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Background:Upper tract urothelial carcinoma (UTUC) is a rare but highly invasive

urinary malignancy with a high postoperative recurrence rate.

Methods: We retrospectively collected data from 133 UTUC patients who

underwent radical nephroureterectomy between 2005 and 2017. Patients were

divided into a training set (n=103) and a testing set (n=30). A multi-modal deep

learning model named Multi-modal Image-Clinical Combination Classifier

(MICC) was developed by integrating multi-phase contrast-enhanced CT

imaging and clinical data. The model’s prognostic performance was compared

with two unimodal models—ImageNet (CT-based) and ClinicalNet (clinical data-

based)—and traditional clinical parameters including pathological T stage.

Feature importance was evaluated using SHapley Additive exPlanations (SHAP).

Results: The MICC model achieved superior prognostic accuracy with AUCs of

0.918 and 0.895 in the training and testing sets, respectively, outperforming

unimodal models. Classification metrics were robust, with accuracy of 0.854,

sensitivity of 0.889, specificity of 0.836, negative predictive value (NPV) of 0.933,

and positive predictive value (PPV) of 0.744. Precision-recall analysis confirmed

strong identification of high-risk patients despite dataset imbalance. SHAP

analysis highlighted that CT imaging features contributed most significantly to

the model’s predictions.
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Conclusion: Integrating multi-phase CT imaging with clinical data, the MICC

model provides accurate prognostic prediction for UTUC patients. This approach

has potential to assist clinicians in personalized risk stratification and treatment

planning, ultimately improving patient outcomes.
KEYWORDS

upper tract urothelial carcinoma, deep learning, prognostic indicators, CT image, multi-
phase contrast-enhanced CT, clinical data, artificial intelligence, radiomics
1 Introduction

Upper tract urothelial carcinoma (UTUC) is a rare malignancy,

accounting for approximately 5% to 10% of all urothelial

carcinomas (1, 2). Prognosis in UTUC is closely linked to tumor

grade and stage, with higher-grade tumors associated with

significantly reduced 5-year survival rates (3, 4). Accurate

identification of high-risk tumors is essential for formulating

effective long-term treatment strategies (5). Therefore, the

development of precise prognostic models is critical to support

urologists in risk stratification and clinical decision-making.

Previous prognostic models have largely overlooked the

prognostic value of CT imaging. Contrast-enhanced CT, the

primary imaging modality for UTUC diagnosis, offers superior

visualization of tumor characteristics, including size, shape,

enhancement patterns, and local invasion, as well as involvement

of adjacent structures such as renal parenchyma, vessels, and lymph

nodes (6, 7). However, the diagnosis of tumor by contrast-enhanced

CT mainly relies on the experience of the radiologist. Therefore,

there is a possibility of missed diagnosis, especially for early-stage or

small tumors.

Deep learning (DL) has shown substantial promise in

prognostic modeling across various malignancies, including

colorectal (8, 9), lung (10), and liver cancers (11). However, its

application in predicting outcomes for UTUC remains largely

unexplored. A key advantage of DL lies in its ability to

autonomously extract complex and clinically relevant features

from high-dimensional, heterogeneous data with minimal human

intervention (12, 13). This makes DL particularly well-suited for the

analysis of CT imaging, which is inherently noisy and variable.

Therefore, DL presents an opportunity for more accurate and

innovative risk stratification for patients with UTUT (14).

Our study introduces several key technical innovations that

distinguish it from existing UTUC research. Unlike traditional

radiomics approaches that rely on manual ROI delineation and

hand-crafted features (15), our RGBA fusion method enables end-

to-end automatic feature learning directly from multi-phase CT

images. This approach overcomes the limitations of single-phase

deep learning methods (16) by preserving complete temporal

dynamics across all contrast phases. Furthermore, our Multi-

modal Image-Clinical Combination Classifier (MICC) advances
02
beyond conventional statistical methods (nomograms, Cox

regression) (17, 18) by leveraging deep neural networks to capture

complex, non-linear interactions between imaging and clinical

features without requiring explicit feature selection or

dimensionality reduction.

In this study, we propose a novel multi-modal DL model,

termed the Multi-modal Image-Clinical Combination Classifier

(MICC), which integrates multi-phase contrast-enhanced CT

imaging with clinical variables to predict postoperative prognosis

in UTUC patients. This approach has the potential to improve

predictive accuracy and quality of information available for

individualized clinical decision-making.
2 Materials and methods

2.1 Patients

This study was reviewed and approved by the Ethics Committee

on Clinical Research of The First Affiliated Hospital of Wenzhou

Medical University (Approval No. KY2023-R165; Approval Date:

August 14, 2023). Given the retrospective design, the requirement

for informed consent was waived.

We conducted a retrospective analysis of medical records from

patients who underwent contrast-enhanced CT for UTUC at our

institution between March 2015 and April 2017. Inclusion and

exclusion criteria for the 133 eligible patients are detailed

in Figure 1A.

Clinical variables collected for each patient included: gender

(female vs. male), age (≥65 vs.<65 years), body mass index (BMI ≥25

vs.<25 kg/m²), American Society of Anesthesiologists Physical

Status Classification (ASA ≥3 vs.<3), presence of hydronephrosis

(yes vs. no), surgical approach (open vs. laparoscopic), hemoglobin

(Hb) levels, albumin levels, tumor size (>3 cm vs. ≤3 cm), tumor

location (renal pelvis vs. ureter vs. both), tumor multiplicity

(multiple vs. unifocal), lymphovascular invasion (LVI: yes vs. no),

tumor stage (pT1–pT2 vs. pT3–pT4), and nodal stage (N0 vs. N1).

Postoperative follow-up included cystoscopy, computed

tomography (CT) imaging, and both urine and blood tests.

Patients were followed every three months during the first year

and annually thereafter. Outcomes were defined as follows: overall
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survival (OS) was the interval from surgery to death from any cause;

cancer-specific survival (CSS) was the interval from surgery to death

specifically due to UTUC; and progression-free survival (PFS) was

defined as the time from surgery to either tumor recurrence

or death.
2.2 Study design and data partitioning

To ensure methodological rigor and prevent data contamination,

a strict data separation protocol was implemented. The 133 patients

were randomly assigned to a Training set (n = 103) and an

independent Testing set (n = 30) using stratified sampling to
Frontiers in Oncology 03
preserve the distribution of outcome classes across both sets—an

essential consideration given the class imbalance inherent in

survival data.

Within the Training set, five-fold cross-validation was

employed for model development and hyperparameter tuning. In

each fold, 80% of the data were used for model training and 20% for

validation. This cross-validation strategy enabled parameter

optimization while mitigating the risk of overfitting. All feature

extraction, data normalization, and model architecture design were

conducted exclusively within the Training set, with no access to the

Testing set at any stage of model development.

Three models were developed: the Multi-modal Image-Clinical

Combination Classifier (MICC), ImageNet, and ClinicalNet. All
FIGURE 1

processing of the MICC model and patient inclusion/exclusion criteria. (A) The MICC model processes CT images stored as DICOM files, reducing
noise and resizing images. It transforms the four phases of CT (arterial phase, portal vein phase, delayed phase, and plain scan) into RGBA (Red,
Green, Blue and Alpha) arrays, which are then consolidated into color images. These RGBA images are input into a model based on EfficientNet-B3,
and are subjected to average pooling, integrated with clinical data. A cross-entropy loss function is used to train the model, generate scores for each
patient, and categorize patients into high and low-risk groups based on the optimal cutoff value from the ROC analysis. (B) Out of 355 patients from
the First Affiliated Hospital of Wenzhou Medical University, 133 were enrolled in this study and divided into the Training set (n=103) and Testing set
(n=30). Both CT images and clinical information were included in this study.
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models were fully trained and finalized using only the Training set

and the cross-validation procedure. Model architectures,

hyperparameters, and configurations were determined prior to

Testing set evaluation, ensuring complete isolation of the test data.

The Testing set was reserved strictly for final model evaluation

and was accessed only once, after all model parameters were fixed.

This rigorous separation eliminated the possibility of data leakage

and enabled an unbiased evaluation of each model’s generalizability

to previously unseen cases. Notably, the MICC model’s superior

performance on the Testing set was identified during this single

final evaluation, rather than through iterative testing or model

selection based on Testing set outcomes.

To ensure fair and direct comparisons, all three models—

MICC, ImageNet, and ClinicalNet—were trained using the same

data partitioning protocol, including the identical Training set (n =

103) for cross-validation and the same independent Testing set (n =

30) for final performance assessment. This consistent methodology

allowed for valid comparisons across models utilizing different

input modalities.
2.3 Preprocessing of CT images

The preprocessing workflow for the MICC model is illustrated

in Figure 1B. All CT images, including contrast-enhanced and non-

enhanced scans, were stored in DICOM (Digital Imaging and

Communications in Medicine) format. To minimize background

noise from adjacent organs, the window width and level were

standardized at 300 and 40, respectively. From each 3D CT scan,

only the 2D axial slice showing the largest tumor cross-section

along the z-axis was selected for model development.

All selected images were resized using OpenCV to conform to

the input dimensions required by the model. Intensity

normalization was performed by computing the mean and

standard deviation for each image channel. Each phase of

grayscale CT imaging was then transformed into a four-channel

RGBA image using NumPy: the plain, arterial, portal venous, and

delayed phases were assigned to the alpha, red, green, and blue

channels, respectively (19). The resulting multi-phase images were

fused into a single RGBA composite image for subsequent feature

extraction and modeling.
2.4 Feature extraction and fusion via RGBA
color transformation

Each CT scan comprised four contrast-enhanced phases: plain,

arterial, portal venous, and delayed. Features were initially extracted

from each phase independently. Notably, during the arterial phase,

enhancement of the renal cortex in the affected left kidney was

markedly reduced compared to the contralateral kidney

(Figures 2A, B). This attenuation persisted into the portal venous

phase (Figures 2C, D). In the delayed phase, while the right kidney

showed homogeneous enhancement, the medullary region of the

left kidney, corresponding to the tumor site, exhibited
Frontiers in Oncology 04
heterogeneous enhancement (Figures 2E, F). These radiological

features are consistent with the typical imaging patterns of

UTUC, characterized by absent or reduced enhancement in early

phases and partial enhancement in delayed imaging.

In the final RGBA composite image, the right kidney,

consistently enhanced across arterial, portal, and delayed phases,

appeared white due to full representation in the red, green, and blue

channels. In contrast, the left kidney, with its heterogeneous and

phase-dependent enhancement, appeared gray with central blue-

green hues (Figure 2G). This transformation allowed for

simultaneous visualization of radiologic variation across all

phases, enhancing the model’s ability to capture prognostically

relevant features.

These RGBA-fused images were subsequently input into the

EfficientNet-B3 architecture for feature extraction and served as the

imaging component of the MICC model.
2.5 Model architecture

We developed the MICC model by integrating multi-phase CT

images with clinical information. To enable a comprehensive

performance evaluation, we also constructed two single-modality

models for comparison: ImageNet and ClinicalNet.

ImageNet was implemented as a binary classification model that

processes RGBA-based CT images of UTUC using the EfficientNet-

B3 architecture. This model directly receives multi-phase CT

images as input and outputs a binary classification result, without

the need for additional feature engineering. EfficientNet-B3, a state-

of-the-art transfer learning network, effectively balances model

depth, width, and resolution, and has demonstrated superior

performance across a range of transfer learning tasks (20).

For clinical data processing, we intentionally retained all clinical

features without performing explicit feature selection, based on the

following considerations:
1. The sample-to-feature ratio (n/p ≈ 8.4) did not represent a

typical high-dimensional, small-sample scenario;

2. The XGBoost algorithm, employed in ClinicalNet,

inherently addresses feature redundancy via its tree-based

structure and built-in regularization mechanisms;

3. The use of five-fold cross-validation contributed to model

robustness and generalizability;

4. Preserving all clinical variables was critical for identifying

potential interactions between clinical and imaging data in

our multimodal fusion framework.
The ClinicalNet model was implemented using XGBoost to

process the complete set of clinical features (21).

Our proposed MICC model integrates both modalities by first

extracting features from CT images using EfficientNet-B3, which

are then transformed into a feature vector of size 64 via a linear

layer. Simultaneously, clinical features are also processed and

transformed into a feature vector of size 64 using a separate

linear layer. These two feature vectors are concatenated and
frontiersin.org
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FIGURE 2

CT scan images and their corresponding features extracted for RGBA color. (B) Original arterial phase CT images and (A) arterial phase images
transformed into RGBA (red) through feature extraction. The feature within the green-lined area represents the area of interest in the arterial phase.
(D) Original portal vein phase CT images and (C) RGBA (green) images of the portal vein phase. The feature within the yellow-lined area represents
the area of interest in the portal vein phase. (F) Original delayed phase CT images and (E) RGBA (blue) images of the delayed phase. The feature
within the orange-lined area represents the area of interest in the delayed phase. (G) RGBA image created by the fusion of three phases of CT
contrast images (red, green, and blue) and CT plain scan images (alpha). The area marked with a black line represents normal kidneys, distinguished
by a white overlay of features from all channels. The enlarged section identifies the tumor region, distinguished by a gray area with central blue-
green bands, which effectively captures the radiological changes across the four phases.
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passed through a final linear layer to generate the classification

output. This fusion approach enables MICC to leverage

complementary information from both imaging and clinical data.

Both the MICC and ImageNet models were trained using the

cross-entropy loss function, a standard method for binary

classification tasks (19, 20). For each patient, the model outputs a

probability (via sigmoid activation) of being high-risk, with the loss

computed as:

L = −  
1
N o

N

i=1f g
½yi log (pi) + (1 − yi) log (1 − pi)�

where yi is the true label (0 or 1), and pi is the predicted

probability. The Adam optimizer minimizes this loss, with

gradients computed based on prediction errors, ensuring efficient

convergence. The ‘acc’ function calculates the model’s accuracy by

determining the proportion of correctly classified samples, yielding

a value between 0 and 1. To address class imbalance within the

training dataset, an Imbalanced Dataset Sampler (Imbalanced

Sampler) was employed. This sampler adjusts the sampling

strategy to equilibrate the class distribution, preventing the model

from overfitting to the majority class.

To mitigate potential data contamination and ensure an

unbiased evaluation, the MICC model was trained exclusively on

the Training set (n = 103). All steps involving clinical feature

derivation and imaging feature extraction were performed solely

on these training samples, thereby preventing any leakage of

information from the Testing set. Model parameters and

hyperparameter tuning were determined within the training set,

and the derived features were subsequently applied to an entirely

independent Testing set (n = 30) reserved for final evaluation. This

strict partitioning ensures that performance metrics reflect the true

generalizability of the MICC model, free from data leakage or test

set contamination.
2.6 Model assessment

To comprehensively evaluate the diagnostic performance of

each model, we considered several metrics, including accuracy,

sensitivity, specificity, positive predictive value (PPV), negative

predictive value (NPV), and the area under the curve (AUC). The

DeLong method was used to compute the 95% confidence intervals

(CIs) for the AUC. The Integrated Discrimination Improvement

(IDI) was calculated using the reclassification package in R.

The Akaike Information Criterion (AIC) was determined using

the formula:

AIC = 2k − 2ln(L)

Where k is the number of parameters, and L is the maximum

likelihood estimate of the model.

The Bayesian Information Criterion (BIC) was calculated using

the formula:

BIC = ln(n)k − 2ln(L)
Frontiers in Oncology 06
Where n is the sample size, k is the number of parameters, and L

is the maximum likelihood estimate.

The Precision-Recall Area Under the Curve (PR AUC) was

computed using the sklearn package in Python.

To explore the relevance and interactions of clinical

characteristics, all patients were evaluated using the MICC model

and analyzed via SHapley Additive exPlanations (SHAP) (22).

SHAP, based on game theory, analyzes machine learning models

by quantifying the contribution of each feature, thereby enhancing

the interpretability of the model’s decision-making process.
2.7 Statistical analysis

All statistical calculations and graphical representations were

performed using R software (version 4.1.0, https://www.r-

project.org/), Python (version 3.9.7, https://www.python.org), and

IBM SPSS Statistics 27 (https://www.ibm.com/spss). P-values were

calculated using two-tailed tests, with values of p<0.05 considered

statistically significant. The clinical characteristics of the Training

and Testing groups were compared using unpaired t-tests for

continuous variables and chi-squared tests for categorical

variables. To assess statistical differences in accuracy, specificity,

and AUC between the two models, McNemar’s Chi-squared test

with continuity correction was applied. The Kaplan-Meier

estimator was used to construct survival curves. Both Univariate

and Multivariate Cox Regression Analyses were performed to

identify independent prognostic factors.
3 Result

3.1 Patient characteristics

Details on the clinical characteristics of the patients are

summarized in Table 1. No significant differences were observed

between the Training and Testing sets (P > 0.05), except for tumor

location and surgical method.
3.2 Selection of the baseline network

To evaluate potential benchmark models for ImageNet, we

considered EfficientNet-B3, ResNet-50, and VGG-16. These

models were trained independently, and their performance was

compared using both the Training and Testing sets (Supplementary

Figure 1A). The results showed that EfficientNet-B3 outperformed

the other models, achieving the highest scores for AUC (0.884),

Accuracy (0.825), Sensitivity (0.667), and Specificity (0.910) on the

Training set. It was followed by ResNet-50 (AUC = 0.640, Accuracy

= 0.612, Sensitivity = 0.611, Specificity = 0.612), with VGG-16

exhibiting the poorest performance (AUC = 0.576, Accuracy =

0.641, Sensitivity = 0.361, Specificity = 0.791). As a result,

EfficientNet-B3 was selected as the baseline network and

subsequently retrained on the Training set.
frontiersin.org
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3.3 Efficacy of the MICC model in
prognostic stratification

Multimodal prediction models, which integrate multiple data

sources, have been shown to offer superior predictive performance

in cancer prognosis compared to models relying on a single

modality (23). To test this hypothesis, we trained three distinct

models using the same dataset, with varying input modalities: CT

images only (ImageNet), clinical information only (ClinicalNet),

and a combined approach integrating both modalities

(MICC model).

Kaplan-Meier survival curves confirmed that all three models

were effective in differentiating between high-risk and low-risk

patients in both the Training and Testing sets with regard to OS,

CSS, and PFS (Figure 3, P< 0.05), although the ClinicalNet model

did not demonstrate significant predictive ability for PFS in the

Testing set (P = 0.19).
TABLE 1 Clinical characteristics of the UTUC patients.

Characteristic Training
cohort

Testing
cohort

p
value

(n=103) (n= 30)

Sex, n(%) 0.136

Female 26 (25.24%) 12(40.00%)

Male 77(74.76%) 18(60.00%)

Age, n(%) 0.338

≥65 years 61(59.22%) 19(63.33%)

<65 years 42(40.78%) 11(36.67%)

BMI, n(%) 0.459

≥25 kg/m2 19(18.45%) 5(16.67%)

<25 kg/m2 84(81.55%) 25(83.33%)

ASA, grade, n(%) 0.364

≥3 28(27.18%) 5(16.67%)

<3 75(73.82%) 25(83.33%)

Hydronephrosis,
n(%)

0.747

Yes 65(63.11%) 20(66, 67%)

No 38(36.89%) 10(33.33%)

HB, g/dl 0.748

Mean±SD 122.87±6.10 121.63±7.96

Albumin, g/dl 0.215

Mean±SD 41.19±8.15 39.99±10.62

operation method,
n(%)

<0.001

Open surgery 71(68.93%) 6(20.00%)

Laparoscopic surgery 32(31.07%) 24(80.00%)

Tumor size, n(%) 0.959

>3 cm 37(35.92%) 15(50.00%)

≤3 cm 66(64.03%) 15(50.00%)

Position, n(%) 0.005

Renal pelvic carcinoma 80(77.67%) 14(46.67%)

Ureteral carcinoma 20(19.42%) 15(50.00%)

Both have 3(2.91%) 1(3.33%)

Tumor number,
n(%)

0.243

Multiple cancer 85(82.52%) 28(93.33%)

Unifocal cancer 18(17.48%) 2(6.67%)

LVI, n(%) 0.425

Yes 19(18.45%) 3(10.00%)

No 84(81.55%) 27(90.00%)

(Continued)
TABLE 1 Continued

Characteristic Training
cohort

Testing
cohort

p
value

(n=103) (n= 30)

T stage, n(%) 0.970

pT1-pT2 61(59.22%) 18(60.00%)

pT3-pT4 42(40.78%) 12(40.00%)

N stage, n(%) 0.068

N0 91(88.35%) 30(100.0%)

N1 12(11.64%) 0(0.00%)

OS, n(%) 0.411

1 year OS rate 79.6% 96.0%

3 years OS rate 42.7% 70.0%

5 years OS rate 25.2% 50.0%

10 years OS rate 1.00% 0.00%

PFS, n(%) 0.954

1 year PFS rate 62.1% 86.7%

3 years PFS rate 31.1% 60.0%

5 years PFS rate 16.5% 36.7%

CSS, n(%)

1 year CSS rate 79.6% 96.0% 0.411

3 years CSS rate 42.7% 70.0%

5 years CSS rate 25.2% 50.0%

10 years CSS rate 1.00% 0.00%
fron
BMI, body mass index; HB, hemoglobin; LVI, Lymphovascular Invasion; OS, Overall Survival;
PFS, Progression Free Survival; CSS, cancer-specific survival.
aThe p-value is calculated by Chi-squared test for categorical variables. When the minimum
expected count is greater than 5, use the Pearson chi-square test; when the minimum expected
count is between 1 and 5, use the Yates continuity correction; when the minimum expected
count is less than 1, use the Fisher's exact test. And p-value is calculated by unpaired t-tests for
continuous variables.
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FIGURE 3

K-M curves for OS, CSS, and PFS for ClinicalNet, ImageNet, and MICC model in Training and Testing sets. (A) K-M curves for OS, (B) K-M curves for
CSS, and (C) K-M curves for PFS, comparing ClinicalNet, ImageNet, and MICC model across both settings.
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3.4 Discriminative and calibration
performance of the MICC model

Receiver Operating Characteristic (ROC) analysis revealed that

the MICC model consistently outperformed ImageNet and

ClinicalNet in both the Training and Testing sets. In the Training

set, MICC achieved an AUC of 0.918, surpassing ImageNet (AUC =

0.884) and ClinicalNet (AUC = 0.845). Similarly, in the Testing set,

MICC maintained the highest performance with an AUC of 0.895,

followed by ImageNet (AUC = 0.835) and ClinicalNet (AUC =

0.854). Furthermore, when MICC was used as the benchmark, the

Integrated Discrimination Improvement (IDI) values for both

ImageNet and ClinicalNet were negative, indicating a decline in

their predictive performance relative to MICC (Figures 4A, B).

Calibration curves were employed to assess the predictive

accuracy of the three models, and results indicated that all models

performed robustly. In the Testing set, MICC demonstrated the best

calibration performance, with the lowest AIC (67.43) and BIC (–

456.94), as well as the highest R² value of 0.46 (p< 0.0001),

indicating an optimal balance between model fit and complexity

(Figure 4C). In the Training set, MICC predictions were closest to

the ideal calibration line across all probability bins, further

underscoring its superior ability to generate reliable and well-

calibrated risk estimates (Figure 4D). These results highlight the

advantage of integrating multimodal data to improve prognostic

accuracy in clinical settings.
3.5 Precision–recall analysis and predictive
score distribution

Given the small proportion of actual deaths in our dataset, early

identification of high-risk patients is crucial. To address this, we

utilized the precision-recall (PR) curve to evaluate the performance

of the three models. The PR curve is particularly valuable for

assessing the ability to recognize positive class samples (deaths)

within an imbalanced dataset.

In the Training set, the results demonstrated that the MICC

model excelled in predicting deaths, achieving the highest PR AUC

of 0.843 (Figure 4E), followed by ImageNet (PR AUC = 0.808) and

ClinicalNet (PR AUC = 0.737). Similar results were observed in the

Testing set, where MICC also achieved the highest PR AUC of

0.816 (Figure 4F).

The distribution of prediction scores for the three models in the

Training set, shown in raincloud plots, reveals that MICC’s

predictions are the most narrowly distributed and closely align

with a normal distribution (Supplementary Figure 1B).
3.6 Model evaluation of classification
performance metrics

A comprehensive evaluation of the three models demonstrated

significant improvements with the MICC model in the Training set,

including accuracy (0.854, 95% CI = 0.852–0.857), sensitivity
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(0.889, 95% CI = 0.786–0.992), NPV (0.933, 95% CI = 0.870–

0.996), and AUC (0.920, 95% CI = 0.860–0.979) (Table 2,

Supplementary Figure 1C). In the Testing set, the MICC model

maintained notably stable performance, with all indicators closely

aligning with those of the Training set: accuracy (0.867, 95% CI =

0.859–0.874), sensitivity (0.909, 95% CI = 0.739–1.000), specificity

(0.842, 95% CI = 0.678–1.000), PPV (0.769, 95% CI = 0.540–0.998),

NPV (0.941, 95% CI = 0.829–1.000), and AUC (0.895, 95% CI =

0.780–1.000).

In contrast, the performance of ClinicalNet varied substantially

between the Training and Testing sets, indicating limited

generalizability and robustness. Furthermore, its relatively low

sensitivity in the Training set (0.667, 95% CI = 0.513–0.821)

suggests potential difficulties in timely identifying high-risk

patients, which could hinder early clinical intervention.
3.7 Analysis of feature importance in the
MICC model

To identify the key contributors to the predictive performance

of the MICC model, we conducted SHAP analysis on the Training

set. Among all features, ImageNet emerged as the most influential

variable, followed by preoperative hemoglobin (HB), T stage, and

Lymphovascular invasion (LVI), highlighting the dominant role of

imaging-derived information in the multimodal framework

(Figure 5A). Similarly, in Testing set, ImageNet remained the

most influential variable (Supplementary Figure 1D).

To assess potential feature redundancy, we performed Pearson

correlation analysis among the clinical variables included in the MICC

model. All features were largely independent (correlation< 0.5), except

for a moderate correlation observed between T stage, LVI, and N stage

(Figure 5B). Furthermore, we observed significant differences in key

clinical features—including preoperative HB, LVI, T stage, and N stage

—between high-risk and low-risk groups, further supporting their

prognostic relevance within the model (Figure 5C).
4 Discussion

In this study, we developed a multimodal DL model, named the

MICC model, to predict postoperative survival for patients with

UTUC using multi-phase CT images and clinical data. Our findings

demonstrate that, the MICC model surpassed both ImageNet and

ClinicalNet, yielding AUCs of 0.918 in training and 0.895 in testing.

It retained strong accuracy (0.854), sensitivity (0.889), specificity

(0.836), NPV (0.933), and PPV (0.744), while precision-recall

analysis confirmed its superior ability to detect high-risk patients

in an imbalanced cohort. These gains arise from fusing four-phase

CT scans into RGBA composites, which captured subtle

enhancement dynamics overlooked by conventional approaches;

SHAP analysis further showed that these CT-derived signals

dominate the model’s prognostic predictions.

Recent advancements in DL have significantly influenced

oncological research. For instance, Y. Wang et al. utilized DL to
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enhance histological grading of breast cancer (24), and Y. Jiang et al.

applied DL to assess the tumormicroenvironment of gastric cancer and

predict treatment responses (25). These studies often involved training

models from scratch using frameworks such as convolutional neural

networks (CNN), which present several limitations, including the

potential waste of a large number of samples and restricted model

generalization, particularly when relying on a single training dataset

(26). In contrast, our study employed transfer learning, which enabled
Frontiers in Oncology 10
superior performance with fewer samples. Transfer learning enhanced

the robustness of the MICC model, making it particularly effective

when applied to new datasets with varying distributions (Training set

AUC = 0.918; Testing set AUC = 0.895).

Our MICC model demonstrates several distinct advantages over

existing UTUC prognostic approaches. Compared to traditional

radiomics methods that require manual ROI delineation and extract

thousands of hand-crafted features, our RGBA fusion approach enables
FIGURE 4

Comparative Performance of ClinicalNet, ImageNet, and MICC Model. (A) ROC curves and IDI scores for the three models in the Training set. (B)
ROC curves and IDI scores in the Testing set. (C) Calibration curves, along with AIC, BIC, and R^2 values, assess the predictive accuracy of the three
models in the Training set, grouping every 10 patients. (C) Calibration curves, along with AIC, BIC, and R^2 values, assess the predictive accuracy of
the three models in the Testing set (E) PR Curve assessing each model’s ability to identify patients at risk of death in the Training set. (F) PR Curve
assessing each model’s ability to identify patients at risk of death in the Testing set.
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automated end-to-end feature learning while preserving complete

multi-phase temporal information. Unlike single-phase deep learning

approaches that lose critical contrast dynamics, our method captures

the full spectrum of enhancement patterns across all four phases.

Furthermore, our multimodal fusion strategy surpasses conventional

statistical methods by automatically learning complex non-linear

interactions between imaging and clinical features, eliminating the

need for explicit feature selection and dimensionality reduction steps

that may introduce bias or information loss.

Our MICC model achieved exceptional prognostic performance

with AUC values of 0.918 and 0.895 in training and testing

sets, respectively, representing a significant advancement over

traditional UTUC prognostic approaches. Compared to conventional

statistical methods represented by our ClinicalNet model (AUC =

0.854), our deep learning approach demonstrates superior predictive

capability. The model’s high sensitivity (0.889) and negative predictive
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value (0.933) are particularly valuable for early identification of high-

risk patients, enabling timely intervention and personalized treatment

planning. Our study reveals several important prognostic insights that

distinguish it from existing research. First, SHAP analysis

demonstrated that imaging features contribute most significantly to

prognostic predictions, surpassing traditional clinical pathological

variables in importance. This finding provides a new perspective for

UTUC prognostic assessment, suggesting that multi-phase CT imaging

contains prognostic information beyond conventional clinical

evaluation. The superiority of our multi-modal MICC model (AUC

= 0.895) over the purely clinical ClinicalNet model (AUC = 0.854)

provides direct evidence for the independent prognostic value of

preoperative imaging features. Second, our identification of

preoperative hemoglobin levels as an independent prognostic factor

complements existing literature while providing clinicians with an

additional, easily accessible prognostic tool. Third, the successful

integration of temporal contrast dynamics through RGBA fusion

enables identification of tumor vascularization patterns and

enhancement heterogeneity, which are critical prognostic indicators

not captured by traditional single-phase analyses. These dynamic

enhancement patterns reflect underlying tumor biology including

angiogenesis, cellular density, and stromal composition, which are

fundamental determinants of tumor aggressiveness and prognosis. The

consistent ranking of imaging features as the most important

prognostic factor across both training and testing sets validates the

robustness of this finding and supports the clinical utility of

preoperative imaging in UTUC prognostic assessment. These

findings collectively advance our understanding of UTUC prognosis

and provide a robust foundation for clinical decision making.

Moreover, the MICC model leveraged a multimodal approach

that integrated multi-phase CT images and clinical data, improving

diagnostic precision. This integration resulted in better AIC and

BIC scores compared to the ClinicalNet and ImageNet models.

These results underscore the advantages of DL in maximizing data

utilization. Our findings suggest that combining multi-phase CT

imagery with clinical information through DL offers a promising

pathway for enhancing prognostic assessments in cancer studies.

The ClinicalNet, which was constructed using only clinical

information, demonstrated limited performance in differentiating

patients’ PFS, highlighting the limitations of relying solely on

clinical data for practical clinical applications. This underscores

the necessity of integrating a broader spectrum of patient data to

improve prognostic accuracy. CT imaging features play a crucial

role in diagnosing UTUC (27). In our study, ImageNet emerged as a

significant contributor within the MICC model, emphasizing the

critical role of CT imaging in the prognosis of UTUC patients.

However, research on the comprehensive use of CT imaging in this

context remains relatively scarce.

In our approach, we employed RGBA images through a multi-

sequence fusion method to capture dynamic changes across four-phase

CT scans, which resulted in excellent performance. This method

highlights that subtle variations in CT image characteristics,

especially those evident between different phases of CT imaging, are

integral to the prognostic assessment of UTUC patients. Future

research should focus more on the importance of these subtle CT
TABLE 2 Performance of the TestNet, ImageNet and ITCC model on the
Training and Testing cohort.

Training
cohort
Metric

Model

ClinicalNet
Model

ImageNet
Model

ICCC Model

Accuracy 0.825
(0.822-0.828)

0.835
(0.832-0.838)

0.854
(0.852-0.857)

Sensitivity 0.667
(0.513-0.821)

0.833
(0.712-0.955)

0.889
(0.786-0.992)

Specificity 0.910
(0.842-0.979)

0.836
(0.747-0.925)

0.836
(0.747-0.925)

PPV 0.800
(0.657-0.943)

0.732
(0.596-0.867)

0.744
(0.614-0.875)

NPV 0.836
(0.751-0.921)

0.903
(0.830-0.977)

0.933
(0.870-0.996)

AUC 0.845
(0.765-0.924)

0.884
(0.814-0.954)

0.920
(0.860-0.979)

Training
cohort
Metric

Model

ClinicalNet
Model

ImageNet
Model

ICCC Model

Accuracy 0.767
(0.755-0.778)

0.767
(0.755-0.778)

0.867
(0.859-0.874)

Sensitivity 1.000
(1.000-1.000)

0.636
(0.316-0.876)

0.909
(0.739-1.000)

Specificity 0.632
(0.415-0.848)

0.842
(0.595-0.958)

0.842
(0.678-1.000)

PPV 0.611
(0.386-0.836)

0.700
(0.354-0.919)

0.769
(0.540-0.998)

NPV 1.000
(1.000-1.000)

0.800
(0.557-0.934)

0.941
(0.829-1.000)

AUC 0.854
(0.721-0.988)

0.835
(0.692-0.978)

0.895
(0.780-1.000)
PPV, positive predictive value; NPV, negative predictive value; AUC, area under the Receiver
Operating Characteristic curve.
data in parentheses are 95% confidence intervals (95%CI), calculated by Wald Z Method with
Continuity Correction for accuracy, sensitivity specificity, PPV and NPV, and by DeLong
method for AUC.
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image details to further enhance the accuracy of prognostic evaluations

for UTUC patients.

Among clinical factors, preoperative HB, LVI, and T stage are

recognized as significant prognostic indicators. T stage and LVI have

been widely acknowledged as potent prognostic factors in numerous

studies and are frequently incorporated into various UTUC prognostic

models (28, 29). Notably, the association between preoperative HB and

UTUC prognosis has not been extensively explored. Anemia often

manifests in advanced cancer cases, and many UTUC patients suffer

from this condition (30). Teruo Inamoto et al. proposed that

preoperative HB may reflect biological age, influencing CSS in
Frontiers in Oncology 12
UTUC patients (31). Similarly, Dong Fang et al. identified

preoperative anemia as a crucial prognostic factor for predicting

postoperative metastasis and CSS in UTUC cases (32). Research

suggests that UTUC may induce anemia by impairing the body’s

ability to utilize iron (33, 34), disrupting normal kidney function, and

reducing erythropoietin production in the kidneys (35). Consequently,

anemia not only serves as a hematological marker for diagnosing

UTUC but also indicates poor prognosis, with anemic patients at

increased risk of recurrence and metastasis. These findings underscore

the importance of preoperative HB and advocate for its incorporation

into treatment planning for UTUC patients.
FIGURE 5

Comparison of clinical feature importance in Training set. (A) Ranking of contributing factors to the MICC model in Training set, obtained using the
SHAP method. (B) Pearson correlation coefficient analysis for all clinical factors. (C) Heat map comparing all clinical characteristics between high-risk
and low-risk groups.
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Urothelial carcinoma, as a continuous disease spectrum,

encompasses upper tract urothelial carcinoma (UTUC) and lower

tract urothelial carcinoma. Despite their histological homology, they

exhibit significant differences in epidemiology, biological behavior,

and diagnostic and therapeutic strategies. Among them, bladder

cancer, as the most common type of lower tract urothelial

carcinoma, often leads advancements in the entire field of

urothelial carcinoma. In recent years, breakthroughs have been

made in the neoadjuvant therapy of bladder cancer, particularly in

immunotherapy and targeted therapy. For example, the multicenter

real-world study by Hu, Jiao et al. demonstrated the outstanding

efficacy of neoadjuvant disitamab vedotin (RC48-ADC) combined

with immunotherapy inmuscle-invasive bladder cancer (MIBC) (36).

Through multi-omics analysis, the study revealed the value of HER2

expression and specific immune microenvironment markers as

predictors of therapeutic response, advancing precision medicine. A

prior retrospective study also systematically confirmed the

advantages of neoadjuvant immunotherapy, chemotherapy, and

combination therapy in MIBC (37). However, the diagnosis and

treatment of UTUC face unique challenges, such as reliance on

imaging for preoperative diagnosis and the urgent need for kidney

preservation, making its therapeutic strategies distinct from those of

bladder cancer. Drawing on the successful application of multi-omics

technologies (genomics, transcriptomics, etc.) in bladder cancer, this

strategy also holds promise for optimizing precision therapy

in UTUC.

This study focuses on UTUC, where the developed RGBA

fusion technology and multimodal deep learning methods not

only serve prognostic prediction and individualized treatment

decision-making for UTUC but also possess a universal

framework with the potential to extend to bladder cancer imaging

analysis. Based on the successful experience in bladder cancer

treatment, future research should prioritize: leveraging bladder

cancer insights to develop neoadjuvant regimens for UTUC,

constructing UTUC-specific multi-omics databases to identify

biomarkers, and developing AI-powered diagnostic and

therapeutic platforms that integrate multimodal information.

Our study is distinguished by several key advantages. First, we

introduced a novel RGBA-based method to consolidate the four

distinct phases of CT images into a single input for the DL model.

This approach effectively captures the temporal dynamics of contrast-

enhanced CT images, while avoiding the information loss typically

associated with conventional image fusion or selection techniques (38).

Second, we employed EfficientNet-B3 as the baseline network for

extracting features from CT images. EfficientNet is a state-of-the-art

DL architecture known for its ability to optimally balance depth, width,

and resolution, resulting in superior performance across various

transfer learning tasks. Third, our department, the largest urologic

center in southern Zhejiang Province, boasts the largest sample size of

UTUC patients in the region. This extensive sample size allows our

findings to more accurately reflect real-world scenarios, enhancing the

validity and applicability of our model while minimizing risks

associated with overfitting or selection bias.

While our study presents significant advancements in UTUC

prognosis prediction, several limitations must be acknowledged. First,
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the retrospective design introduces potential selection bias and limits

causal inference, with retrospective data collection potentially

resulting in incomplete information compared to prospective

studies. Second, our single center design may limit generalizability

to populations with different demographic characteristics, imaging

protocols, or clinical practices. Third, although our cohort represents

the largest UTUC dataset in our region (n=133), the sample size

remains relatively small for deep learning applications, particularly

for the testing set (n=30), potentially limiting statistical power and

model stability. Fourth, the 12-year temporal span (2005-2017) may

introduce bias due to evolving surgical techniques, imaging protocols,

and clinical management practices. Fifth, our model utilized only

single axial slices rather than full 3D volumetric analysis, potentially

missing complete spatial tumor heterogeneity. Sixth, the lack of

external validation limits assessment of true generalizability and

clinical applicability. Seventh, our innovative RGBA fusion

approach requires further validation against established radiomics

methods. Finally, some potentially important prognostic factors

(molecular markers, genetic profiles, detailed histological subtypes)

were not included due to data availability constraints. Future studies

should address these limitations through prospective multicenter

validation, larger diverse patient populations, 3D volumetric

analysis, molecular biomarker integration, and extended follow-

up periods.
5 Conclusion

We have developed a DL model that integrates multi-phase CT

images and clinical data for the prognostic assessment of UTUC

patients. This model shows great potential in assisting physicians

with personalized treatment strategies, ultimately enhancing the

overall prognosis for UTUC patients.
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SUPPLEMENTARY FIGURE 1

EfficientNet-B3 was chosen as the baseline network. (A) The performance of

Efficientnet-B3, ResNet-50, and VGG-16 in the Training and Testing sets is

presented. Evaluation metrics include AUC, Accuracy, Sensitivity, and
Specificity. (B) Raincloud plot illustrating the distribution of predicted values

for ClinicalNet, ImageNet, and MICC model. (C) Performance comparison of
ClinicalNet, ImageNet, and MICC model based on accuracy, specificity, and

AUC in Training set. The p-value is calculated using McNemar’s Chi-squared
test with continuity correction. Error bars indicate 95% CIs, calculated using

the Wald Z Method with Continuity Correction for accuracy and specificity,

and the DeLong method for AUC. (D) Ranking of contributing factors to the
MICC model in Testing set, obtained using the SHAP method.
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