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Acute hematologic toxicity (HT) remains a critical dose-limiting complication in

gynecologic cancer patients undergoing pelvic radiotherapy, particularly when

combined with chemotherapy. Early prediction of severe HT could inform

personalized management and minimize toxicity. We developed and validated a

predictive model integrating clinical parameters and radiomic features, evaluating

five machine learning approaches. Clinical data, dosimetric parameters, and pelvic

bone marrow radiomic features extracted from MRI and CT images were analyzed.

Feature selection was performed using LASSO and random forest algorithms,

followed by comparison across multiple classification models. In the independent

test set, the combined clinical and MRI-radiomics model showed superior

predictive performance (AUC=0.927, accuracy=85.5%, sensitivity=92.3%,

specificity=66.7%) compared to clinical-only (AUC=0.703), MRI-only (AUC=0.925,

but low specificity of 38.1%), and CT-only models (AUC=0.54). The model

performed notably better in patients receiving concurrent chemoradiotherapy.

Key predictors included baseline hemoglobin, white blood cell count, bone

marrow dosimetry, and MRI-derived texture and fat fraction features. Integrating

clinical data with MRI-based radiomics provides a robust approach for predicting

acute HT, potentially guiding personalized management strategies and improving

safety during gynecologic cancer radiotherapy.
KEYWORDS

hematologic toxicity, radiomics, gynecologic cancer, magnetic resonance imaging,
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1 Introduction

Acute hematologic toxicity (HT) remains a significant

limitation in pelvic radiotherapy (RT), particularly in patients

undergoing concurrent chemoradiotherapy (CRT) for gynecologic

and other pelvic malignancies. Severe (grade ≥3) HT occurs in

approximately 20–25% of patients receiving pelvic CRT, often

causing treatment delays or chemotherapy dose reductions,

potentially compromising oncologic outcomes (1, 2) .

Hematopoietic marrow within pelvic bones represents a

substantial fraction of the body’s marrow reserve, making its

sparing essential for maintaining blood cell counts during

treatment (3, 4). Thus, accurate pre-treatment prediction of

severe HT is critical to enable tailored interventions and avoid

treatment interruptions.

Currently, clinical and dosimetric factors serve as the primary

basis for predicting HT risk, including concurrent chemotherapy,

patient characteristics (e.g., baseline hematologic counts, BMI), and

bone marrow radiation dose-volume metrics (e.g., pelvic marrow

volume receiving ≥20 Gy) (5–8). Despite these correlations, the

predictive performance remains modest due to patient

heterogeneity and complexity of marrow radiosensitivity (5).

Consequently, individual risk prediction remains challenging,

highlighting the need for more precise and personalized

predictive biomarkers.

Radiomics, an emerging approach that extracts quantitative

imaging features from routine medical images, offers promise for

improving toxicity prediction (9, 10). Initial efforts utilizing

computed tomography (CT)-based radiomics have demonstrated

predictive value for hematologic toxicities in pelvic radiotherapy

(11, 12). However, CT images primarily reflect bone density and

trabecular structure, providing indirect and limited insight into

marrow composition or functional status. Prior studies indicate that

CT-derived radiomic features alone may not robustly capture

marrow radiosensitivity due to their inability to differentiate

hematopoietically active marrow from fatty marrow (12, 13).

Magnetic resonance imaging (MRI), with its superior soft-tissue

contrast and capability to quantify marrow fat content and

cellularity, provides a stronger rationale for radiomics-based

marrow characterization. MRI can reliably distinguish active (red)
Abbreviations: HT, Hematologic Toxicity; AHT, Acute Hematologic Toxicity;

RT, Radiotherapy; CRT, Chemoradiotherapy; IMRT, Intensity-Modulated

Radiotherapy; MRI, Magnetic Resonance Imaging; CT, Computed

Tomography; ROI, Region of Interest; GLCM, Gray-Level Co-occurrence

Matrix; GLRLM, Gray-Level Run-Length Matrix; GLSZM, Gray-Level Size

Zone Matrix; GLDM, Gray-Level Dependence Matrix; NGTDM, Neighboring

Gray-Tone Difference Matrix; CTCAE, Common Terminology Criteria for

Adverse Events; LASSO, Least Absolute Shrinkage and Selection Operator; LR,

Logistic Regression; RF, Random Forest; SVM, Support Vector Machine; XGB

(XGBoost), Extreme Gradient Boosting; NN, Neural Network; ROC, Receiver

Operating Characteristic; AUC, Area Under the Curve; WBC, White Blood Cell;

CTV, Clinical Target Volume; OARs, Organs at Risk; EBRT, External Beam

Radiation Therapy; FIGO, International Federation of Gynecology and

Obstetrics; RTOG, Radiation Therapy Oncology Group.
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marrow from inactive (fatty) marrow (14, 15). These findings

highlight the potential of MRI-based radiomics to capture

clinically relevant information about marrow status that is not

discernible on CT. To date, however, no study has employed pre-

treatment MRI-based radiomics to predict chemoradiotherapy

hematologic toxicity; most existing models rely solely on

CT images.

Given these considerations, this study aims to develop and

validate a combined predictive model integrating clinical

parameters and MRI-derived radiomics for predicting acute

hematologic toxicity in patients undergoing pelvic radiotherapy

for gynecologic cancers and other pelvic tumors. We hypothesize

that combining clinical factors with MRI radiomics will significantly

improve the accuracy and specificity of HT risk stratification, with

the ultimate aim of enabling proactive identification of high-risk

patients and informing bone marrow–sparing or supportive

strategies in pelvic radiotherapy.
2 Materials and methods

2.1 Data collection

This study retrospectively analyzed 534 patients treated at

Women’s Hospital, School of Medicine, Zhejiang University,

between April 2023 and February 2025 for cervical or

endometrial cancer with pelvic radiotherapy (RT). The

requirement for informed consent was waived by the Ethics

Committee of the Women’s Hospital, School of Medicine,

Zhejiang University because this was a retrospective study using

de-identified data. Eligible patients included: (1) cervical cancer

patients receiving definitive radiotherapy, cervical or endometrial

cancer receiving postoperative adjuvant radiotherapy; (2) treated

with IMRT to the pelvic field (with or without extended-field to

para-aortic nodes); (3) had weekly complete blood count from one

week before RT through the end of RT; and (4) underwent pelvic

contrast-enhanced magnetic resonance imaging (CE-MRI) at 3.0

Tesla and planning CT imaging before RT for radiomics analysis.

Patients were excluded if they had prior pelvic radiation or

extensive chemotherapy, pre-existing hematologic disorders, or

significant bone lesions (e.g. pelvic bone metastases or

replacement) that could affect marrow function. A summary of

the study design is presented in Figure 1.
2.2 CT simulation and radiotherapy
planning procedures

CT simulation and radiotherapy were performed with patients

in the supine position and with a relatively full bladder. CT images

covered the region extending from the lower lumbar spine to the

entire pelvic cavity and were reconstructed using a Philips Brilliance

Big Bore CT scanner system (Philips Healthcare, Best, the

Netherlands) with a matrix size of 512 × 512 and a slice thickness

of 5 mm. Clinical target volumes (CTVs) were delineated manually
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by experienced radiation oncologists according to guidelines

established by the Radiation Therapy Oncology Group (RTOG).

Pelvic bone marrow was delineated and included among the organs

at risk (OARs) for external beam radiation therapy (EBRT)

planning. EBRT planning and structural delineation were

performed using the Pinnacle Treatment Planning System

(Version 9.16.2, Philips Corp., Fitchburg, WI, USA). All manual

contours were subsequently reviewed and validated by senior

radiation oncologists specialized in gynecologic oncology to

ensure standardization. EBRT was delivered utilizing IMRT on

Elekta Infinity medical linear accelerator (Elekta, Stockholm,

Sweden). Planning CT scan (non-contrast CT images acquired

during CT simulation) was used for feature extraction.
2.3 MRI

All patients underwent a pelvic MRI scan (diagnostic MRI prior

to RT). MRI was performed using a GE SIGNA Premier 3.0T

magnetic resonance imaging system(General Electric Company

HealthCare, USA)with gadobutrol as the contrast agent for

enhanced imaging. Three sequences that highlighted bone

marrow composition were acquired: (1) Axial contrast-enhanced

Liver Acquisition with Volume Acceleration (Axial LAVA+C),

repetition time (TR)=3.9 ms, echo time (TE)=1.7 ms, slice

thickness=5.6 mm; (2) Axial Water LAVA-Flex; (3) Axial Fat

LAVA-Flex, TR=6.1ms, TE =2ms, slice thickness=5.6mm.
2.4 Radiomics feature extraction
(MRI and CT)

For radiomics analysis, we defined the region of interest (ROI)

as the pelvic bone marrow within the radiation field. The pelvic

bone marrow ROI was delineated on the planning CT and MRI,

encompassing the internal volumes of the pelvic bones (sacrum,
Frontiers in Oncology 03
ilium, ischium, pubis, proximal femora) from the pelvic brim to the

ischial tuberosities.

Radiomic feature extraction was performed using 3D Slicer

(version 5.8.1) with the PyRadiomics extension (16). Prior to

feature extraction, voxel intensity discretization was performed

using a fixed bin width (25.0). For CT images, spatial filters

including Haar wavelet decomposition and Laplacian of Gaussian

(LoG) were applied to enhance textural representation (17, 18). For

MRI images, only Haar wavelet decomposition was used, due to the

inclusion of three distinct MRI sequences per patient, which would

otherwise have generated excessive feature dimensionality. Finally,

from CT images, 2,675 radiomic features were extracted per patient,

and from MRI images, 2,553 radiomic features (851 features per

MRI sequence) were obtained. These radiomic features comprised

shape features (volumetric indices), first-order intensity statistics,

and texture features computed from Gray-Level Co-occurrence

Matrix (GLCM), Gray-Level Run-Length Matrix (GLRLM), Gray-

Level Size Zone Matrix (GLSZM), Gray-Level Dependence Matrix

(GLDM), and Neighboring Gray-Tone Difference Matrix

(NGTDM) (19).
2.5 Hematologic toxicity assessment

All patients had baseline blood counts within one week prior to

RT and weekly during treatment up to completion. We focused on

four hematologic parameters: white blood cell count (leukocytes),

absolute neutrophil count (ANC), hemoglobin, and platelet count.

Acute hematologic toxicity (HT) was graded according to CTCAE

v5.0 criteria (20) for leukopenia, neutropenia, anemia, and

thrombocytopenia, using the nadir values during RT or within 4

weeks post-RT. For each patient, we determined the maximum

grade of toxicity in any of the four categories. We defined “severe

hematologic toxicity” as grade ≥3 toxicity (i.e. grade 3 or 4 in at least

one parameter). This severe HT endpoint (yes/no) was used for

predictive modeling.
RE 1FIGU

Workflow charts. HT, hematologic toxicity; RT, Radiotherapy; CRT, Chemoradiotherapy.
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2.6 Feature selection

Prior to feature selection, all continuous numerical features

(including clinical and radiomic) were standardized using z-score

normalization to ensure consistent feature scales. Features with near-

zero variance or high inter-feature correlation (Pearson’s r > 0.9) were

removed. Given the large dimensionality of radiomic features relative

to the sample size, a two-step feature selection approach was used.

Two supervised feature selection methods were used: (1) LASSO

logistic regression, a regularization technique that imposes an L1

penalty to promote sparsity in feature selection, tuned via cross-

validation (21); (2) Random Forest feature importance ranking using

mean decrease in Gini impurity (18). The final feature set was

determined by combining non-zero LASSO features and the top 30

Random Forest features, followed by cross-validation to optimize the

number of features included in each model.
2.7 Model development

All models were trained using 5-fold cross-validation (k = 5),

with AUC used as the primary evaluation metric during feature

selection and hyperparameter tuning. Five classifiers were trained

and evaluated using the selected features: 1) Logistic Regression

(LR): a generalized linear model used for binary classification (22).

2) Random Forest (RF): an ensemble classifier using bootstrapped

decision trees (18). 3) Support Vector Machine (SVM):

implemented with a radial basis function (RBF) kernel and cross-

validated tuning (23). 4) Extreme Gradient Boosting (XGBoost): a

tree-based boosting algorithm optimized with hyperparameter

tuning (24). 5)Neural Network (NN): a multi-layer perceptron

with one hidden layer and L2 regularization (25). Performance

was evaluated on the test set using area under the ROC curve

(AUC), accuracy, sensitivity, specificity, and F1-score.

Finally, the tuned models were applied to the unseen test set

(n=159) to evaluate performance. We calculated the AUC for

predicting severe HT in the test set for each classifier, as well as

accuracy, sensitivity (recall of severe HT cases), specificity, and F1-

score. The primary metric of interest was AUC.

All model development was conducted in R (v4.4) and using

packages glmnet, randomForest, e1071, xgboost, caret, pROC,

ggplot2, MASS, rpart and tidyr.
3 Results

3.1 Patient characteristics

Of the 534 patients, 480 had cervical cancer (380 received

postoperative RT after hysterectomy; 100 received definitive RT),

and 54 had endometrial cancer (postoperative RT). All patients

were treated with EBRT to the pelvis using IMRT (typically 45–50.4

Gy in 25–28 fractions). A subset (17% in training, 21% in test) also

received prophylactic para-aortic nodal irradiation (extended-field

IMRT). The training (n=375) and test (n=159) sets were well-
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balanced in clinical characteristics (Table 1). Concurrent

chemotherapy (weekly cisplatin, 40 mg/m²) was administered in

68% of patients (65.1% of training cohort vs 73.6% of test cohort;

p=0.068), primarily those with cervical cancer. After EBRT,

intracavitary brachytherapy was delivered for definitive cervical

cancer cases and postoperative cervical cancer cases with

positive vaginal surgical margins (32.4% of training, 30.8% of test

patients; p=0.435). Baseline patient characteristics were

comparable between the training (n=375) and independent test

set (n=159), with no significant differences in age (median

~58 years), disease type distribution, doses to bone marrow,

baseline blood counts and plasma protein level (all p>0.05).

In the entire cohort, 259 patients (48.5%) experienced at least

one Grade 2 hematologic toxicity during RT, and 142 patients

(26.6%) experienced Grade ≥3 (severe) hematologic toxicity. The

distribution of HT grades in each subset is detailed in Table 2.

Leukopenia was the most common toxicity: over 68% of patients

had developed acute leukopenia (grade ≥2), with a few grade 4 cases

in training set. Neutropenia often accompanied leukopenia; around

8% had grade 3 or 4 neutropenia. Anemia was frequently observed

at low grades (over one-third had grade 1), but only ~5% had grade

3 anemia (1% grade 4). Thrombocytopenia was mild in most cases

(grade 0–1 in >90%); grade 3 thrombocytopenia occurred in

~2–3% of patients. Overall, only ~6–8% of patients had no

hematologic toxicity at all (grade 0 for all indices), reflecting that

the vast majority experienced at least transient cytopenias during

pelvic RT.
3.2 Clinical predictors of hematologic
toxicity

On univariate analysis, several clinical factors were associated

with increased HT: concurrent chemotherapy, larger irradiated

volume (para-aortic extended-field), lower baseline white blood

cell count/hemoglobin, and higher Bone marrow dose metrics. In

the multivariate logistic regression (Figure 2), five factors

remained independently significant. Concurrent chemotherapy

had the strongest association with severe HT (OR ~4, p=0.001).

Baseline bone marrow function (as reflected by baseline white

blood cell count and hemoglobin) was also critical, highlighting

that patients with stronger baseline counts better tolerated

radiotherapy without severe cytopenias. As expected, para-aortic

RT was associated with higher HT risk in our data (OR ~2.37,

p<0.05). Finally, a higher maximum bone marrow dose predicted

higher HT risk (OR ~1.003, p<0.05). While the effect per unit was

small, it was statistically significant, reinforcing that avoiding very

high point doses to active marrow (hotspots, e.g. in lumbosacral

bone) could be beneficial.
3.3 Clinical model performance

Model performance on the independent test set was notably

poorer than in the training set. The clinical models showed
frontiersin.org
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suboptimal generalizability, with test set AUCs ranging from 0.57 to

0.70 and notably low specificity (<20%) despite high sensitivity

(>90%) (Figure 3A, E, Supplementary Table 1). This discrepancy

highlights considerable overfitting: although clinical features

especially chemotherapy status allowed models to correctly

identify nearly all patients who developed severe hematologic

toxicity, they also excessively flagged patients as high-risk,

resulting in numerous false-positive predictions and low practical

specificity despite excellent initial training performance.
3.4 CT-radiomics model performance

The predictive performances of the five machine learning models

using the top 30 selected CT-based radiomic features are presented in

Figure 3B, F, Supplementary Table 1. On the independent test set,

accuracy ranged from approximately 63% (neural network) to 74%

(SVM), with modest AUC values (0.50–0.54). Although sensitivity

was high, specificity was uniformly low (0–19%), indicating frequent

false-positive predictions. These results suggest that, despite rigorous

feature selection, CT-based radiomic features alone provided limited

predictive value for acute hematologic toxicity. The selected features

were predominantly texture- and intensity-based metrics extracted

from filtered images (e.g., wavelet, exponential, gradient), reflecting

marrow heterogeneity that was insufficient to support robust

prediction compared to MRI radiomics.
3.5 MRI-radiomics model performance

We next evaluated the predictive performance of models based

on MRI radiomic features of the bone marrow. A total of 50 MRI-

based radiomic features were selected by our feature selection process

to feed into the classifiers. These included features primarily included

first-order intensity (mean, median, skewness) and advanced texture

metrics (e.g., GLCM correlation, GLSZM Large Area High Gray Level

Emphasis, GLDM entropy and uniformity measures). On the

independent test set, models achieved good discrimination, notably

the XGBoost (AUC=0.925, accuracy=81.1%) and neural network

models (AUC=0.915, accuracy=84.3%). These models exhibited

high sensitivity (~97%) and moderate specificity (38–50%),

indicating effective identification of patients at high risk of severe

hematologic toxicity (Figures 3C, G, Supplementary Table 1). In

conclusion, MRI features likely reflect marrow composition and
TABLE 1 Clinical patient characteristics (Training set vs. Test set).

Variable Training
Set(n=375)

Test
Set (n=159)

P
value

Disease type 0.532

Postoperative cervical cancer 272 (72.5%) 108 (67.9%)

Cervical cancer 66 (17.6%) 34 (21.4%)

Postoperative uterine tumor 37 (9.9%) 17 (10.7%)

Age (years) 0.218

(median, mean ± SD, range) 58, 57.6 ± 12.1,
24-88

57, 56.1 ± 12.8,
27-84

CDDP
concurrent chemotherapy

0.068

Yes 244 (65.1%) 117 (73.6%)

No 131 (34.9%) 42 (26.4%)

Para-aortic
extended-field

0.166

Yes 58 (15.5%) 33 (20.8%)

No 317 (84.5%) 126 (79.2%)

Brachytherapy 0.435

Yes: 121 (32.4%) 49 (30.8%)

No 254 (67.7%); 110 (69.2%);

Acute hematotoxicity 1.000

≥3 100 (26.7%) 42 (26.4%)

<3 275 (73.3%) 117 (73.6%)

Doses to bone
marrow (median,
mean ± SD, range)

Maximum dose (Gray) 51.8, 53.8 ± 5.3,
30.6-66.3

2.9, 54.4± 4.8,
43.2-64.9

0.208

Mean dose (Gray) 31.2, 31.0 ± 2.0,
14.1-33.8

31.1, 31.1 ± 1.4,
23.8-33.7

0.927

Minimum dose (Gray) 5.8, 5.5 ± 1.5,
1.2-10.8

5.7, 5.4 ± 1.4,
1.9-8.0

0.946

Volume receiving 25
Gray (cm3)

195.89, 198.05 ±
35.26,

115.44-302.13

189.59, 188.82 ±
30.68,

122.07-264.61

0.186

Volume receiving 25
Gray (%)

69.61, 68.96 ±
4.72,

58.15-79.55

70.76, 69.62 ±
5.64,

48.23-79.10

0.169

Baseline (median,
mean ± SD, range)

White blood cell count
(10^9/L)

5.6, 6.4 ± 1.9,
2.7-12.9

5.8, 5.9 ± 1.74,
2.8-15.6

0.982

Hemoglobin (g/L) 120.0, 118.8 ±
13.0, 73.0-150.0

119.0, 116.7 ±
14.6, 31.0-163.0

0.133

Platelet (10^9/L) 245.0, 253.2 ±
77.0, 44.0-552.0

235.0, 247.0 ±
78.4,

102.0-900.0

0.196

(Continued)
TABLE 1 Continued

Variable Training
Set(n=375)

Test
Set (n=159)

P
value

Baseline (median,
mean ± SD, range)

Albumin (g/L) 41.6, 41.3 ± 2.9,
31.1-48.6

41.7, 41.4 ± 3.1,
31.3-50.1

0.784

Total protein (g/L) 71.0, 70.6 ± 4.9,
55.6-84.6

71.3, 71.0 ± 5.0,
55.9-87.5

0.594
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heterogeneity, contributing to their superior predictive power

compared to CT-radiomics.
3.6 Combined clinical and MRI-radiomics
model performance

Given that both clinical factors and MRI radiomic features

demonstrated strong predictive value individually, we developed a

combined model integrating the features from both domains. The

combined model integrated a total of 55 rigorously selected features,

encompassing both key clinical parameters and MRI-derived

radiomic metrics (Figure 4). The clinical features primarily

included baseline hematologic, radiation dosage metrics and disease

type. MRI-radiomic features primarily included intensity and texture

metrics derived from three sequences (LAVA+C, Water LAVA-Flex,

and Fat LAVA-Flex), encompassing first-order statistics (e.g., mean,

median, skewness, kurtosis, 10 Percentile), texture features (GLCM,

GLSZM, GLDM, NGTDM) and shape metrics.
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On the test set, this combined model outperformed all single-

modality models. The XGBoost classifier achieved the highest AUC

(0.927), with accuracy of 85.5%, sensitivity of 92.3%, and specificity

of 66.7%. The neural network also performed well (AUC = 0.891,

accuracy = 86.8%, specificity = 73.8%). Random Forest and SVM

models yielded comparable AUCs (0.929 and 0.917), while logistic

regression showed slightly lower specificity (61.9%).

Figures 3I–M compares the predictive performance of clinical,

CT-radiomics, MRI-radiomics, and combined models. The

combined model consistently achieved the best performance, with

improved accuracy (up to 86.8%) and notably higher specificity (up

to 73.8%) compared to individual models. Although sensitivity

remained high across all models, the combined model’s enhanced

specificity suggests more precise risk stratification and reduced

false positives.

Overall, integrating clinical data with MRI-derived radiomics

markedly improved prediction accuracy, specificity, and overall

discriminative power compared to either clinical or imaging

features alone.
FIGURE 2

Forest plot showing multivariate logistic regression analysis for predictors of severe acute hematologic toxicity (HT). Odds ratios (OR) are indicated
by colored squares according to statistical significance levels, and horizontal lines represent the 95% confidence intervals (CI).
TABLE 2 Hematologic toxicity summary.

Hematologic toxicity Grade 0 (n, %) Grade 1 (n, %) Grade 2 (n, %) Grade 3 (n, %) Grade 4 (n, %)

Train set Leukopenia 43 (11.5%) 75 (20.0%) 179 (47.7%) 74 (19.7%) 4 (1.1%)

Anemia 127 (33.9%) 139 (37.1%) 85 (22.7%) 19 (5.1%) 5 (1.3%)

Thrombocytopenia 271 (72.3%) 66 (17.6%) 27 (7.2%) 10 (2.7%) 1 (0.3%)

Neutropenia 150 (40.0%) 109 (29.1%) 86 (22.9%) 25 (6.7%) 5 (1.3%)

Hematotoxicity 29 (7.7%) 66 (17.6%) 180 (48.0%) 90 (24.0%) 10 (2.7%)

Test set Leukopenia 16 (10.1%) 32 (20.1%) 74 (46.5%) 37 (23.3%) 0 (0.0%)

Anemia 58 (36.5%) 52 (32.7%) 41 (25.8%) 7 (4.4%) 1 (0.6%)

Thrombocytopenia 114 (71.7%) 30 (18.9%) 10 (6.3%) 4 (2.5%) 1 (0.6%)

Neutropenia 62 (39.0%) 49 (30.8%) 34 (21.4%) 14 (8.8%) 0 (0.0%)

Hematotoxicity 8 (5.0%) 30 (18.9%) 79 (49.7%) 40 (25.2%) 2 (1.3%)
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FIGURE 3

Performance evaluation and comparison of predictive models for acute hematologic toxicity using clinical factors, CT radiomics, MRI radiomics, and
combined clinical-MRI radiomics features. (A–D) Receiver operating characteristic (ROC) curves illustrating model performance on the training set.
(E–H) ROC curves for the independent test set. (I–M) Bar charts comparing performance metrics (AUC, Accuracy, Sensitivity, Specificity, F1 Score)
across the four modeling strategies in the test dataset.
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3.7 Subtype-specific predictive
performance of the combined clinical and
MRI-radiomic model

The predictive performances of the combined clinical and MRI-

radiomic model for identifying severe (Grade ≥3) hematologic toxicities

across four different subtypes (anemia, leukopenia, neutropenia, and

thrombocytopenia) are summarized in Figure 5, Supplementary

Table 2. Among these hematologic toxicities, the predictive accuracy

varied notably. Random Forest achieved the highest AUCs for anemia

(0.868), leukopenia (0.910), and neutropenia (0.828). However,

prediction for thrombocytopenia was limited by severe class

imbalance (positive:negative ≈ 1:32), resulting in low specificity (0.0)

despite a moderate AUC (0.829), reflecting difficulty in correctly

identifying negative cases. This was likely influenced by the class

imbalance. Thrombocytopenia was the most severely imbalanced

(positive: negative ratio approximately 1:32), which significantly

limited the model’s ability to reliably predict true negatives, resulting

in notably lower specificity and overall predictive stability.
3.8 Predictive performance of the
combined clinical and MRI-radiomic model
stratified by treatment modality

The combined clinical and MRI-radiomic model exhibited

treatment-dependent performance differences (Figure 6,
Frontiers in Oncology 08
Supplementary Table 3). In the test set, predictive accuracy was

higher in the CRT subgroup (AUC up to 0.912) than in the RT-

alone subgroup (AUC up to 0.809). Although RT-alone models

showed high accuracy, specificity was consistently low (≤0.25),

suggesting overfitting. In contrast, the CRT group achieved better

balance between sensitivity and specificity, indicating robust

discriminative capacity. These results highlight treatment-

dependent differences in model performance, emphasizing that

the combined MRI radiomics and clinical model is particularly

beneficial for predicting hematologic toxicity risk in patients

receiving concurrent chemoradiotherapy.

4 Discussion

In this study, we developed predictive models for acute

hematologic toxicity (AHT) in gynecologic cancer patients

receiving pelvic radiotherapy, leveraging both clinical factors and

radiomic features of the pelvic bone marrow. Our MRI‐based

radiomic model demonstrated superior predictive performance

for AHT compared to the CT‐based model. For comparison, Le

et al. reported that a CT radiomics model combined with clinical

features achieved an AUC of approximately 0.80–0.85 in predicting

severe AHT (11). In our study, further integrating MRI radiomic

features with clinical parameters led to the highest overall accuracy

among all models, highlighting the added value of MRI

radiomic features.
FIGURE 4

Radiomic and clinical features selected after cross-validation ranked by their relative importance. Features are color-coded according to their
source: clinical parameters (red), and MRI-derived radiomic features from Fat LAVA-Flex (blue), Water LAVA-Flex (green), and LAVA+C (purple)
imaging sequences.
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FIGURE 5

Receiver operating characteristic (ROC) curves illustrating model performance in predicting specific subtypes of severe acute hematologic toxicity
(anemia, leukopenia, neutropenia, thrombocytopenia) for both training (A–D) and independent test sets (E–H).
FIGURE 6

Model performance comparison stratified by treatment regimen. (A, B) ROC curves demonstrating predictive capability of five machine learning
models in the training set for Radiotherapy Alone and Chemoradiotherapy groups, respectively. (C, D) ROC curves for the independent test set.
(E–I) Bar charts showing detailed performance metrics (AUC, Accuracy, Sensitivity, Specificity, F1 Score) across Radiotherapy Alone group,
Chemoradiotherapy group, and all patients group.
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These findings highlight the value of MRI in capturing

biologically relevant information that CT cannot provide. MRI

offers better soft-tissue contrast and enables differentiation

between active and fatty marrow through specialized sequences

(e.g., LAVA+C, Water and Fat LAVA-Flex), which together provide

detailed information on marrow composition, vascularity, and fat

content. Radiomic features extracted from these sequences—such

as intensity statistics and texture metrics—capture spatial

heterogeneity and microstructural variations within the marrow,

reflecting its hematopoietic capacity more precisely than CT-based

density features (13–15, 26). Prior studies support this advantage:

Carmona et al. showed that MRI fat fraction quantification is highly

sensitive to bone marrow compositional changes during

chemoradiotherapy and that these changes correlate strongly with

declines in peripheral blood counts (13). While these MRI

sequences can quantify marrow fat content directly, radiomic

analysis adds value by capturing spatial heterogeneity, texture,

and signal distribution within the marrow. Instead of relying

solely on global fat fraction values, radiomic features—including

first-order statistics (e.g., entropy, uniformity) and higher-order

texture metrics (e.g., GLCM, GLRLM)—detect subtle microregional

variations in marrow architecture that may reflect differential

hematopoietic capacity. This complementary information enables

a more nuanced assessment of radiosensitivity and improves

predictive modeling. Prior studies support this advantage: Qin

et al. demonstrated that functional MRI radiomic features can

detect microscopic marrow changes across various dose levels,

providing an objective basis for bone-marrow sparing strategies

(15). In contrast, CT-based radiomics primarily capture density and

structural variations that do not directly reflect bone marrow

reserve or function. Thus, MRI’s ability to probe the marrow’s fat

content and microarchitecture gives it a biologic edge in predicting

hematologic toxicity. Notably, our feature selection identified

several MRI-derived texture and intensity features (from fat and

water images) related to marrow fat distribution, supporting the

notion that the spatial arrangement of active marrow is a critical

predictor of hematologic tolerance.

Our findings also concord with the emerging evidence that

MRI-defined active bone marrow is the key subvolume driving

hematologic toxicity. For example, Ke et al. delineated “red

marrow” on pelvic MRI and found that higher radiation doses to

this active marrow (such as bone marrow V15) were significantly

associated with increased risk of acute HT (27). This suggests that

MRI can localize the functionally important marrow regions that

should be preferentially spared. In our study, even without explicit

sparing, the MRI radiomic model may inherently focus on these

active regions (through its features), explaining its stronger

predictive power. Together, these considerations provide a

compelling technical and biological rationale for why the MRI-

based model outperforms the CT-based model in forecasting

hematologic toxicity.

The predictive utility of our models was more pronounced in

patients receiving CRT than in those undergoing RT alone. The

MRI model maintained robust performance in the CRT subgroup,

correctly stratifying high-risk patients, whereas prediction in the
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RT-alone subgroup was more modest. This trend aligns with recent

findings from a large cervical cancer cohort, where AHT risk

models performed significantly better in CRT patients than in

RT-only patients (28). Since MRI scans were acquired prior to

treatment, the radiomic features likely reflect preexisting differences

in bone marrow reserve or function. These baseline differences may

have a greater clinical impact in patients receiving CRT, where the

hematologic stress is more severe, thereby amplifying the

consequences of underlying marrow vulnerability. In contrast, RT

alone exerts milder marrow suppression, and preexisting differences

may not translate into significant toxicity. This may explain the

stronger predictive power observed in the CRT subgroup, and

underscores the potential of MRI radiomics as a pre-treatment

biomarker of marrow resilience under intensive therapy.

The superior performance of the predict model has practical

significance. Early identification of patients at high risk for severe

hematologic toxicity could enable personalized interventions to

maintain treatment intensity. For instance, patients flagged by the

combined model as high-risk might benefit from prophylactic

measures such as bone marrow–sparing radiation techniques,

dose reduction of concurrent chemotherapy, or growth factor

support (e.g., Granulocyte Colony-Stimulating Factor), in order to

prevent interruptions in therapy. AHT is known to compromise

treatment efficacy and prolong the overall treatment time (29);

therefore, a reliable prediction model is clinically valuable to trigger

timely supportive care. Our combined model – which incorporated

MRI radiomic features along with key clinical factors (notably

baseline hemoglobin and other blood counts) – achieved the

highest discrimination. This reinforces that a multifactorial

approach is optimal: integrating radiomic signatures with clinical

variables improves predictive accuracy relative to radiomics or

clinical data alone (26). In practice, such a model could be

deployed as a nomogram or decision tool before treatment to

stratify patients by toxicity risk. High-risk patients could then be

closely monitored and managed proactively, whereas low-risk

patients may proceed with standard treatment protocols.

Ultimately, this strategy could reduce unplanned dose delays and

ensure patients complete chemoradiation on schedule, potentially

improving oncologic outcomes.

We acknowledge several limitations in our study. First, the

sample size is moderate and drawn from a single institution; larger

multi-center validations are warranted to ensure the model’s

generalizability. Radiomics models can be prone to overfitting,

especially with high-dimensional feature spaces – we mitigated

this via feature selection and cross-validation, but external

confirmation remains essential. Subtype prediction, particularly

for rare toxicities like grade ≥3 thrombocytopenia, was challenged

by severe class imbalance and limited events, affecting specificity.

Larger, balanced datasets and rebalancing strategies are needed for

improved modeling of these subgroups. Additionally, our models

did not explicitly include advanced dose metrics beyond the basic

dose-volume variables – incorporating “dosiomic” features

(radiomics of the 3D dose distribution) alongside imaging

features is an intriguing approach that could further

improve prediction.
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Going forward, prospective trials should be considered to test

whether acting on model predictions can indeed reduce

hematologic toxicity. For example, a trial could stratify patients

by a baseline MRI radiomics risk score and assign high-risk patients

to an intensified supportive care or marrow-sparing plan. Such

prospective validation would establish the clinical utility of our

combined model beyond a retrospective proof-of-concept. In

parallel, exploration of AI explainability methods might help

illuminate which imaging phenotypes drive toxicity risk,

enhancing clinician trust in the model’s predictions.

Our study demonstrates that a combined clinical and MRI-

radiomic model accurately predicts acute hematologic toxicity in

patients undergoing pelvic radiotherapy. MRI radiomics

outperformed CT-based models, especially in chemoradiotherapy-

treated patients, highlighting MRI’s potential as a noninvasive

imaging biomarker. Future validation and integration into

personalized treatment planning may significantly reduce

treatment-related hematologic complications.
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