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As the most frequent and aggressive subtype of ovarian cancer, high-grade serous

ovarian cancer (HGSOC) often advances unnoticed due to its subtle early

symptoms, which in turn leads to a significantly low five-year survival rate. The

process of immune evasion, often achieved by constructing an

immunosuppressive microenvironment through various pathways, stands as a

critical feature of tumor biology. At the same time, emerging studies reveal a

strong association between the sympathetic nervous system (SNS) and immune

regulation in the tumor microenvironment (TME). In HGSOC, SNS activation

releases neurotransmitters like norepinephrine, which affect immune cells,

suppress their functions, weaken anti-tumor responses, and promote the

recruitment and activation of immunosuppressive cells. By recruiting immune-

suppressive cells, altering the extracellularmatrix to construct physical barriers, and

increasing pro-angiogenic signals, the SNS reshapes the tumor microenvironment

in a way that hampers immunotherapy. Clinically, higher levels of SNS activation

are linked to worse outcomes and therapeutic resistance in HGSOC. Additionally,

preclinical studies demonstrate that targeting the SNS using b-adrenergic receptor

inhibitors can improve immune activation and enhance treatment responses.

Moving forward, research needs to further examine SNS mechanisms to support

the development of advanced therapeutic strategies.
KEYWORDS

high-grade serous ovarian cancer, immune evasion, sympathetic nervous system, tumor
microenvironment, immunotherapy
1 Introduction

High-grade serous ovarian cancer (HGSOC) accounts for the majority of malignant

ovarian tumors and is widely recognized as the most aggressive subtype. Despite

improvements in surgical techniques and chemotherapy regimens, its five-year survival

rate remains low, largely due to its rapid progression and tendency to be diagnosed at
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advanced stages (1). Therefore, the aggressive and recurrent nature

of HGSOC highlights an urgent demand for therapeutic strategies

that specifically target its distinct biological mechanisms (2, 3).

As a defining feature of cancer progression, immune evasion

permits malignant cells to bypass immune surveillance and resist

immune-mediated clearance (4). In HGSOC, the mechanisms of

immune evasion are particularly complex, involving the

downregulation of antigen-presenting molecules, secretion of

immunosuppressive factors, and recruitment of immunosuppressive

cells (5–7). Together, these mechanisms shape an immunosuppressive

tumor microenvironment (TME), which in turn facilitates unchecked

tumor proliferation and metastatic spread.

In recent years, cancer neuroimmunology uncovers the

complex interplay between the nervous system and immune

responses within the tumor microenvironment (TME) (8, 9).

Although the sympathetic nervous system (SNS) is mainly

associated with the “fight or flight” mechanism, mounting

evidence indicates that it communicates with both immune and

tumor cells through neurotransmitters and corresponding receptors

(10, 11). Consequently, the SNS modulates immune activity and, at

the same time, promotes tumor development by reshaping the

TME (12).

In HGSOC, SNS activation influences tumor immune responses

through multiple mechanisms. For instance, neurotransmitters

released by the SNS, such as norepinephrine, can directly affect

immune cells, inhibiting their functions and weakening the anti-

tumor immune response (13, 14). Moreover, when the SNS

becomes activated, it contributes to immune escape by

encouraging both the recruitment and functional activation of

cells with immunosuppressive roles, such as Tregs and MDSCs (15).

Altogether, these observations build a valuable conceptual

model for crafting new treatment paradigms. Modulating the

interaction between the SNS and immune suppression could

reactivate immune surveillance, promote tumor-specific immune

responses, and lead to better clinical outcomes and life quality in

HGSOC patients. Thus, future investigations should further define

how the SNS regulates immunity and seek out more advanced

therapeutic alternatives. The mechanistic diagram of this study is

presented as Figure 1.
2 The SNS: basics and its role in tumor
biology

The SNS is made up of a complex network of neurons that begin

in the thoracolumbar area of the spinal cord and travel to peripheral

organs through sympathetic ganglia. Its core neurotransmitters—

norepinephrine and epinephrine—exert biological effects by

binding to adrenergic receptors on a wide array of cell types.

These receptors, part of the G protein-coupled receptor class,

trigger diverse intracellular signaling pathways once activated (16).

In the context of HGSOC, tumor progression continuously

initiates a prolonged stress reaction that activates the SNS. In

addition, tumor-derived substances such as cytokines and growth

factors activate afferent sensory nerves and spinal reflex pathways,
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resulting in enhanced sympathetic tone. Psychological distress

commonly experienced by cancer patients further reinforces this

loop, driving a sustained elevation in SNS activity (17).

Excessive activation of the sympathetic nervous system (SNS)

not only undermines immune defenses but also profoundly affects

tumor behavior. Through adrenergic signaling, the SNS promotes

tumor cell proliferation. Moreover, it elevates vascular endothelial

growth factor (VEGF) expression, thereby stimulating angiogenesis

and improving the delivery of oxygen and nutrients to support

tumor growth. Additionally, the SNS regulates cell adhesion

molecules and extracellular matrix (ECM) elements, which aids in

both local invasion and distant metastasis (18, 19).

These combined effects create a microenvironment that favors

tumor growth and progression. Specifically, the enhanced

proliferative signals allow tumor cells to divide and expand more

rapidly (20). Enhanced angiogenesis not only delivers an abundant

blood supply to the tumor but also promotes the spread of tumor

cells through the circulatory system. Moreover, changes in the ECM

further support the migration and invasion of cancer cells. In

summary, the multifaceted impact of SNS activation in HGSOC

accelerates disease progression, complicates treatment, and

adversely affects patient prognosis.
3 Mechanisms of SNS-mediated
immune evasion in HGSOC

3.1 Remodeling of the TME

By releasing neurotransmitters such as norepinephrine, the SNS

draws immunosuppressive cells—including Tregs, MDSCs,

and tumor-associated macrophages— into the ovarian

cancer microenvironment, thereby contributing to immune

evasion (21, 22). As they accumulate in the TME, these cells

develop a powerful suppressive system that disrupts the roles of

cytotoxic T cells and natural killer (NK) cells, and as a result,

weakens the immune defense against the tumor (23, 24). Tregs, for

example, produce factors like IL-10 and TGF-b, which in turn act to

directly prevent the activation and proliferation of T lymphocytes.

Furthermore, MDSCs secrete enzymes such as IDO and arginase,

depleting essential nutrients like tryptophan, which leads to T-cell

dysfunction (25).

In addition, through modulation of the ECM components, SNS

signaling contributes to the formation of a physical barrier, which in

turn restricts the entry of immune cells into the tumor site. Through

the modulation of ECM components, SNS signaling helps establish

a structural barrier that limits immune infiltration. When SNS

responsiveness increases in HGSOC, it drives matrix

metalloproteinases (MMPs) expression and ECM disorganization,

resulting in fibrotic zones that obstruct immune cells and protect

tumor cells, thus promoting immune evasion (26, 27).

Moreover, SNS signaling boosts the expression of vascular

growth promoters, particularly VEGF, thus encouraging the

formation of atypical and disorganized blood vessels. These

irregular blood vessels are disorganized, leading to insufficient
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blood perfusion and hypoxia, which further exacerbates immune

suppression. Additionally, the abnormal vascular network obstructs

immune cell infiltration, further enhancing the immunosuppressive

nature of the TME (28, 29).

These SNS-mediated microenvironmental remodeling

mechanisms underscore the intricate crosstalk between the

n e r v o u s a n d immun e s y s t em s w i t h i n t h e t umo r

microenvironment and profoundly influence therapeutic

outcomes in ovarian cancer. For example, the limited efficacy of

immune checkpoint inhibitors (ICIs) in ovarian cancer is often

attributed to the highly immunosuppressive nature of the SNS-

influenced TME, which impairs effective anti-tumor immune

responses and hampers immunotherapeutic success. Targeting

SNS signaling pathways may improve the TME and enhance the

effectiveness of immunotherapy (30). For instance, combining b-
blockers with ICIs could potentially boost anti-tumor immune

responses by inhibiting SNS-mediated immune suppression.
3.2 Direct effects on immune cells

In HGSOC, the SNS exerts a direct influence on immune cell

function by releasing neurotransmitters like norepinephrine, which

suppresses the anti-tumor immune response (31, 32). Initially, SNS

has a significant impact on innate immune cells. Norepinephrine

binds to adrenergic receptors on NK cells, macrophages, and

dendritic cells (DCs), inhibiting their functions. When SNS

activation occurs, NK cells’ cytotoxic function is diminished,

making it more difficult for them to identify and eliminate tumor

cells. Macrophages also exhibit impaired phagocytosis, which

hinders their ability to eliminate tumors. Similarly, DCs’ ability to

present antigens is compromised, which hinders T cell activation

and ultimately postpones adaptive immune responses. Together,

these deficiencies weaken the innate immune system’s defenses

against HGSOC, which aids in tumor immune evasion (33).

Similarly, adaptive immunity is also impacted by the SNS. It

suppresses the tumor-killing potential of Cytotoxic T lymphocytes

(CTLs), limits their growth, and lowers their production of

interferon-g (17).SNS suppresses CTL function through several

mechanisms, including decreasing their proliferation, reducing

the secretion of key cytokines like interferon-g, and inhibiting

their cytotoxic activity. Consequently, the immune system fails to

establish a durable memory response against HGSOC cells, which

permits the tumor to evade immune detection over time. This

mechanism of immune escape plays a vital role in HGSOC

progression and supports the rationale for designing novel

therapeutic strategies.
3.3 Induction of immunomodulatory
factors

SNS activation triggers the release of multiple immune-

regulating factors into the TME, which together create an

immunosuppressive milieu that promotes tumor growth and
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metastasis. Among these factors, cytokines like interleukin-6 (IL-

6), interleukin-8 (IL-8), and interleukin-10 (IL-10) are widely

released after SNS stimulation (34). IL-6 is a multifunctional

cytokine that activates the STAT3 signaling pathway, which

promotes the growth of Tregs while inhibiting the function of

cytotoxic T cells; IL-8 primarily improves immune suppression by

attracting MDSCs and Tregs (35); IL-10 significantly lowers the

activation and proliferation of T cells by inhibiting antigen-

presenting cells like dendritic cells, which contributes to immune

suppression (36).

Importantly, these cytokines may serve as potential biomarkers

for clinical application. Measuring circulating levels of IL-6, IL-8,

and IL-10 in patients with high-grade serous ovarian cancer

(HGSOC) could provide insights into the degree of SNS-driven

immunosuppression, which may correlate with disease progression

or therapeutic resistance. Clinically, these biomarkers could aid in

stratifying patients according to immune risk, identifying those who

might benefit from anti-inflammatory or sympathetic blockade

therapies. Additionally, incorporating cytokine profiles into

t rea tment p lanning may he lp pred i c t r e sponses to

immunotherapy and guide the use of immune-modulating agents

in personalized treatment strategies.

Beyond its direct effects on immune cell function, activation of

the SNS also influences the tumor microenvironment through the

release of metabolic mediators such as adenosine and

prostaglandins. These mediators, regulated in part by adrenergic

signaling, represent a critical link between neural input and

immune modu l a t i on . No t a b l y , PGE2 p l a y s a k e y

immunosuppressive role via multiple pathways. PGE2 attenuates

anti-tumor immunity by directly inhibiting T cell proliferation and

cytokine secretion, while concurrently enhancing the expansion and

immunosuppressive activity of myeloid-derived suppressor cells

(MDSCs). This highlights the complex neuro-immune-metabolic

interplay orchestrated by the SNS within the tumor

microenvironment (37), weakening the anti-tumor immune

response. Adenosine suppresses the activity of T cells and NK

cells and interacts with immune cells by binding to A2A receptors,

which modifies their function (38). Adenosine also increases the

number of Treg cells and attracts MDSCs, which strengthens

immune suppression.

SNS activation also exerts a direct effect on immune cells

through the release of neurotransmitters like norepinephrine.

Norepinephrine activates intracellular signaling pathways in

immune cells through b-adrenergic receptors, leading to an

increase in the expression of immunosuppressive factors such as

PD-L1, which inhibits T-cell function.
4 Clinical evidence and therapeutic
implications

According to clinical studies, biomarkers of SNS activation,

including increased plasma norepinephrine levels, are strongly

linked to poor prognosis, therapy resistance, and immune

suppression in HGSOC patients (39, 40). More specifically,
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patients with elevated sympathetic nervous activity often show

lower survival rates and higher recurrence rates, emphasizing the

clinical importance of targeting the SNS in these individuals (41).

Such observations provide a basis for designing innovative

treatments and underscore the necessity to explore the SNS

involvement in HGSOC more thoroughly.

In vitro and in vivo research demonstrates that regulating the

SNS with b-adrenergic blockers and other drugs can significantly

influence immune evasion and tumor progression in HGSOC

models (42). Propranolol, as a b-blocker, suppresses tumor

angiogenesis, enhances the penetration of T cells within tumors,

and lowers the quantity of MDSCs (43). As a result, these changes

boost the anti-tumor immune response and increase the

effectiveness of ICIs, such as anti-CTLA4 antibodies (44).

Moreover, these studies offer robust evidence that supports

translating preclinical results into clinical practice and emphasize

the potential of SNS-targeted therapies.

Drugs targeting adrenergic receptors, such as b-adrenergic
receptor antagonists and a-adrenergic receptor antagonists, show

great potential in enhancing the effectiveness of immunotherapy

(45). These drugs work by disrupting the SNS-immune evasion axis,

thereby restoring immune cell function and improving anti-tumor
Frontiers in Oncology 04
immunity. For instance, propranolol promotes a change in the

tumor microenvironment toward a pro-inflammatory condition,

thereby potentially enhancing the effects of ICI treatments (46).

Research demonstrates that combining propranolol with anti-

CTLA4 therapy significantly improves treatment outcomes,

reduces tumor growth rates, and increases overall survival.

The combination of SNS-targeted therapy with ICIs,

chemotherapy, or targeted therapies represents a promising

therapeutic approach. Preclinical research demonstrates that these

combined methods have synergistic effects, allowing for the

targeting of multiple pathways at once to overcome resistance and

improve clinical outcomes (47). In some cases, combination

therapies even lead to the complete elimination of tumors and the

achievement of long-lasting anti-tumor responses.

Additionally, changes in lifestyle, such as stress management,

regular physical activity, and psychological support, can regulate the

SNS and enhance immune function in HGSOC patients. These

non-drug interventions provide an important supplement to

traditional treatments, addressing the broader needs of cancer

patients. By integrating drug therapies with lifestyle adjustments,

it is possible to more effectively modulate the SNS and ultimately

improve prognosis and quality of life for HGSOC patients
FIGURE 1

Illustration of how tumors sculpt a hostile microenvironment. Left: panels (a–c) track the recruitment of immunosuppressive cells, extracellular
matrix remodeling and angiogenesis. Right: panels (d–g) trace the release of IL-6, IL-8, IL-10, PGE2, and noradrenaline, which act on T cells, NK
cells, macrophages, MDSCs, and Tregs to enforce an immunosuppressive phenotype. The roles of HGSOC and the SNS are visually emphasized
throughout.
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5 Future directions and challenges

Although significant progress has been made in understanding

the interaction between the SNS and immune evasion in HGSOC,

many unresolved issues remain. These include understanding the

heterogeneity of SNS responses among patients, identifying specific

molecular pathways, and determining the long-term impact of SNS

regulation on immune function and tumor biology.

Emerging technologies, such as single-cell sequencing, in vivo

imaging, and organoid models, provide unprecedented

opportunities to gain deeper insights into the SNS-immune-

tumor interactions. Single-cell sequencing enables precise

measurements of the genome and transcriptome of individual

cells, which helps identify new mutations in cancer cells and

explore cellular heterogeneity within the TME (48, 49). In vivo

imaging allows real-time observation of cellular behavior and

interactions in the TME, offering a powerful tool to study the

dynamic role of SNS signaling in tumor progression. Organoid

models, on the other hand, simulate the microenvironment of real

organs, providing a new platform for drug screening, studying

resistance mechanisms, and investigating the role of SNS

signaling in tumor immune evasion (50).

Designing clinical trials to assess SNS-targeted therapies in

HGSOC requires careful consideration of patient selection,

biomarker identification, and combination therapy strategies.

Future trials should include comprehensive assessments of

immune function and sympathetic nervous activity to better

understand the clinical impact of these interventions. For

instance, by designing umbrella, basket, or platform trials,

patients can be stratified based on biomarkers, allowing more

effective evaluation of SNS-targeted therapy efficacy across

different patient groups. This approach not only accelerates

clinical trial progress but also provides essential support for

personalized medicine.
6 Conclusion

HGSOC represents the most common and aggressive subtype of

ovarian cancer, posing a major challenge in gynecologic oncology

due to its high recurrence rate and poor survival outcomes (51–53).

Although surgical intervention and chemotherapy partially improve

patient prognosis, immune evasion and the complexity of the TME

remain key factors influencing treatment efficacy. In recent years,

the role of the SNS in tumor immune evasion has gained increasing

attention (54). Specifically, in HGSOC, SNS shapes an

immunosuppressive TME through multiple mechanisms, thereby

accelerating tumor progression. This study integrates existing

research to explore the mechanisms of SNS in HGSOC and its

therapeutic potential.

First, by impacting immune cells, SNS reduces the immune

response against tumors. SNS-released neurotransmitters, like

norepinephrine, attach to immune cells’ adrenergic receptors and

prevent NK cells from being cytotoxic, macrophages from being

phagocytic, and DCs from presenting antigens. Consequently, the
Frontiers in Oncology 05
ability of the innate immune system to identify and eliminate tumor

cells declines (55). Moreover, SNS suppresses the proliferation of

CTLs and downregulates cytokines such as interferon-gamma,

which in turn compromises the function of the adaptive immune

system (56). Consequently, the simultaneous suppression of

immune responses enables tumor cells to avoid sustained

immune detection, thus driving disease advancement.

Secondly, SNS further exacerbates immunosuppression by

inducing the release of immunoregulatory factors. Upon SNS

activation, cytokine levels—including IL-6, IL-8, and IL-10—are

significantly elevated in the TME. These cytokines not only

suppress immune cell activity but also promote the expansion of

Tregs, forming an immunosuppressive network (57, 58).

Additionally, SNS-induced metabolic byproducts such as

prostaglandins and adenosine further inhibit T-cell proliferation

and immune cell activation, thus weakening anti-tumor immunity.

In addition, the SNS accelerates tumor development through

remodeling of the tumor microenvironment. It attracts various

immunosuppressive populations, such as Tregs, MDSCs, and

tumor-associated macrophages, which collectively create an

immunosuppressive landscape (59). Concurrently, it alters ECM

composition, forming a physical barrier that restricts the access of

immune cells to the tumor (60). Furthermore, SNS enhances tumor

angiogenesis by upregulating VEGF, supporting tumor growth

and metastasis.

Clinical studies reveal a strong correlation between SNS

overactivation and poor prognosis in HGSOC patients. For

instance, elevated norepinephrine levels in plasma are often

associated with lower survival rates and higher recurrence rates.

These findings provide a theoretical basis for SNS-targeted therapy.

In vivo and in vitro studies demonstrate that beta-adrenergic blockers

significantly enhance anti-tumor immunity and inhibit tumor growth

(61). Additionally, combining SNS-targeted therapy with ICIs,

chemotherapy, or targeted therapies may synergistically overcome

treatment resistance, ultimately improving patient outcomes.

However, several unresolved questions remain regarding the role

of SNS in HGSOC. For example, does patient heterogeneity influence

SNS response? Which molecular pathways play pivotal roles in the

SNS-mediated immune evasion axis? Novel approaches such as single-

cell genomics, dynamic imaging systems, and patient-derived

organoid platforms should be used to decipher the complex

interactions among SNS, immunity, and tumor progression.

Moreover, careful trial design that incorporates validated

biomarkers, combinatorial treatment strategies, and patient selection

algorithms is necessary to optimize SNS-based clinical interventions.

When taken as a whole, this research paradigm has the potential to

revolutionize our understanding of HGSOC carcinogenesis. In the

future, intervention in the immune microenvironment of ovarian

cancer will enter an era of “precise regulation of specific immune cell

subsets” and will be highly dependent on the deep integration of

multidisciplinary technologies (62–64).

In summary, investigating the role of the SNS in HGSOC offers

novel insights for advancing tumor immunotherapy. Targeting the

SNS immune evasion axis, especially in combination with current

treatment modalities, holds considerable potential to improve
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patient outcomes. Future research leveraging tools such as single-

cell transcriptomics, patient-derived xenograft models, and stress-

response profiling is essential to unravel SNS heterogeneity and

downstream molecular pathways, ultimately guiding the

development of more effective and personalized therapeutic

strategies (65, 66).
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