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Background: Patients with unresectable pancreatic cancer have poor outcomes
despite chemoradiotherapy (CRT). Traditional prognostic tools lack accuracy in
predicting survival. This study aimed to develop an artificial intelligence (Al)-
based model to improve survival prediction.

Methods: We retrospectively included 214 patients treated with CRT between
2018 and 2024. Five models—Cox, LASSO, RSF, SVM, and XGBoost—were trained
to predict overall survival. Model performance was evaluated using the C-index,
time-dependent ROC, calibration, and decision curve analysis. SHAP was used to
interpret feature importance.

Results: The median overall survival (mOS) for the entire cohort was 18.4 months
(95% Cl, 16.3-28.1). XGBoost showed the best performance (C-index = 0.949). It
also achieved higher area under the receiver operating characteristic curves at 6
and 12 months (0.751 and 0.732) compared to other models. Calibration and
clinical benefit were superior. SHAP analysis identified CA199, tumor size, platelet
count, and age as the most important predictors. The model stratified patients
into risk groups with significant survival differences (p < 0.001).

Conclusion: The XGBoost-based model accurately predicted survival in
unresectable pancreatic cancer patients receiving CRT. It may serve as a useful
tool for personalized risk assessment and treatment planning.
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Background

Pancreatic cancer ranks among the most lethal malignancies globally, with a five-year
survival rate below 10% (1). It is the seventh leading cause of cancer-related death
worldwide and continues to rise in incidence, particularly in developed countries. The
disease is typically asymptomatic in early stages, often leading to diagnosis at an advanced
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or metastatic stage (2). Due to its aggressive biological nature and
lack of effective screening tools, most patients present with
inoperable tumors at the time of diagnosis (3).

For patients with unresectable pancreatic cancer, concurrent
chemoradiotherapy (CRT) is a widely used treatment modality (4).
CRT may offer disease control, symptom relief, and modest survival
benefits in patients who are not candidates for surgery (5, 6).
However, responses to CRT vary substantially among individuals,
and survival outcomes remain poor overall. Traditional prognostic
tools based on clinical stage, tumor burden, and serum biomarkers
provide limited precision in forecasting treatment response or long-
term survival in this population (7).

The emergence of artificial intelligence (AI) and machine
learning has introduced new opportunities in the field of
oncology. These methods can incorporate complex, high-
dimensional data to reveal non-linear interactions and latent
patterns not captured by conventional statistical techniques (8, 9).
Al-based survival models, including Cox regression, LASSO,
random survival forests (RSF), support vector machines (SVM),
and eXtreme Gradient Boosting (XGBoost), have shown superior
performance in various cancer types by improving prediction
accuracy and enabling personalized risk estimation (10-13).

This study aimed to apply and compare five Al-assisted
modeling approaches—Cox, LASSO, RSF, SVM, and XGBoost—
to develop a reliable prognostic model for patients with unresectable
pancreatic cancer undergoing CRT. By identifying an optimal
prediction framework, we hope to provide a clinically applicable
tool for risk stratification, treatment guidance, and individualized
patient management in advanced pancreatic cancer.

Methods
Patients

This retrospective study included patients diagnosed with
unresectable pancreatic cancer from three tertiary hospitals
between January 2018 and December 2024. All patients CRT as
part of their initial treatment. Clinical, laboratory, and imaging data
were collected from institutional databases. Duplicate cases and
records with incomplete survival data were excluded.

Inclusion and exclusion criteria

Patients were included if they met the following criteria: (1)
histologically or cytologically confirmed pancreatic cancer; (2)
deemed unresectable by a multidisciplinary team based on
imaging and clinical evaluation; (3) received chemoradiotherapy
as primary treatment; and (4) had complete baseline clinical and
survival information.

Exclusion criteria were: (1) prior surgical resection of the
primary tumor; (2) presence of another primary malignancy; (3)
incomplete treatment or loss to follow-up within 1 month; (4)
missing key clinical variables or survival data.
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Ethical considerations

All patients provided written informed consent prior to receiving
chemoradiotherapy. This study was conducted in accordance with the
principles of the Declaration of Helsinki and relevant national
guidelines. Given the retrospective nature of the research and the
complete anonymization of patient data, the Ethics Committee of
Henan Provincial People’s Hospital waived the requirement for
additional informed consent and formal ethical approval.

Data

Clinical and laboratory data were collected from institutional
databases. No missing data were present among the variables used
for model construction, as patients with incomplete clinical or
laboratory parameters were excluded during initial screening. At
baseline, the following variables were collected for each patient:
demographic characteristics, including age (reported as mean *
standard deviation) and sex (male or female); clinical staging
information, including overall stage (I-IV), T stage (1-4 or x), N
stage (0-2 or x), and M stage (MO or M1), all classified according to
the American Joint Committee on Cancer (AJCC) 8th edition
criteria; tumor-related features such as maximum tumor diameter
(in centimeters); hematologic markers including white blood cell
count (WBC, x10°/L), lymphocyte count (x10°/L), and platelet
count (PLT, ><109/L); and serum tumor marker levels, specifically
carbohydrate antigen 19-9 (CA19-9, U/mL). Overall survival (OS)
was defined as the time from the initiation of chemoradiotherapy to
death from any cause or last follow-up, whichever occurred first.

Al-model construction and evaluation

All 214 patients were randomly divided into a training cohort
and a validation cohort at a ratio of 6:4. In the training cohort, five
machine learning-based survival models were developed to predict
OS: LASSO, Cox, RSF, SVM, and XGBoost. The concordance index
(C-index) was calculated to assess the discrimination performance
of each model in the training cohort.

In the validation cohort, time-dependent receiver operating
characteristic (ROC) curves, decision curve analysis (DCA), and
calibration curves were used to evaluate the predictive accuracy,
clinical net benefit, and calibration performance of each model,
respectively. To enhance model interpretability, feature importance
rankings and SHapley Additive exPlanations (SHAP) values were
generated for AI-model in the training cohort.

Statistical analysis

Group comparisons for categorical variables were performed
using the chi-square test or Fisher’s exact test, depending on sample
size and distribution. For continuous variables, the Student’s t-test
was used for normally distributed data, while the Mann-Whitney U
test was applied when the normality assumption was not met. OS
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was analyzed with the Kaplan-Meier approach, and survival
differences between subgroups were examined using the log-rank
test. All artificial intelligence models were implemented using R
software. A p-value less than 0.05 (two-tailed) was considered
indicative of statistical significance.

Result
Patients

A total of 214 patients with unresectable pancreatic cancer were
included in the study. The mean age was 61.4 years (SD = 10.5), and

10.3389/fonc.2025.1644141

56.1% were male. Most patients presented with advanced disease:
55.6% were at stage IV, 25.2% at stage III, and only 8.88% and 10.3% at
stages I and II, respectively. For T stage, the majority were classified as
T4 (44.4%), while T1, T2, and T3 accounted for 3.74%, 20.6%, and
17.3%, respectively. In terms of nodal involvement, 43.9% were NO,
33.2% N1, and 7.48% N2, with 15.4% having unknown N stage. More
than half (55.6%) of the cohort had distant metastases (M1).

The cohort was randomly divided into a training set (n = 127)
and a validation set (n = 87). Baseline characteristics were generally
balanced between the two groups; however, a statistically significant
difference was observed in clinical stage distribution (p =
0.028, Table 1).

TABLE 1 Baseline characteristics of the whole cohort, training set, and validation set.

Variable Total (N = 214) Validation set (N = 87) Training set (N = 127) P-value
Age, mean (SD) 614 (10.5) 61.6 (9.88) 61.3 (10.9) 0.825
Sex, n (%) ‘ 0.719
Female 94 (43.9) 40 (46.0) 54 (42.5)

Male 120 (56.1) 47 (54.0) 73 (57.5)

Stage, n (%) ‘ 0.028*
I 19 (8.88) 4 (4.60) 15 (11.8)

i 22 (10.3) 13 (14.9) 9 (7.09)

I 54 (25.2) 27 (31.0) 27 (21.3)

v 119 (55.6) 43 (49.4) 76 (59.8)

T stage, n (%) 0.427
1 8 (3.74) 2 (2.30) 6 (4.72)

2 44 (20.6) 15 (17.2) 29 (22.8)

3 37 (17.3) 15 (17.2) 22 (17.3)

4 95 (44.4) 45 (51.7) 50 (39.4)

x 30 (14.0) 10 (11.5) 20 (15.7)

N stage, n (%) 0.831
0 94 (43.9) 38 (43.7) 56 (44.1)

1 71 (33.2) 31 (35.6) 40 (31.5)

2 16 (7.48) 5 (5.75) 11 (8.66)

X 33 (15.4) 13 (14.9) 20 (15.7)

M stage, n (%) 0.172
Mo 95 (44.4) 44 (50.6) 51 (40.2)

M1 119 (55.6) 43 (49.4) 76 (59.8)

Tumor size, cm 4.27 (1.83) 417 (1.77) 4.34 (1.87) 0.518
WBC, x10°/L 6.35 (3.62) 5.90 (2.44) 6.65 (4.23) 0.102
Lymphocytes, x10°/L 1.46 (0.74) 1.46 (0.59) 1.45 (0.83) 0.92
PLT, x10°/L 234 (102) 230 (92.4) 237 (108) 0.609
CA199, U/mL 1219 (2528) 1044 (2286) 1339 (2684) 0.39

*Statistically significant (p < 0.05).
WBC, white blood cell count; PLT, platelet count; CA199, carbohydrate antigen 19-9.
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The median OS (mOS) for the entire cohort was 18.4 months
(95% confidence interval [CI], 16.3-28.1, Figure 1A). No significant
difference in mOS was observed between the training and validation
cohorts, with median survival times of 25 months and 17 months,
respectively (p = 0.14, Figure 1B).

Al-model

In the training cohort, five models were constructed to predict 0S.
The concordance indices (C-index) were 0.716 for LASSO, 0.740 for
Cox, 0.940 for RSF, 0.712 for SVM, and 0.949 for XGBoost. XGBoost
not only demonstrated the highest discriminative ability among the
five models, with a C-index of 0.949, but also enabled calculation of
individualized risk scores. Patients classified into the high-risk group

10.3389/fonc.2025.1644141

by the XGBoost model showed significantly worse overall survival
compared to the low-risk group (p < 0.001, Figure 2).

In the validation cohort, the time-dependent area under the
ROC curve (AUC) at 6 and 12 months was as follows: for Cox
(Figure 3A), 0.801 and 0.692; for LASSO (Figure3B), 0.709 and
0.667; for RSF (Figure 3C), 0.725 and 0.656; for SVM (Figure 3D),
0.366 and 0.453; and for XGBoost (Figure 3E), 0.751 and 0.732. The
calibration plots (Figure 4A) showed close alignment between
predicted and actual survival outcomes for the XGBoost model at
both 6- and 12-month time points, suggesting strong consistency in
its risk estimation. Additionally, DCA (Figure 4B) revealed that
XGBoost provided a higher net clinical benefit than the other
models across a wide range of threshold probabilities.

Figure 5A shows that CA199, tumor size, PLT, and age had the
greatest impact on the model output based on SHAP values, while
Figure 5B indicates that PLT, CA199, and age were the top
contributors to the model based on Gain importance.
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FIGURE 1

Kaplan-Meier curves of overall survival. (A) Overall survival of all patients. (B) Comparison of overall survival between the training set and validation

set.
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FIGURE 2
Kaplan-Meier survival curves based on XGBoost-predicted risk groups in the training set.
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FIGURE 3

Time-dependent ROC curves for survival prediction at 6 and 12 months in the validation cohort. Cox (A), LASSO (B), RSF (C), SVM (D), and XGBoost (E).
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FIGURE 4

Calibration and decision curve analysis for the XGBoost model. (A) Calibration plots at 6 and 12 months show good agreement between predicted
and observed survival. (B) Decision curve analysis (DCA) demonstrates the net clinical benefit of the model across a range of threshold probabilities.

Discussion

CRT has become a cornerstone in the treatment of patients with
unresectable pancreatic cancer, offering improved local control and
a chance of survival extension (14). However, prognosis remains
highly variable and difficult to predict using conventional
indicators. While staging systems and biomarkers like CA199 are
commonly applied, they lack the ability to fully capture patient
heterogeneity (15, 16). Moreover, only a limited number of studies
have explored predictive modeling specifically in this population,
and even fewer have applied AI techniques to enhance
individualized risk assessment.

CRT remains particularly important in cases where surgery is
not feasible due to vascular involvement, distant metastasis, or
medical comorbidities. It can provide meaningful symptom relief
and disease stabilization (17, 18). Nonetheless, clinical outcomes
vary widely. Some patients derive substantial benefit, while others
experience rapid progression. This discrepancy underscores the
need for more advanced models that can incorporate complex
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variable interactions and provide personalized survival predictions
beyond conventional methods.

In this study, we compared five modeling strategies—Cox,
LASSO, RSF, SVM, and XGBoost—to identify an optimal survival
prediction framework for CRT-treated patients. XGBoost exhibited
the highest predictive performance, achieving a C-index of 0.949 in
the training set, and outperformed the other models in time-
dependent AUCs at 6 and 12 months. Calibration and decision
curve analyses confirmed the consistency and net clinical benefit of
its predictions. This superior performance is likely due to the
algorithm’s ability to model non-linear relationships, account for
complex variable interactions, and reduce overfitting through
regularization. Additionally, its capacity to manage missing or
noisy data makes it well-suited for real-world clinical datasets
(19-22).

To address the interpretability challenge often associated with
AT models, we utilized SHAP to evaluate the relative importance of
input variables. As shown in Figure 5A, CA19-9, tumor size, PLT,
and age emerged as the most impactful predictors. These findings
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FIGURE 5

Feature importance analysis of the XGBoost model. (A) SHAP
summary plot showing the impact of each feature on model output.
(B) Bar plot of feature importance ranked by gain in the XGBoost
model.

are consistent with established clinical and biological knowledge.
CA19-9 is a widely used tumor marker in pancreatic cancer and
serves as a surrogate for tumor burden. Elevated CA19-9 levels are
associated with more aggressive tumor biology, advanced disease
stage, and poor prognosis, and are routinely used to monitor
treatment response and recurrence. Tumor size is directly related
to tumor invasiveness and treatment response, with larger tumors
often indicating a higher likelihood of vascular invasion, local
progression, and reduced effectiveness of chemoradiotherapy.
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Elevated platelet counts may reflect a tumor-driven pro-
thrombotic and inflammatory microenvironment, which can
promote cancer progression, angiogenesis, and immune evasion.
Age is a fundamental prognostic factor across malignancies, as older
patients often have decreased physiological reserves, reduced
immune function, and increased comorbidity burdens, all of
which may impact treatment tolerance and overall survival. The
identification of these readily accessible variables not only supports
the clinical relevance of the model but also reinforces its potential
for real-world application in guiding personalized treatment
planning (23-26).

The model developed in this study offers a clinically practical
and easily implementable approach for stratifying survival risk in
patients with unresectable pancreatic cancer—a population with
limited treatment options. It relies on routinely available clinical
and laboratory variables, including CA19-9, platelet count, tumor
size, and patient age, all of which are typically collected during the
initial evaluation. This makes integration into standard clinical
workflows highly feasible. By inputting these parameters into a
web-based risk calculator, clinicians could classify patients into
distinct risk categories and tailor management strategies
accordingly. High-risk patients could be prioritized for intensified
chemoradiotherapy regimens, more frequent surveillance imaging,
or early referral to clinical trials, whereas low-risk patients might be
managed with standard protocols and spared from overtreatment.
Importantly, the use of SHAP values enhances model transparency
by identifying key features driving individual predictions, thereby
improving interpretability and fostering clinical trust. Future efforts
will focus on developing an accessible online tool to facilitate real-
time, individualized decision support based on this model (27).

Despite its strengths, the study has limitations. As a
retrospective analysis, there is a risk of selection bias and
unmeasured confounding. Although patient eligibility was
carefully defined and data completeness was ensured, prospective
validation is necessary. The sample size, while sufficient for initial
modeling, may limit the generalizability of findings. Validation in
larger, multi-institutional cohorts would be an important next step.
Furthermore, the model was built using clinical and laboratory
variables only. Incorporating imaging-derived features or molecular
data could potentially enhance predictive accuracy and offer
mechanistic insights into disease progression. In addition, while
SHAP improves interpretability, tree-based models such as
XGBoost still require cautious application when used in clinical
decision-making. Finally, although the XGBoost model
demonstrated excellent predictive performance, the possibility of
model overfitting cannot be completely ruled out. Our current
validation approach was based on an internal split of the
multicenter dataset, and no external cohort was used. Therefore,
external validation in larger, geographically distinct populations is
necessary to confirm the model’s generalizability and clinical utility.
Additionally, future work may benefit from implementing k-fold
cross-validation or nested cross-validation strategies to further
minimize overfitting risk and enhance robustness.
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Conclusion

In conclusion, we successfully constructed an Al-based model
using XGBoost to predict survival in patients with unresectable
pancreatic cancer undergoing CRT. CA199, tumor size, PLT, and
age were identified as the most important prognostic factors. The
model demonstrated high accuracy, strong calibration, and clinical
utility, offering a promising tool for individualized risk estimation
and treatment guidance. Further validation with larger datasets and
integration of additional data modalities will be essential to enhance
the robustness and applicability of this approach.
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