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Dosimetric assessment of
TomoDirect radiotherapy

and TomoHelical radiotherapy
in the clinical implementation
of total skin irradiation
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Fangna Wang?, Fei Jia*, Lele Liu*, Dandan Xu®, Tengfei Ji*,
Huijuan Wu' and Yuexin Guo™

‘Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, China, 2Medical and lonizing Radiation Metrology Testing Research Center, Henan
Provincial Institute of Metrology and Testing Sciences, Zhengzhou, China, *Division of lonizing
Radiation Metrology, National Institute of Metrology, Beijing, China

Purpose: This study aims to compare the technical characteristics of TomoDirect
(TD) radiotherapy and TomoHelical (HT) radiotherapy in total skin irradiation (TSI)
applications. We conducted a comprehensive evaluation of dosimetric
parameters and delivery efficiency in TD-based treatment planning to establish
clinical guidelines for modality selection in mycosis fungoides.

Materials and methods: This retrospective study analyzed eight mycosis
fungoides patients treated with TSI between June 2020 and June 2023,
utilizing a 5-mm-thick diving suit bolus to enhance the skin dose distribution
with a prescription of 24 Gy delivered in 20 fractions (five fractions/week).
Thermoplastic masks (3 mm in thickness) were used for head/neck and thorax/
abdomen region immobilization, while the lower limbs were immobilized in a
vacuum cushion. Comparative treatment planning employed both TD and HT
techniques, with TD plans utilizing 7, 9, and 11 equally spaced coplanar beams (0°
starting angle). Ring0, Ringl, Ring2, Ring3, and Ring4, which were 1-cm thick
away from the planning target volume (PTV) at distances of 0, 1, 2, 3, and 4 cm,
and other normal tissues (NT) were generated. The auxiliary structures were
completely blocked during planning. The other plan parameters remained
consistent. Plan quality assessment compared the target mean dose
(PTVmean), homogeneity index (HI), conformity index (Cl), and organ-at-risk
(OAR) doses between techniques, with additional evaluation of treatment
delivery efficiency through time comparisons.

Results: When using NT, Ring4, and Ring3 auxiliary structures in complete-block
mode, TD plans with more than nine beams demonstrate comparable PTVmean,
HI, and Cl-to-HT plans, whereas TD plans of less than nine beams exhibit inferior
target coverage. Neither HT nor TD plans meet the clinical requirements when
Ring2, Ringl, or Ring0 structures are fully blocked. Regarding OAR sparing, nine-
beam TD and HT plans show equivalent maximum doses to optical structures
(lenses, optic nerves, and chiasm) and mean doses to other OARs (oral cavity,
salivary glands, lungs, heart, liver, and kidneys) with NT/Ring4/Ring3 blocking.
However, both techniques fail to satisfy the OAR constraints when Ring2/Ringl/
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RingO are blocked. Treatment delivery times remain similar between modalities
with NT/Ring4/Ring3 blocking, but the efficiency significantly decreases for both
when deeper structures (Ring2/Ringl/Ring0) are included in the
blocking protocol.

Conclusion: When employing complete-block mode for NT, Ring4, and Ring3
structures, TD plans utilizing more than nine beams demonstrate comparable
dosimetric performance to HT plans in terms of target coverage, OAR sparing,
and treatment delivery efficiency. However, both modalities fail to meet the
clinical dosimetric requirements when deeper-seated structures (Ring2/Ringl/
Ring0) are included in the blocking protocol.

TomoDirect, TomoHelical, total skin irradiation, auxiliary ring structures, complete-

block mode

1 Introduction

Cutaneous T-cell lymphoma (CTCL), a rare group of mature T-
cell malignancies primarily involving the skin, accounts for
approximately 71% of primary cutaneous lymphomas, with mycosis
fungoides (MF) being the most prevalent subtype (MF) (1). According
to the latest data from the National Cancer Institute’s “Surveillance
Epidemiology and Outcomes”, CTCL (mainly MF) is currently
growing at a rate of 9.6 cases/million per year, and the incidence
rate accounts for approximately 50% of CTCL (2). CTCL is usually
highly radiosensitive and has traditionally been treated with total skin
electron irradiation (TSEI), which is also clinically considered one of
the most effective methods for treating CTCL (3). The conventional
Stanford six-field technique presents practical limitations due to
extended treatment distances and required patient repositioning (4).
With the continuous development of radiotherapy technology,
especially with the emergence of HT (5), its unique 360° helical
irradiation and pneumatic multileaf collimator can realize ultra-long
target treatment (160 cm X 40 cm) and dose sculpture distribution,
which is very suitable for the treatment of long and complex targets,
such as multiple metastasis irradiation, cranio-spinal irradiation, total
body irradiation, total bone marrow irradiation, etc. (6), and it also
solves well the drawbacks existing in traditional TSEIL With the gradual
development of HT technology, TD treatment technology has been
added. Its fixed beam intensity modulation is similar to that of
conventional accelerators, but it has the characteristics of up to 12
fixed beams. TD irradiation is intensity-modulated radiation therapy
of HT (7), wherein the accelerator head remains fixed at a specific
angle while the treatment couch moves along the head—foot direction
of the target. This modulation adjusts the intensity of the radiation
reaching the target and OARs by controlling the opening and closing
MLC to meet clinical and OAR dose requirements. Lin et al. (8) were
the first to conduct effectiveness tests on the dose buildup effect of
neoprene wetsuits using anthropomorphic phantoms. Hsieh et al. (9)
were the first to use a 3-mm diving suit as a bolus to achieve total skin
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helical tomotherapy (TSHT). Similarly, Haraldsson et al. (10) also used
a diving suit as a bolus to perform TSHT, while Wang et al. (11)
utilized a 3D-printed total skin bolus for the same purpose. Currently,
there is no feasibility study on total skin irradiation using TD
irradiation mode. This article will compare the dosimetric differences
between TD treatment plans and HT treatment plans with different
numbers of beams in TSI treatment by using different auxiliary ring
structures to evaluate which plan can achieve better protection of
OARs while ensuring target dose distribution, thereby providing more
options for the clinical implementation of TSI technology.

2 Materials and methods
2.1 Patients’ clinical characteristics

Eight patients with mycosis fungoides underwent total skin
irradiation (TSI) at the Radiation Therapy Department of the First
Affiliated Hospital of Zhengzhou University between June 2020 and
June 2023. The cohort comprised five male and three female
patients (Table 1), with an age range of 35-70 years (mean: 59
years), height range of 150-178 cm (mean: 164.8 cm), and weight
range of 40-95 kg (mean: 65.1 kg). All methods were carried out in
accordance with relevant guidelines and regulations. All
experimental protocols were approved by the Zhengzhou
University Committee on Ethics Review of Life Sciences (approval
number: 2024-KY-0076). Informed consent was obtained from all
subjects and/or their legal guardian(s).

2.2 Bolus

Eight patients were dressed in a 5-mm diving suit bolus. The
diving suits were tailored according to the patient’s external shape
to achieve a tight wrap around the body.
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TABLE 1 Characteristics of the eight patients.
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Patient no. Age (years) Diagnosis
1 31 M MF
2 49 M MF
3 42 M MF
4 38 F MF
5 52 F MEF
6 60 M MEF
7 65 F MEF
8 56 M MF

2.3 Immobilization

Patients dressed in 5-mm diving suits were immobilized in
supine position. Thermoplastic masks (3 mm in thickness) were
used for head/neck and thorax/abdomen region immobilization,
while the lower limbs were immobilized in a vacuum cushion,
ensuring optimal patient positioning and dosimetric accuracy. The
upper anatomical reference (“upper mark”) was placed at the
umbilicus level, and the lower anatomical reference (“lower
mark”) was positioned at the patella level. The segment line made
of lead was located approximately 10 cm above the patella as the
boundary between the upper and lower targets.

2.4 Image acquisition at simulation

Computed tomography (CT) scans (Brilliance CT Big Bore, Philips
Healthcare, Cleveland, OH, USA) were performed under the following
conditions: a scan and reconstruction slice thickness of 5 mm. The
patients were scanned in the upper and lower segments—the upper
segment was scanned from the skull vertex to 10 cm below the lead
wire boundary, and the lower segment was scanned from the toes to
10 cm above the boundary. This 20-cm overlap region (10 cm above
and below the wire) ensured proper dose blending between treatment
segments while accounting for setup variations and beam penumbra.

2.5 Delineation of target volumes and
organs at risk

The CT images were transferred to the eclipse 15.6 workstation
(Varian Medical Systems, Inc. Palo Alto, CA, USA). The target
volumes and OARs for all patients were delineated by radiation
oncologists based on the planning CT according to the ICRU50 (12)
and ICRUG62 reports (13). The clinical target volume (CTV) was
defined as the region between the skin surface and 5 mm beneath it
(14). To account for setup errors and the dose buildup effect, the CTV
was initially expanded uniformly by 5 mm to create a preliminary
PTV. However, since this expansion could extend beyond the body
contour (e.g., into air), the outer region of the PTV was retracted by
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Height (cm) BOt_:iy Treatr_nent
weight (kg) technique

170 95 TSHT

178 78 TSHT

165 65 TSHT

150 55 TSHT

160 51 TSHT

168 63 TSHT

155 40 TSHT

172 74 TSHT

3 mm to ensure anatomically plausible boundaries while maintaining
an adequate target coverage. This approach balanced the geometric
uncertainties with physical feasibility, optimizing dose delivery to
superficial tissues. OARs were delineated based on the ICRU 83
report (15), including the total bone marrow (head and neck bones,
upper limb bones, ribs, spine, pelvis, lower limb bones), eyeballs, lens,
parotid, lungs, heart, kidneys, liver, bladder, rectum, spinal cord,
brainstem, etc. The junction between the upper and lower sections of
the total body irradiation (TBI) had been studied in our previous
publication (16). The dose in the overlap region was mostly
homogeneous when the distance was equal to the FW.

2.6 Plan designs

The planned CT and contoured structures of each patient were
transferred to the treatment planning workstation (version 5.1.6;
Accuray, Sunnyvale, CA, USA) for preparation. The dose
prescription was 24 Gy in 20 fractions (five fractions/week). The
PTV gradually retracted from 1 to 5 cm by 1 cm step to create the
ring-shape auxiliary structure as Ring0, Ringl, Ring2, Ring3, Ring4,
and other normal tissues (NT). The auxiliary structures were used
as an assistant tool for plan optimization to achieve dose objectives.
During planning, all the auxiliary structures were set to complete
mode one by one. Different number of beam plans for TD and HT
were designed. The TD plans with 7, 9, and 11 equally spaced beams
were created, starting at an angle of 0°. The planning required at
least 95% of the target to receive the prescription dose, with FW of 5
and 2.5 cm, pitches of 0.287 and 0.215, and MF of 4 and 3. The dose
grid was 0.195 cm x 0.195 cm (Figure 1). Plans were designed by
combining different parameters and auxiliary structures. All other
parameters remained consistent, and the final dose calculation was
performed after 100 iterations for each plan.

2.7 Assessment of plan parameters
The parameters assessed for the patients included PTVmean, HI,

and CI of the target volume. At least 95% of the target volumes
reached the prescribed dose. HI was calculated using the formula, HI =
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FIGURE 1
TSI-TD treatment plan for the patient

D5%/D95%, where D5% is the dose received by 5% of the PTV
volume, and D95% is the dose received by 95% of the PTV volume. An
HI value greater than 1 represents the heterogeneity dose distribution
of the target volume. CI was obtained using the following Paddick
equation (17), CI = VT o/ VT X VT 1o/ Ve, where VT ¢ is the target
volume covered by the prescription isodose (cm?), V¢ is the volume
encompassed by the prescription isodose (cm?), and VT is the target
volume (cm?). If the CI value is closer to 1, the better the dose
conformity of the target volume is.

2.8 Statistical analysis

All statistical analyses were conducted using SPSS Statistics
(version 19.0; IBM Corp., Armonk, NY), with continuous variables
presented as mean + standard deviation (mean + SD). Graphical
representations were generated using OriginPro (version 8.0;
OriginLab Corp., Northampton, MA, USA).

3 Results

3.1 Comparisons of dosimetric parameters
of target

Figure 2A demonstrates that TD plans utilizing 11 beams and 9
beams achieve prescription dose coverage equivalent to HT plans
when NT, Ring4, and Ring3 structures are set to complete-block
mode. At the same time, HI (Figure 2B) and CI (Figure 2C) are
consistent with the abovementioned results. However, the TD plan
with seven beams in the complete mode using the Ring2 auxiliary
structure cannot achieve the same prescription dose as the HT plan
and is also consistent with the results of HI and CI. This consistency
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aligns with previous research indicating a consistent relationship
between auxiliary structures and target distance, ensuring that when
the auxiliary structure distance from the target exceeds or equals
3 cm in the complete mode, the target dose meets the clinical
requirements. Our analysis confirmed comparable target coverage
between thermoplastic mask-immobilized regions (head/neck/
thorax/abdomen) and diving-suit-only areas (lower limbs), with
no statistically significant differences (Table 2) in PTVmean (24.1 +
0.3 Gy vs. 23.9 + 0.4 Gy, p = 0.15) or D95% coverage (96.2% * 1.1%
vs. 95.8% + 1.3%, p = 0.22).

3.2 Comparisons of dosimetric parameters
of OARs

Figures 3A-H show the maximum or average doses to the left
and right lens, optic nerves, chiasm, oral cavity, bilateral parotid
glands, lungs, heart, liver, and bilateral kidneys under the NT,
Ring4, Ring3, and Ring2 auxiliary structures in the complete mode,
with HT irradiation as well as with the 11-, 9-, and 7-beam TD
plans. From the figures, it is apparent that to ensure that organ-at-
risk doses remain within clinically acceptable ranges, auxiliary
structures must be selected as NT, Ring4, or Ring3. Additionally,
the 11- and 9-beam TD plans align with HT plans in terms of OAR
doses. However, the Ring2 auxiliary structure and seven-beam TD
plan fail to meet the clinical requirements.

3.3 Comparisons of beam on time and
gantry period

In Figure 4A, when the auxiliary structures are NT, Ring4, and
Ring3, there is little variation in the treatment delivery time between
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HT plans and TD plans with 11 and 9 beams, whereas the treatment
delivery time significantly increases for the TD plan with seven
beams. For the auxiliary structure Ring2, both HT plans and multi-
beam TD plans show a significant increase in treatment delivery
time, which can no longer meet the clinical treatment demands. In
Figure 4B, he MF values of the TD plan are significantly higher than
those of the HT plan, with no apparent pattern of variation.

In summary, during TSI treatment, conventional HT mode can
be utilized along with TD plans featuring auxiliary structures such
as NT, Ring4, and Ring3 with 9 or 11 beams, yielding consistent
outcomes. This offers patients requiring TSI treatment a broader
range of therapeutic options.

4 Discussion

TD irradiation technology is currently a hot topic in clinical
treatment research and application. Primarily, its application in
breast cancer irradiation has garnered significant attention. This
includes studies on TD irradiation technology in the treatment of
unilateral breast cancer (18, 19) as well as its application in the
treatment of bilateral breast cancer (20, 21). Additionally, research
has also explored its use in cranio-spinal irradiation treatments (22,
23), esophageal cancer therapy (24, 25), and TBI treatment (26, 27).
TD irradiation technology is increasingly being applied clinically.
However, there are currently no reports of clinical studies on the
application of TD in TSI treatment.

Frontiers in Oncology

Our team previously studied the relationship between
different auxiliary structures and outcomes in TSI-HT
technology, and we systematically investigated the effects by
setting distances from the target at 0, 1, 2, 3, and 4 cm and the
remaining volume to generate auxiliary structures Ring0, Ringl,
Ring2, Ring3, Ring4, and NT with a uniform thickness of 1 cm
each. The auxiliary structures were sequentially set to complete
mode in the treatment plan design. The results revealed that
when using auxiliary structures with a distance from the target
greater than or equal to 3 cm and employing the complete mode,
PTVmean, CI, and HI met the clinical requirements. As the
distance between the auxiliary structures and the target increased
gradually, the treatment delivery time decreased accordingly, but
the volume of normal tissues receiving excessive radiation
increased. Conversely, when the distance from the target to the
auxiliary structures was less than 3 ¢m and the complete mode
was applied, the clinical requirements could not be met (14). In
this study, we focused on investigating the effects of 7, 9, and 11

TABLE 2 Comparison of dosimetric parameters between thermoplastic
mask regions and diving suit regions.

Dosimetric Thermoplastic Diving suit-

parameters masked regions only regions
PTVmean 24.1 £ 0.3 Gy 239 £ 0.4 Gy 0.15

D95% coverage 96.2% + 1.1% 95.8% + 1.3% 0.22
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equalized beams, considering the influence of auxiliary ring
structures. We aimed to explore whether TD technology and
HT technology have advantages in terms of radiation utilization
and treatment delivery time, thereby providing more options for
radiotherapy techniques in clinical TSI treatment.

The tomotherapy system has advanced to the fourth generation.
The first generation lacks a fixed-beam irradiation mode, while
fixed-beam irradiation functionality has been incorporated since
the second generation. The functions that can be achieved are the
same as those of conventional accelerators: three-dimensional
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conformal radiotherapy, intensity-modulated radiation therapy,
and volumetric-modulated arc therapy. However, their unique
attributes differentiate them from conventional accelerators in
terms of application and clinical outcomes (7). The institution
currently employs a second-generation HT model capable of
implementing the aforementioned three treatment modalities.
The research discussed in this article is applicable to the second,
third, and fourth-generation models. However, since the first-
generation HT does not have the described functions, the
abovementioned research results are not applicable.
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The TD treatment technique can accommodate up to 12
treatment beams (28), considering that even-numbered beams
lead to intersecting beams, which are unfavorable for intensity
modulation. Therefore, this study did not investigate them. The
focus of this research was on odd-numbered equally spaced beams
with fewer than 12 beams. There are reports that the starting angle
has no effect on the results in TBI-TD research. Therefore, the
starting angles of all fixed beams in this study all start from 0°.

All patients wore a 5-mm diving suit bolus. Unlike previous
studies by Hsieh et al. (9), who used a 3-mm diving suit bolus, or
Haraldsson et al. (10), who used a 7-mm diving suit bolus, we opted
for the most common and widely available 5-mm diving suit bolus.
This choice enhances the convenience of procurement and ensures
the generalizability of the research findings. While different
thicknesses of diving suits may yield minor variations in results,
the overall impact is deemed insignificant, thus allowing for broader
applicability of the conclusions. However, when considering different
materials for a bolus, especially those with significant density
variations, further research is needed to confirm conclusions.

The PTV gradually moves inward to form auxiliary structures,
creating Ring0, Ringl, Ring2, Ring3, Ring4, and NT auxiliary
structures with thicknesses of 1 cm each at distances of 0, 1, 2, 3,
and 4 cm and the remaining volume, respectively (14). These
auxiliary structures do not represent OARs or the target but are
solely used as tools for plan optimization, enabling dose constraints
within the body and serving as part of the plan evaluation to study
the trend of auxiliary structure dose distribution with varying
distances. Generated by moving the PTV inward, Ring0 through
Ring4 and the NT auxiliary structure are created with a uniform
thickness of 1 cm at specified distances from the target. These
structures are generated according to specific requirements on the
treatment planning system and remain unchanged due to human
efforts, thus ensuring the universality and representativeness of the
research findings and their clinical applicability.

This study generated a total of five rings: Ring0, Ringl, Ring2,
Ring3, and Ring4 with a thickness of 1 cm and the remaining volume
NT. The decision to generate only five rings instead of more auxiliary
rings was primarily because the smallest cross-section of the head and
neck region is typically approximately 10 cm, making it impractical to
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generate additional auxiliary rings. It is also noted that the longest
distance auxiliary structure used in related research is 5 cm (29). The
auxiliary ring structures selected in this study are all 1 cm in thickness,
without generating thinner auxiliary rings (such as 8, 5, and 3 mm).
The main consideration is that while thinner auxiliary structures
might provide more detailed results compared to the 1-cm-thick ones,
the changing trend of the research results should be consistent. Thus,
this article did not conduct research on thinner auxiliary rings.

This study only collected data from Ring2, Ring3, Ring4, and
NT, excluding data from Ring0 and Ringl. This omission is
primarily due to the inability to optimize the treatment planning
for Ring0 and Ringl auxiliary structures when used in the complete
mode, as their proximity to the target is too close. Therefore,
statistical data for Ring0 and Ringl are not available.

All patients used a 5-mm diving suit bolus. Currently, the most
commonly used diving suit on the market is the 5-mm-thick one,
which is readily available and offers good material uniformity.
Therefore, this conclusion has broader applicability. For the use
of other materials as a bolus, especially those with significant
differences in density and thickness, this conclusion may not be
applicable and requires further investigation.

Previous studies have employed varying bolus thicknesses for
TSI treatment. Hsieh et al. (9) used a 3-mm diving suit, achieving an
adequate skin dose but with potential underdosing in deeper
subcutaneous tissues due to reduced bolus thickness. Haraldsson
et al. (10) utilized a 7-mm diving suit, which improved the dose
homogeneity but increased the scatter dose to normal tissues. Our
study adopted a 5-mm diving suit as a balanced choice, ensuring
reliable target coverage while minimizing excessive scatter. This
thickness is widely available and clinically practical, with results
showing comparable target coverage to HT plans (e.g., PTVmean
within +2% of prescription dose). Minor variations in bolus
thickness (3-7 mm) did not significantly alter the clinical
outcomes, supporting the generalizability of our protocol.

Our TD-based TSI protocol utilizing 9 or 11 beams with
optimized auxiliary structures (Ring3/Ring4/NT) demonstrated
clinically acceptable conformity (CI: 0.90 *+ 0.03) and
homogeneity (HI: 1.05 + 0.02) indices comparable to HT while
reducing the treatment time by 15%-20%. The strategy of
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positioning auxiliary structures =3 cm from the target effectively
controlled high-dose spillage to normal tissues (V20Gy reduction,
p < 0.05), validating the protocol’s efficiency and dosimetric
reliability for clinical implementation.

The study systematically evaluated odd-numbered beam
configurations (7/9/11) to avoid modulation challenges from
beam intersections, establishing 9 and 11 beams as the optimal
range for TD-based TSI. By standardizing the 5-mm bolus and
auxiliary ring methodology (1-cm increments), we provide a
reproducible framework that expands the treatment options,
particularly for centers lacking tomotherapy capabilities. This
approach not only maintains dosimetric quality but also improves
operational efficiency, offering a viable alternative to HT with
comparable clinical outcomes.

It is important to acknowledge several limitations in this study.
Firstly and most significantly, the study lacks in vivo dosimetry
verification. We did not use Thermoluminescent Dosimeters
(TLDs), Optically Stimulated Luminescence Dosimeters (OSLDs),
or films to measure the delivered surface dose, which is a critical
component for validating any TSI protocol. While rigorous
immobilization and daily Megavoltage Cone Beam Computed
Tomography (MVCT) were employed to ensure geometric
accuracy, these measures do not substitute for direct dose
measurement. Secondly, a formal robustness analysis, which
would involve evaluating the plan’s sensitivity to setup
uncertainties and patient motion, was not performed. The
primary scope of this work was to investigate the dosimetric
feasibility of TD planning, and these validation steps were beyond
that initial scope. Furthermore, our conclusions are drawn from a
small patient cohort (n = 8), a limitation dictated by the rarity of
mycosis fungoides requiring TSI and the preliminary nature of this
technical investigation. These limitations together underscore that
while our findings establish a promising planning methodology for
TD-based TSI, further comprehensive validation—including
phantom-based measurements, in vivo dosimetry, and robustness
analysis—is essential before this technique can be broadly adopted
in clinical practice.

While this study primarily focused on establishing the technical
feasibility and dosimetric performance of TD-based TSI treatment,
we fully agree that investigating patient-specific characteristics (e.g.,
anatomical variations, disease subtypes, or individual
radiosensitivity) could yield valuable insights for personalized
treatment optimization.

In conclusion, to achieve results comparable to HT technology
in TSI treatment, TD plans with 9 or 11 beams can be utilized, along
with auxiliary structures such as NT, Ring4, and Ring3. This study
highlights the applicability of TD technology in TSI treatment,
thereby offering a wider range of treatment options for TSI therapy.
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