting personalized treatment (38).
Researchers can culture patient-derived tumor cells into organoids,
screen drugs on microfluidic chips, and monitor tumor responses to
different drugs in real time. This improves drug screening efficiency
and enables patient-tailored treatment plans (2, 15, 39). In a pioneering
study, Hua et al. conducted the first systematic evaluation of PDOs for
predicting neoadjuvant chemoradiotherapy responses in locally
advanced rectal cancer patients. This work establishes a novel model
for personalized and precision medicine, while validating PDOs’
predictive capacity through large-scale clinical specimens. The
findings provide compelling evidence to support clinical
implementation (46).

OoC technology has also found applications in personalized
medicine through PDO and CRISPR-edited models (47). Testing
drug efficacy on chips helps accurately identify the best treatment for
each patient, improving success rates and reducing side effects. Wang
et al. established patient-derived cartilage organoids (PDCOs) that
enable precise investigation of joint disorder pathophysiology (e.g.,
osteoarthritis). This model recapitulates cartilage microphysiology,
addressing the critical gap in high-fidelity articular disease modeling.
By generating organoids from patients’ own cells, it facilitates
development of patient-tailored therapeutic regimens, enhancing
treatment efficacy while mitigating adverse reaction risks (48). Tu’s
team pioneered a novel strategy for generating human blastoids via a
3D culture system that mimics early embryonic development. This
breakthrough establishes an ethical in vitro model for human
embryogenesis research, creating blastoids independent of exogenous
genetic manipulation (e.g., OSKM introduction) and circumventing
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genome editing-associated concerns (49). While the technology has
made significant contributions to personalized and precision medicine,
technical limitations must be acknowledged, such as the 21-day PDO
culture cycle, which may not meet urgent clinical needs (14), and
potential CRISPR off-target effects, which require single-cell sequencing
validation (50).

In summary, OoC technology is becoming a key oncology research
tool, particularly in simulating complex tumor microenvironments,
conducting efficient drug screenings, and promoting personalized
treatment. As technology advances, its applications are expected to
expand, with improved model accuracy and functionality. Looking
ahead, with more research and development, this technology may lead
to significant global changes in cancer treatment, offering new hope
to patients.

Discussion

OoC technology provides a robust platform for predicting in vivo
responses by recapitulating critical tissue microarchitecture and
microenvironmental cues at cellular-autonomous and local tissue
reaction levels. It further demonstrates considerable promise in
modeling absorption, distribution, metabolism, excretion
(particularly metabolism), and local immuno-inflammatory
processes. Multi-organ chips (MOCs) represent a pivotal
developmental direction for investigating inter-organ crosstalk and
distal toxicity mechanisms. OoC technology incorporates multiple
cell types to assemble functional “micro-organs,” while integrating
organoid biology with tissue engineering strategies to better emulate
organogenesis processes and physiopathological conditions (48, 51),,
has a clear advantage over traditional models. Its self-assembly into
3D structures allows a more authentic reproduction of in vivo organ
development and partial specific functions. Additionally, organoids
maintain genomic stability during expansion, offering a more reliable
experimental platform. PDOs are creating new paths for treatment
optimization, precise disease modeling, mechanistic studies, drug
screening, and personalized therapy strategies. This technology, a
blend of advanced methods, is transforming healthcare and
improving patient outcomes (49, 52).

Despite demonstrating substantial potential, current OoC systems
remain inadequate in recapitulating highly integrated in vivo neuro-
endocrine-immune regulatory networks. They fail to capture long-term
adaptive changes and complex emergent properties, lack precision in
reflecting interindividual heterogeneity, and critically lack robust
quantitative extrapolation frameworks to translate in vitro data into
clinically actionable predictors (e.g., therapeutic safety margins). These
limitations present persistent challenges for practical implementation.

Standardization gaps in OoC technology critically impede clinical
translation. Current organoid cultures exhibit unstable quality control
with a notable absence of unified benchmarking criteria (4, 50-54). The
technical feasibility and regulatory applicability of interlaboratory
standardization remain contentious, as deploying OoC platforms for
regulatory purposes necessitates meticulously standardized protocols to
ensure reproducible performance metrics across testing facilities (20,
55, 56).
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. For instance, inter-laboratory variation in organoid viability
testing in China reaches 40% (50). The EU’s “Organoid” initiative
has enhanced data comparability by implementing ISO standards
like >80% cell viability and <5% genomic instability (20, 55, 56).
Large-scale, homogeneous, standardized organoid culture is vital
for technology adoption (50, 51). Stricter standard operating
procedures and technical specifications are needed to ensure
research consistency and accelerate implementation (57).

Cost is another barrier. High-precision microfluidics and
complex biomaterials make manufacturing and maintaining OoC
expensive, hindering its widespread use in drug screening and
clinical applications. Cost reduction and improved cost-
effectiveness are critical for future development.

0oC technology involves stem cell use, which has long been
ethically controversial (13, 57). Though these models offer new
avenues for disease research and therapy, they raise concerns about
stem cell sources, usage, and ethical implications. Embryonic stem
cell (ESC)-derived organoids, which closely mimic native tissues in
function, are strictly restricted in some countries like Germany due
to the ethical issue of embryo destruction (58). Induced pluripotent
stem cells (iPSCs), on the other hand, avoid some ethical issues but
have low reprogramming efficiency (<20%) and potential
tumorigenic risks (53). Moving forward, there is a need to
promote the use of adult stem cells (such as intestinal Lgr5+ stem
cells) as an alternative. Addressing these ethical challenges is crucial
for the regulation and legalization of the field. While international
organizations and major developed countries have taken multiple
steps in the ethical governance of organoid research, China still
lacks specific legislation and policies in this area.

Animal models remain central to preclinical research due to their
superior simulation of tumor growth, metastasis, and
microenvironment interactions compared to organoids and OoC.
Though OoC can reduce animal use, animal models are still
essential. Future improvements like 3D bioprinting and multi-tissue
integrated chips, guided by the “3R principle” (reduction, refinement,
replacement), could gradually replace animal experiments (27).

Current research gaps in OoC technology encompass long-term
vascularized organoid stability, physiological relevance of multi-
organ chips (MOCs), and clinical translation efficiency. Technical
challenges include achieving organotypic maturation, reconstructing
biomimetic extracellular matrices (ECM), and advancing device
fabrication methodologies. Future development priorities focus on
vascularization, immune system integration, and system-level
emulation to better recapitulate human organ complexity (11, 59).

Critically, functional vascularization is indispensable for
organoid growth, development, and physiological functionality.
Vascular deficiency constrains organoid scalability and
physiological fidelity. Co-culturing vascularized organoids with
target tissues enables efficient neovascularization, offering novel
conceptual frameworks for precision medicine and disease
modeling (23). As research deepens and technology advances,
organoid models will improve, potentially leading to new models
and tools. They will play a growing role in translational medicine
and individualized treatment. Furthermore, applications of OoC in
basic biology, drug toxicity testing, and preclinical trials are laying
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the foundation for advanced technologies like human organ
biomimetic chips (41, 51).

Conclusion and outlook

The core value of OoC technology lies in its innovative
integration of microfluidic engineering and biomaterials science,
which significantly enhances the biomimicry (e.g., simulating
physical microenvironments, multi-tissue interfaces) and
individualization potential (e.g., patient-derived models) of in vitro
systems. This advancement establishes OoCs as transformative
platforms for disease modeling (particularly in deciphering tumor
heterogeneity and complex tumor microenvironments (TMEs)), drug
development (improving preclinical predictive accuracy), precision
medicine, and regenerative medicine.

However, realizing the full potential of OoC technology
necessitates overcoming several profound technical bottlenecks.
The core challenges reside in augmenting the physiological
complexity and predictive power of these models:

First, effective integration of functional vascular networks and
dynamic immune microenvironments (e.g., T cell infiltration,
immune checkpoints) remains a significant engineering hurdle,
constraining the accuracy of OoCs in simulating drug delivery and
immunotherapy responses. Second, achieving higher cellular functional
maturity and precise subtype specificity (e.g., specific neuronal subtypes
or cancer stem cell subpopulations) demands advanced bioengineering
strategies to overcome prevalent issues like cellular immaturity and
insufficient heterogeneity in current models. Third, while simulating
multi-organ system (MPS) interactions is a key aspiration, balancing
biomimicry, system controllability, and high-throughput screening
capability presents a formidable challenge.
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