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Cancer therapies are limited by tumor heterogeneity, complex tumor

microenvironments (TME), and treatment resistance. Traditional 2D cell

cultures cannot replicate tumor 3D architecture and dynamic interactions,

reducing clinical relevance. Organoid-on-a-Chip (OoC) technology overcomes

these gaps by integrating microfluidics, tissue engineering, and cell biology to

create physiologically accurate 3D models. This platform simulates TME

dynamics—including vascularization and multi-organ interactions—surpassing

static conventional models. Key advancements: (1) Three development phases:

basic 3D culture (2009–2015), multi-organ coupling (2016–2020), and clinical

translation (2021–present); (2) FDA Modernization Act 2.0 (2022) enabling OoC

data as sole preclinical evidence for clinical trials; (3) Patient-derived organoids

(PDOs) retaining parental tumors’ features with >87% drug-response accuracy in

colorectal cancer. Vascularized tumor chips further study angiogenic dynamics

and drug efficacy. While OoC excels in drug screening, toxicity testing, and

personalized oncology, challenges persist in simulating systemic immune

responses. Advancing multi-organ integration and policy alignment remains

critical to replace animal models and advance precision cancer therapy.
KEYWORDS

in vitro model, biomedical engineering, drug screening, personalized medicine, organ-
on-a-chip, cancer therapy
Introduction

Cancer, one of the most common fatal diseases globally, poses a heavy burden on society.

Current cancer therapies, while saving numerous lives, have limitations in improving patients’

quality of life and reducing side effects. Enhancing therapeutic efficacy while reducing side

effects has become a critical focus in cancer research (1). Traditional radiotherapy and

chemotherapy can inhibit tumor growth but inevitably damage normal cells, causing severe

side effects. Moreover, intratumoral heterogeneity and the complex tumor microenvironment

(Tumor Microenvironment, TME) influence therapeutic responses, and drug resistance

further limits treatment efficacy. Conventional in vitro models, lacking involvement of live

animals or humans, have obvious limitations in fully reproducing the biological characteristics
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and microenvironment of tumors (2). Traditional 2D cell culture

models lack three - dimensional structures and the complexity of the

tumor microenvironment. This leads to distorted cell behavior and

loss of tumor heterogeneity (2–4). Cell morphology, polarity, and

signal transduction are inconsistent with in vivo conditions, causing

experimental results to deviate from clinical situations and limiting

their application in drug screening and personalized medicine (5, 6).

Organoid-on-a-Chip (OoC), a novel in vitro model, utilizes

microfluidic chip systems as carrier platforms to construct three -

dimensional tissue - like structures. It integrates principles of

tissue engineering, microfluidics, and cell biology to establish

miniature in vitro organ models that mimic the physiological

functions and pathological states of organs (5). By addressing the

limitations of traditional 2D cell culture models in simulating

intercellular interactions and the dynamic changes of the Tumor

Microenvironment (TME), OoC provides more authentic

experimental data. It offers a more precise platform for exploring

tumor biology (6). In recent years, this technology has demonstrated

significant potential in cancer therapy research, providing new insights

and approaches to address challenges in cancer treatment (Figure 1).
Development of Organoid-on-a-Chip
technology

Since the Dutch scientist Hans Clevers and his team first used

mouse intestinal adult stem cells to successfully cultivate intestinal

organoids with a crypt - villus structure, laying the foundation for

organoid technology development (7, 8), OoC technology has

experienced three stages of development: the basic research stage

focusing on static 3D organoid culture and initially exploring

microfluidic technology (2009 – 2015); the multi - organ coupling

stage achieving vascularization, multi - organ interaction, and
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patient - specific modeling (2016 – 2020); and the clinical

translation stage entering clinical trials under FDA Act 2.0 (from

2021 to present).

OoC technology has evolved from simple cell aggregates to in -

depth research on 3D structures with functional vascular networks

(5, 9, 10). The integration of 3D in vitromodels with Multi - Organ -

on - a - Chip (MOC) technology has greatly enhanced the in - vitro

drug evaluation level (11). By connecting multiple organ - type

models to study the crosstalk between different organs, it can better

assess drug safety and efficacy than single - culture models.

Organoid research has expanded from the intestine to encompass

more complex organs such as the liver, pancreas, and lungs.

However, it remains largely confined to culturing single tissue

types isolated from within these organs and lacks the ability to

recapitulate the dynamic microenvironment found within intact

organs. Researchers are actively pursuing strategies to address this

fundamental limitation.

Patient - Derived Xenografts (PDX) and Genetically Engineered

MouseModels (GEMM) essentially reflect the unique properties of 3D

tumor tissues, compensating for the shortcomings of traditional 2D in

- vitro cell cultures that fail to maintain the original tumor

morphology and polarity. They provide a more systematic analysis

of tumor occurrence, progression, and therapeutic responses. 3D

spheroid tumor models can closely replicate in - vivo tumor

characteristics, bridging the gap between 2D cell cultures and living

tissues and offering more realistic information on tumor internal

structure, multicellular composition, and dynamic interactions

between cancer cells and the microenvironment. Patient-derived

tumor organoids (PDOs) retain key histopathological, genetic, and

phenotypic features of the parent tumor with higher fidelity and

preserve cancer cell heterogeneity to a greater extent compared to 2D

cell lines and PDX models. This superior recapitulation, combined

with their favorable balance of success rate and reduced maintenance
FIGURE 1

Human tissue samples are isolated, reprogrammed into induced pluripotent stem cells (iPSCs), and subsequently embedded in 3D culture matrices
(such as Matrigel) to generate organoids. Following stabilization, these organoids can facilitate the addressing of clinical challenges including disease
modeling, drug testing, and organ replacement [Created in http://BioRender.Com].
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costs, makes PDOs particularly suitable for large-scale drug screening

studies (12). OoC technology models and analyzes diverse

pathological states of human organs, drug screening, and

therapeutic testing. It enables the creation of patient-specific disease

models, presenting unique opportunities to advance inhalation

toxicology and drug development by providing a novel, highly

biomimetic tool with reduced reliance on animal models (13).

Organoid biobanks with associated genomic data offer useful

resources for studying cancer cell biology and precision cancer

therapy (14, 15). Although tumor organoids have revolutionized

cancer research by capturing the cellular structure and behavior of

real tumors in vitro, their lack of a functional vascular system has

hindered their attainment of full physiological capacity. A recently

proposed innovative vascularized patient - derived tumor organoid

chip, featuring a stratified, tumor - specific microvascular system,

provides a versatile platform for exploring tumor vascular dynamics

and anti - angiogenic drug efficacy (16).

Technological advances have not only promoted in - depth

research on OoC but also driven its applications in drug

development and precision medicine (12, 17). In 2013, Science

magazine recognized OoC technology as one of the top ten scientific

breakthroughs of the year, acknowledging its potential in disease

modeling (18). The initial integration of organoids with

microfluidic technology enabled the transition from static 3D

culture to dynamic microenvironment simulation. In 2017,

Nature Methods selected OoC technology as the Method of the

Year (19) recognizing its potential in simulating human complex

physiological and pathological aspects, especially in drug screening

and disease modeling (17). In 2022, the enactment of the FDA

Modernization Act 2.0 (20) marked a pivotal regulatory

advancement. This legislation sanctioned the first investigational

new drug to enter clinical trials based exclusively on preclinical data

generated from OoC studies. It eliminated the mandatory animal

testing requirement in drug development and established a

framework for alternative testing methodologies (21). These

provisions accelerate the development of alternative models such

as OoC platforms and significantly advance the application of OoC

technology in innovative drug discovery (20, 22). For example,

PDOs have recently become powerful preclinical models. Georgios

Vlachogiannis’s team achieved an 87% accuracy in predicting

colorectal cancer drug responses (23).

Currently, OoC technology has made a huge leap from

simplicity to complexity, from cells to organs, and from structural

simulation to physiological function recreation. Its application

scenarios are continuously expanding, covering drug screening,

mechanism of action, toxicity studies, disease modeling, precision

medicine, and identification of biomarkers and novel toxicity

endpoints (6, 24, 25), making it an indispensable tool in

biomedical research and drug development. However, the debate

over its replacement of animal models continues. Supporters

highlight the ethical and cost advantages of OoC (26) while critics

question its inability to simulate systemic immune responses (27).

Future resolution of this controversy will require technological

iteration and policy coordination.
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Applications of Organoid-on-a-Chip
in cancer therapy

OoC technology can construct miniaturized organ models with

certain physiological functions in vitro, mimic cell - cell

interactions, and reproduce the dynamic changes of the tumor

microenvironment. It has shown significant advantages in exploring

tumor mechanisms, drug screening, and disease model

establishment (11).
Research on tumor biological mechanisms

As OoC technology has advanced in simulating tumor

microenvironments, it has become more refined in tumor biology

research, primarily through two approaches: extrusion-based or

photo-crosslinking-based bioprinting using bioinks to fabricate

organoids (28) and integrating microfluidic systems into chips

(29). Despite partially replicating the tumor microenvironment,

both have flaws (Table 1). Moreover, integrating complex

vascular networks and immune cells with organoids remains a

key challenge.

Lai et al. established a co-culture system of fibroblasts with

pancreatic tumor organoids, which significantly enhanced collagen

deposition and tissue stiffness, thereby recapitulating key aspects of

the complex in vivo PDAC microenvironment. This engineered 3D

vascularized model consequently provided a superior platform for

simulating in vivo drug transport and distribution. Furthermore,

the model revealed differential drug response profiles between direct

static administration and perfusion-based vascular delivery,

highlighting the critical role of vascular dynamics in therapeutic

efficacy (30). Wang Qi’s team at Dalian Medical University

Affiliated Hospital successfully simulated lung cancer brain

metastasis by constructing upstream “lung” and downstream

“brain” units. They discovered that during brain metastasis,

intrinsic cellular changes are the primary cause of drug resistance.

PC9 - Br cells develop resistance to chemotherapy and EGFR - TKIs

through enhanced GSH metabolism, upregulated ALDHs, and

inactivated EGFR, which may become key targets for future drug

development (31).

Lee’s team employed a bone - on - a - chip model to study breast

cancer bone metastasis and revealed that in osteoporotic conditions,

increased vascular permeability and reduced mineralization promote

bone metastasis (32). Similarly, Christine Trinkle’s team utilized a

bone metastasis model and found that in bone microenvironments

containing osteoblasts, the extravasation rate of breast cancer cells is

significantly increased. The CXCL5 signal enhances tumor cell

migration distance, while CXCR2 signal - blocking antibodies

decrease extravasation (6). Tang et al. demonstrated that colorectal

cancer organoids maintain fidelity to the Wnt/b-catenin signaling

expression levels of the original tumor even during long-term culture.

This observation suggests that this pathway likely underpins the

preservation of cancer stem cell properties and contributes to drug
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resistance. Furthermore, their findings show that HDAC inhibitors

suppress Wnt/b-catenin signaling and significantly reduce cell

viability, indirectly suggesting that downregulation of the Wnt/b-
catenin pathway may be associated with heightened drug

sensitivity (22).

Moorman’s team utilized patient - derived organoid models to

study colorectal cancer metastasis and found that phenotypic plasticity

is a key mechanism for colorectal cancer metastasis and therapeutic

resistance. Tumor cells adapt to environmental stress by dynamically

switching states, such as the fetal - like intermediate state, which is a

conserved regenerative intermediate state. Its high expression is

associated with poor prognosis, suggesting that targeting this state

may improve treatment outcomes (25). Ma et al. successfully

established an organoid line from tumor cells isolated from a

patient’s primary signet-ring cell carcinoma (SRCC) of the colon.

Screening this model against an 88-compound library in vitro

revealed a JAK2 gene mutation, suggesting JAK2 as a potential

therapeutic target in colorectal SRCC (33). Furthermore, the study

demonstrated that these tumors utilize g-aminobutyric acid (GABA) as

an alternative energy source, enhancing their invasive capacity and

conferring a survival advantage (16, 33, 34). This finding not only

deepens our understanding of metabolic mechanisms in colorectal

cancer but also provides crucial insights for developing novel

therapeutic strategies. For instance, interventions targeting the GABA

signaling pathway or mechanosensitive pathways may emerge as

significant components of future personalized medicine approaches,

offering potential new treatments for patients with refractory KRAS-

mutant colorectal cancer (35).

Jaehun et al. successfully developed the CATOC system, which

recapitulates key features of the in vivo tumor microenvironment,

including vascular-tumor interactions. By separately developing

vascular and tumor modules, this approach minimizes molecular

crosstalk, thereby enhancing system stability and reliability (36).

Additionally, Yang et al. engineered a vascularized patient-derived

tumor OoC platform featuring hierarchical, tumor-specific

microvascular networks. Using this model, they discovered that

tumor cells with high metastatic potential promote angiogenesis via

the Notch signaling pathway and exhibit vasculotropism. Intervention
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studies with VEGFR2 inhibitors (e.g., apatinib/Apatinib) validated the

platform’s utility for evaluating anti-angiogenic therapeutics (16).

These findings collectively demonstrate that OoC platforms

effectively recapitulate organ-specific microphysiological

environments. These systems are capable of modeling cell-

autonomous responses, local tissue microenvironment interactions,

absorption, distribution, metabolism, excretion (ADME) processes,

and immune system engagement. Consequently, OoC technology

serves as a more physiologically relevant platform for in vitro

screening and a powerful tool for mechanistic investigations. It

exhibits a complementary nature with computational models, animal

models (particularly those with high translational value), and early-

stage clinical research, collectively advancing more accurate and

human-relevant drug development and safety assessment.
Drug screening and clinical translation

The conventional drug discovery pipeline typically initiates with

high-throughput screening conducted in 2D cell cultures. This is

followed by critical preclinical in vivo evaluation using animal

models to assess efficacy and safety before advancing to human

clinical trials. While these methods can assess drug efficacy and

toxicity to some extent, they have notable limitations. Firstly, 2D cell

cultures fail to accurately reflect the complexity of the tumor

microenvironment, leading to inaccurate predictions of drug

responses. Secondly, although animal models are more

physiologically similar to humans, species differences often result in

disparate drug responses between animals and humans, causing high

clinical trial failure rates. Moreover, the prohibitive costs and prolonged

culture durations of traditional methods compromise the efficiency and

feasibility of drug screening. Consequently, there is an urgent need for

higher-throughput, physiologically relevant alternative models to

improve success rates and streamline drug development (37).

OoC technology, which combines the advantages of organoids

and microfluidic chips, can reconstruct the tumor microenvironment

in vitro, offering a more authentic platform for testing drug responses

(26), at the early stages of drug development, OoC technology can
TABLE 1 Technological comparison and limitations.

Technology Full name & core
mechanism

Key advantages Major limitations Primary application
scenarios

3D-Bioprinted
Organoids

Extrusion-based 3D bioprinting of
stem cell-laden bioinks

• High structural complexity &
anatomical fidelity
• Excellent batch reproducibility
• Customizable architecture

• Extremely high production cost
• Low throughput capacity
• Limited vascularization

• Static drug permeability assays
• Developmental biology models
• Tissue morphogenesis studies

Microfluidic
Organ-Chips

Polydimethylsiloxane (PDMS)
chips with
perfusable microchannels

• Dynamic fluid shear stress
simulation
• Multi-tissue interface modeling
• Real-time imaging compatibility

• Poor immune cell compatibility
• Material-dependent drug
absorption
• Scaling limitations

• Cancer metastasis mechanisms
• Nanoparticle drug delivery
testing
• Vascular barrier
function analysis

PDO Models Patient-derived organoids from
tumor biopsies

• Preserves patient-specific genetic
heterogeneity
• Maintains tumor
microenvironment features
• High clinical relevance

• Prolonged culture duration (4 –

8 weeks)
• Variable success rates
• Limited immune
component retention

• Personalized therapy screening
• Drug resistance profiling
• Cancer biomarker discovery
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facilitate the identification of drug targets and streamline the drug

screening process (38). By preserving the tissue structure and genetic

characteristics of patient tumors, organoid chips enable more

personalized and precise drug screening (2, 15, 39). Compared to

traditional methods, OoC shows higher physiological relevance and

lower costs, enabling high - throughput screening in a shorter time,

for example, when integrated with the OrBITS high-throughput

expansion technology, it can propel the application of PDOs in

drug development, therapeutic screening, and personalized

treatment guidance (26, 39). Additionally, it allows real - time

monitoring of drug effects on cells, providing dynamic data that is

unattainable in static cultures (15, 39). OoC has two major

applications in drug development: high - throughput drug

screening and analysis of drug - resistance mechanisms (26).

Pioneering research by Tang et al. systematically mapped the

global transcriptional response landscape of colorectal cancer

organoids to 36 therapeutic agents, identifying five universal

drug-response patterns: differentiation induction, growth arrest,

metabolic suppression, immune activation, and cell cycle

blockade. This framework provides molecular signatures for

subsequent mechanistic investigations and combinatorial therapy

design. Notably, 34 clinically approved or trial-stage drugs were

validated for the first time to exhibit significant tumor-suppressive

activity in organoids (22). Separately, Minsuh’s team established 80

lung cancer organoids (LCOs) from five histopathological subtypes

(adenocarcinoma, squamous cell carcinoma, small cell lung cancer,

etc.), which recapitulated the histological and genomic features of

primary tumors while preserving tumor heterogeneity. These LCOs

demonstrate clinical predictive validity for drug responses: BRCA2-

mutant LCOs exhibited sensitivity to olaparib, while EGFR-mutant

LCOs showed differential responses to erlotinib contingent upon

MET amplification status (40). Regmi’s team designed a droplet

microfluidic system for high - throughput drug testing at the single -

cell level. They tested the dose - dependent killing of doxorubicin on

breast cancer organoids and evaluated the efficacy of tyrosine kinase

inhibitors in lung cancer chips (26). Bryan A utilized a microfluidic

lung cancer chip system to summarize in - situ cancer growth,

treatment responses, and tumor dormancy, finding that EGFR - Ics

are currently the preferred treatment for NSCLC (13).

Haque et al. engineered a tumor-on-a-chip platform that

recapitulates the pancreatic ductal adenocarcinoma (PDAC) tumor

microenvironment (TME). This system maintained PDO

functionality and viability long-term, demonstrating that pancreatic

stellate cells (PSCs) and U937 monocytes significantly enhance PDO

growth and invasiveness. These findings validate the critical role of

TME in tumor progression and reveal that stromal-targeting agents

(against PSCs and macrophages) potentiate chemotherapeutic

efficacy against cancer cells, providing novel strategies for precision

therapy in pancreatic cancer (41).Jang’s team devised a microfluidics-

based 3D microtumor model to investigate gastric cancer cell

behavior and drug resistance. This platform better mimics in vivo

conditions, elucidating the pivotal role of epithelial-mesenchymal

transition (EMT) in tumor progression and chemoresistance.

While certain limitations persist, the study establishes a valuable in

vitro platform for gastric cancer research and provides experimental
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et al. developed a three-dimensional micro-physiological system

(MPS) emulating in vivo vascular networks and TME, overcoming

constraints of conventional 2D cultures. This integrated platform

enables concurrent assessment of drug effects on endothelial and

tumor cells, offering comprehensive pharmacological evaluation (43)

Zhao’s group established a SARS-CoV-2 infection model using

human organoids, creating a new toolset for investigating viral

tissue tropism, replication mechanisms, and host-virus interplay.

The model uncovered direct SARS-CoV-2-induced impairment of

cholangiocyte function, providing mechanistic insights into COVID -

19-associated liver injury pathogenesis (44).

In summary, the organoid - on - a - chip platform provides an

ideal testing environment and is emerging as an excellent preclinical

drug development platform.
Personalized and precision medicine

As genomics, proteomics, and metabolomics have advanced in

recent years, personalized medicine has found increasing applications,

particularly in oncology (45). By analyzing the molecular features of

patients’ tumors, physicians can select the most effective treatments,

improving patients’ survival rates and quality of life (46). OoC

technology, which combines organoid culture and microfluidics, can

simulate patient-specific tumor microenvironments in vitro. Its

advantage lies in preserving tumor heterogeneity and biological

characteristics, strongly supporting personalized treatment (38).

Researchers can culture patient-derived tumor cells into organoids,

screen drugs on microfluidic chips, and monitor tumor responses to

different drugs in real time. This improves drug screening efficiency

and enables patient-tailored treatment plans (2, 15, 39). In a pioneering

study, Hua et al. conducted the first systematic evaluation of PDOs for

predicting neoadjuvant chemoradiotherapy responses in locally

advanced rectal cancer patients. This work establishes a novel model

for personalized and precision medicine, while validating PDOs’

predictive capacity through large-scale clinical specimens. The

findings provide compelling evidence to support clinical

implementation (46).

OoC technology has also found applications in personalized

medicine through PDO and CRISPR-edited models (47). Testing

drug efficacy on chips helps accurately identify the best treatment for

each patient, improving success rates and reducing side effects. Wang

et al. established patient-derived cartilage organoids (PDCOs) that

enable precise investigation of joint disorder pathophysiology (e.g.,

osteoarthritis). This model recapitulates cartilage microphysiology,

addressing the critical gap in high-fidelity articular disease modeling.

By generating organoids from patients’ own cells, it facilitates

development of patient-tailored therapeutic regimens, enhancing

treatment efficacy while mitigating adverse reaction risks (48). Tu’s

team pioneered a novel strategy for generating human blastoids via a

3D culture system that mimics early embryonic development. This

breakthrough establishes an ethical in vitro model for human

embryogenesis research, creating blastoids independent of exogenous

genetic manipulation (e.g., OSKM introduction) and circumventing
frontiersin.org
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genome editing-associated concerns (49). While the technology has

made significant contributions to personalized and precision medicine,

technical limitations must be acknowledged, such as the 21-day PDO

culture cycle, which may not meet urgent clinical needs (14), and

potential CRISPR off-target effects, which require single-cell sequencing

validation (50).

In summary, OoC technology is becoming a key oncology research

tool, particularly in simulating complex tumor microenvironments,

conducting efficient drug screenings, and promoting personalized

treatment. As technology advances, its applications are expected to

expand, with improved model accuracy and functionality. Looking

ahead, with more research and development, this technology may lead

to significant global changes in cancer treatment, offering new hope

to patients.
Discussion

OoC technology provides a robust platform for predicting in vivo

responses by recapitulating critical tissue microarchitecture and

microenvironmental cues at cellular-autonomous and local tissue

reaction levels. It further demonstrates considerable promise in

modeling absorption, distribution, metabolism, excretion

(particularly metabolism), and local immuno-inflammatory

processes. Multi-organ chips (MOCs) represent a pivotal

developmental direction for investigating inter-organ crosstalk and

distal toxicity mechanisms. OoC technology incorporates multiple

cell types to assemble functional “micro-organs,” while integrating

organoid biology with tissue engineering strategies to better emulate

organogenesis processes and physiopathological conditions (48, 51),,

has a clear advantage over traditional models. Its self-assembly into

3D structures allows a more authentic reproduction of in vivo organ

development and partial specific functions. Additionally, organoids

maintain genomic stability during expansion, offering a more reliable

experimental platform. PDOs are creating new paths for treatment

optimization, precise disease modeling, mechanistic studies, drug

screening, and personalized therapy strategies. This technology, a

blend of advanced methods, is transforming healthcare and

improving patient outcomes (49, 52).

Despite demonstrating substantial potential, current OoC systems

remain inadequate in recapitulating highly integrated in vivo neuro-

endocrine-immune regulatory networks. They fail to capture long-term

adaptive changes and complex emergent properties, lack precision in

reflecting interindividual heterogeneity, and critically lack robust

quantitative extrapolation frameworks to translate in vitro data into

clinically actionable predictors (e.g., therapeutic safety margins). These

limitations present persistent challenges for practical implementation.

Standardization gaps in OoC technology critically impede clinical

translation. Current organoid cultures exhibit unstable quality control

with a notable absence of unified benchmarking criteria (4, 50–54). The

technical feasibility and regulatory applicability of interlaboratory

standardization remain contentious, as deploying OoC platforms for

regulatory purposes necessitates meticulously standardized protocols to

ensure reproducible performance metrics across testing facilities (20,

55, 56).
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. For instance, inter-laboratory variation in organoid viability

testing in China reaches 40% (50). The EU’s “Organoid” initiative

has enhanced data comparability by implementing ISO standards

like >80% cell viability and <5% genomic instability (20, 55, 56).

Large-scale, homogeneous, standardized organoid culture is vital

for technology adoption (50, 51). Stricter standard operating

procedures and technical specifications are needed to ensure

research consistency and accelerate implementation (57).

Cost is another barrier. High-precision microfluidics and

complex biomaterials make manufacturing and maintaining OoC

expensive, hindering its widespread use in drug screening and

clinical applications. Cost reduction and improved cost-

effectiveness are critical for future development.

OoC technology involves stem cell use, which has long been

ethically controversial (13, 57). Though these models offer new

avenues for disease research and therapy, they raise concerns about

stem cell sources, usage, and ethical implications. Embryonic stem

cell (ESC)-derived organoids, which closely mimic native tissues in

function, are strictly restricted in some countries like Germany due

to the ethical issue of embryo destruction (58). Induced pluripotent

stem cells (iPSCs), on the other hand, avoid some ethical issues but

have low reprogramming efficiency (<20%) and potential

tumorigenic risks (53). Moving forward, there is a need to

promote the use of adult stem cells (such as intestinal Lgr5+ stem

cells) as an alternative. Addressing these ethical challenges is crucial

for the regulation and legalization of the field. While international

organizations and major developed countries have taken multiple

steps in the ethical governance of organoid research, China still

lacks specific legislation and policies in this area.

Animal models remain central to preclinical research due to their

superior simulation of tumor growth, metastasis, and

microenvironment interactions compared to organoids and OoC.

Though OoC can reduce animal use, animal models are still

essential. Future improvements like 3D bioprinting and multi-tissue

integrated chips, guided by the “3R principle” (reduction, refinement,

replacement), could gradually replace animal experiments (27).

Current research gaps in OoC technology encompass long-term

vascularized organoid stability, physiological relevance of multi-

organ chips (MOCs), and clinical translation efficiency. Technical

challenges include achieving organotypic maturation, reconstructing

biomimetic extracellular matrices (ECM), and advancing device

fabrication methodologies. Future development priorities focus on

vascularization, immune system integration, and system-level

emulation to better recapitulate human organ complexity (11, 59).

Critically, functional vascularization is indispensable for

organoid growth, development, and physiological functionality.

Vascular deficiency constrains organoid scalability and

physiological fidelity. Co-culturing vascularized organoids with

target tissues enables efficient neovascularization, offering novel

conceptual frameworks for precision medicine and disease

modeling (23). As research deepens and technology advances,

organoid models will improve, potentially leading to new models

and tools. They will play a growing role in translational medicine

and individualized treatment. Furthermore, applications of OoC in

basic biology, drug toxicity testing, and preclinical trials are laying
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the foundation for advanced technologies like human organ

biomimetic chips (41, 51).
Conclusion and outlook

The core value of OoC technology lies in its innovative

integration of microfluidic engineering and biomaterials science,

which significantly enhances the biomimicry (e.g., simulating

physical microenvironments, multi-tissue interfaces) and

individualization potential (e.g., patient-derived models) of in vitro

systems. This advancement establishes OoCs as transformative

platforms for disease modeling (particularly in deciphering tumor

heterogeneity and complex tumormicroenvironments (TMEs)), drug

development (improving preclinical predictive accuracy), precision

medicine, and regenerative medicine.

However, realizing the full potential of OoC technology

necessitates overcoming several profound technical bottlenecks.

The core challenges reside in augmenting the physiological

complexity and predictive power of these models:

First, effective integration of functional vascular networks and

dynamic immune microenvironments (e.g., T cell infiltration,

immune checkpoints) remains a significant engineering hurdle,

constraining the accuracy of OoCs in simulating drug delivery and

immunotherapy responses. Second, achieving higher cellular functional

maturity and precise subtype specificity (e.g., specific neuronal subtypes

or cancer stem cell subpopulations) demands advanced bioengineering

strategies to overcome prevalent issues like cellular immaturity and

insufficient heterogeneity in current models. Third, while simulating

multi-organ system (MPS) interactions is a key aspiration, balancing

biomimicry, system controllability, and high-throughput screening

capability presents a formidable challenge.
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