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Yang Kuang1 and Mark C. Preul2*
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Introduction: Glioblastoma (GBM) is an aggressive primary brain tumor. Despite

standard treatment, recurrence is common, and patient counseling remains

challenging. Mathematical modeling offers a potential strategy to simulate

tumor behavior and personalize care. This study evaluates whether a simple

reaction-diffusion model can generate realistic scenarios of treatment outcomes

for individual patients with recurrent GBM using clinical imaging data.

Methods: We retrospectively analyzed 132 MRI intervals from 46 patients who

underwent treatment for recurrent GBM. T1 post-contrast and T2/FLAIR images

were co-registered and manually segmented to identify enhancing tumor and

edema. Using a systematic parameter sampling design, tumor growth between

successive scans was simulated 18 times with a reaction-diffusion equation, the

“ASU-Barrow” model, to generate realistic ranges of tumor response to

treatment, as evaluated by clinical imaging.

Results: Model-generated scenarios for changes in tumor volumes well

approximated the observed ranges in the patient data. In 86% of the imaging

intervals, at least one scenario yielded a simulated tumor volume that agreed to

within 20% of the observed one (and to within 10% in 65% of the cases). Spatial

accuracy was assessed using agreement and containment scores, indicating how

well the predicted tumor matched the real one. The best simulations achieved an

agreement of 0.52 and a containment score of 0.69. These results suggest that a

simple model can generate a realistic range of outcomes, over intervals of two or

three months, in a majority of patient cases.

Conclusion: This reaction-diffusion model simulates likely ranges of GBM

progression under treatment with reasonable accuracy and modest
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computational needs and may yield a clinically practical tool to support patient

counseling. Incorporating advanced imaging, such as perfusion MRI, may further

improve accuracy. With further development, our approach could provide

personalized scenarios of treatment outcomes that could aid in patient counseling.
KEYWORDS

glioblastoma, mathematical modeling, personalized medicine, patient counseling,
recurrent glioblastoma, tumor growth, neurosurgery
1 Introduction

Since the early twentieth century, mathematical models have

been developed to understand tumor growth dynamics and

optimize treatment strategies (1). The simplest population growth

model is exponential: the population grows by equal ratios in equal

intervals of time (e.g., the number of tumor cells doubles every

week). The nineteenth century actuary Benjamin Gompertz

proposed a modification in which the time intervals lengthen

exponentially, so that the growth rate decelerates with time,

reflecting resource limitations and, in the case of tumors,

increasing cell death rates as the tumor becomes larger (2). The

logistic model, also proposed in the 19th century, is a different

modification of the basic exponential in which the growth ratio

decreases linearly with the population size.

As oncology shifts towards individualized treatment approaches,

some research efforts have explored the potential for mathematical

modeling to optimize and personalize therapy. Examples include

immunotherapy (3) and efforts to optimize regimens of

chemotherapy and radiotherapy (4). Credibility assessments of

computational models for medical devices and healthcare

applications are an active area of research (5, 6). With respect to

glioma specifically, Hormuth and collaborators have explored

measures of tumor call heterogeneity (7) to predict future tumor

growth and the use of imaging and mathematical modeling to predict

treatment response (8). (Section 5 contains further discussion.)

Patients who are newly diagnosed with glioblastoma (GBM)

typically are treated with maximal safe resection, radiotherapy, and

temozolomide chemotherapy (9, 10). There is no standard of care

for recurrent tumors (11, 12), but options include chemotherapy,

radiation, electric fields, immunotherapy, and reoperation (13, 14).

The choice of therapy depends upon tumor response and the

patient’s performance status (15).

Nevertheless, there have been no treatment breakthroughs for

GBM in the past 20 years, and improvements in patient survival in

the interim are due largely to better supportive care (16). Patients

with recurrent GBM face a poor prognosis, with tumor-related

neurological decline and impaired quality of life as key concerns.

Shared decision-making between patients, their families, and

clinicians is important (17). Given the difficulties with the current
02
state of the art, new tools are needed to assist with clinical

counseling of patients.

We have undertaken this modeling study with a mindset like

that of financial planners, who provide personalized estimates of

portfolio performance to give clients an approximate idea of future

retirement income. They do not attempt to model the global

economy or predict the stock market. Instead, they use simple

models (e.g., the time value of money) and sample prior rates of

return in a statistically reasonable way to generate a range of

plausible scenarios, based on a client’s current holdings, savings

rate, and anticipated expenses. This procedure cannot account for

every potential outcome, nor does it make specific predictions, but it

can provide an idea of what to expect under certain hypotheses and

serve as an advising tool.

In a similar vein, the objective of this study is to determine

whether a simple mathematical model can simulate a personalized,

realistic range of potential outcomes over the next 2 to 3 months,

corresponding to typical follow-up intervals, for patients who

experience a recurrence of their GBM tumors following initial

treatment and whose response to future therapy cannot be

predicted with certainty. To our knowledge, the potential for

mathematical modeling to provide personalized scenarios of GBM

progression in individual patients, which clinicians could use to

assist with patient counseling, has not previously been assessed.

The biology of GBM is complex, and many details are poorly

understood. Factors that may affect tumor progression and response to

treatment include genomic abnormalities (18), neovascularization (19),

hypoxia (20), immunosuppression (21), GBM stem cells (22), and the

brain’s extracellular matrix (23), to name a few. A fundamental

difficulty is that there is no established biochemical principle to

justify a particular mathematical model of any of these processes and

their interactions. Any associated rate equation is speculative at best

and introduces coefficients and initial conditions that cannot be

measured in living patients. Consequently, the biological correctness

of the resulting model cannot be independently validated (24). A

complex model is unlikely to be amenable to rigorous analysis, and its

output may depend sensitively on parameters that cannot be estimated

reliably (25), making it impractical for clinical application.

For these reasons, we focus on a model whose parameter space

can be tractably sampled and that can be initialized from (and
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compared against) imaging data that are collected as part of routine

clinical surveillance. We reiterate that we cannot make a specific

prediction about a given patient’s clinical course; instead, our goal is

to develop a data-driven modeling system, using a simple model

and validated against the clinical trajectories of many previous

patients, that can generate a personalized range of realistic scenarios

of treatment outcomes. As noted above, our focus is on time

horizons of 2 to 3 months, corresponding to typical surveillance

imaging intervals. In this way, clinicians could use the outputs as a

tool to help patients and their families make better-informed

decisions about continued treatment.
2 Materials and methods

2.1 Patient population and data
preprocessing

Magnetic resonance imaging (MRI) scans were obtained from

the Barrow Neurological Institute (BNI) patient archive pursuant to

St. Joseph’s Hospital andMedical Center Institutional Review Board

(IRB) protocol PHX-19-500-182-20-08. They consist of 357 axial

surveillance scans from 75 unique patients, ranging in age from 25

to 78 years (median 62), who previously had undergone maximal

safe surgical resection, followed by radiotherapy and, in most cases,

temozolomide chemotherapy. The first scan from each patient

series is obtained 2 to 12 weeks after initial resection; each patient

has at least 2 (and up to 9, median 4) scans that include T1 plus

contrast and T2/FLAIR sequences. The median time interval

between scans is 57 days (range: 16–121 days).

The imaging workflow proceeds as described in previous work

by the authors (26) and consists of the following steps.
Fron
1. The patient imaging data consists of DICOM files

generated by the MRI scanners. Identifying information

is removed, and the data, consisting of axial slices, is

assembled into a single three-dimensional image and

converted to the NIfTI format (27) using SPM-12 (28);

this is done independently for each T1 and T2 modality.

2. SPM-12 also is used to co-register all images to a common

time point (usually the first scan in each patient series). The

automated algorithms in SPM-12 are used to generate

another NIfTI file that contains only the brain (the skull

and eyes are stripped out), and the brain domain is further

segmented into regions of cerebrospinal fluid (CSF) and

white and gray matter. This labeled, patient-specific brain

domain serves as the computational domain for each

simulation. Altogether, it contains 24 to 30 axial slices of

typically 256 × 256 voxels. The horizontal resolution varies

from 0.85 to 0.93 mm and the vertical from 7 to 7.5 mm,

depending on the number of slices in the original scans.

3. All MRI scans are manually segmented by neuroimaging

experts. For this purpose, the co-registered scans are loaded

into the 3D-Slicer image processing platform (29), which is

used to “paint” the relevant voxels and separate them from
tiers in Oncology 03
anatomically normal tissue according to the neurosurgical

judgment of the operator. Tumor voxels are segmented into

three categories: necrotic core (hypointense on T1),

enhancing tumor (contrast enhancement on T1), and

tumor-associated edema (hyperintense on T2-FLAIR).

The modeling software uses the segmentations to

generate initial conditions, as described below.
For each patient, and at every time point, this procedure

produces six or seven anonymized files in NIfTI format: the

three-dimensional T1C and T2 images; the derived computational

domain; and the manually produced segmentations of enhancing

tumor, edema, resection cavity, and, if applicable, necrotic tumor

core. All files are named and stored in a consistent way. A separate

spreadsheet tracks the number of days between each scan, and a

database, maintained at St. Joseph’s Hospital, links the numbered

patients to the original scans and medical records.

Scans from the patient database are excluded from further

analysis under any of the following circumstances:
• SPM-12 is unable to segment the brain domain (possibly as

a result of motion artifacts in the scan), because we cannot

construct a patient-specific computational domain;

• no enhancing tumor is apparent on T1 post-contrast

imaging, because we cannot compute relative changes in

tumor size; or

• the patient undergoes another surgical resection, which is

beyond the scope of the model.
Following these exclusions, we have a complete set of

preprocessed scans from 46 unique patients for 132 time

intervals. The first two preprocessing steps outlined above can be

done on a laptop in a few minutes, but the tumor segmentation is

performed manually for reliability and thus is the most time-

consuming step.
2.2 Mathematical model

Our modeling effort focuses on the gross total expansion (or

contraction) of the tumor. Tumor volume is a prognostic factor for

overall survival (30–32) and can be readily measured using the 3D-

Slicer platform (33) from the surveillance imaging that serves as our

data source.

The Fisher-Kolmogorov-Petrovsky-Piscunov (FKPP) equation

is a reaction-diffusion equation that was proposed initially to model

the spread of invasive species (34, 35). This model also has been

proposed to describe the diffusive spread of GBM tumor cells

throughout the brain parenchyma (36) and is given by

∂ u
∂ t

= ∇ · (D(x)∇u) + r(x)u 1 −
u
K

� �
(1)

where u = u (x, t) is the space- and time-dependent tumor cell

population, K is the local carrying capacity, and D and r are the

diffusion and proliferation rates, respectively, which may be taken
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as constant or allowed to vary by location (e.g., faster diffusion in

white matter than gray). Equation 1 admits traveling-wave solutions

whose propagation speed depends on the model parameters, but the

details also depend on the rates at which glioma cells switch

between proliferative and motile phenotypes (37). Equation 1 has

been suggested as a way to quantify the effect of surgical resection

(38); the effect of chemotherapy (39); and to explain differences in

patient survival after similar courses of treatment (40).

The model (1) assumes implicitly that all cells in the modeled

population have the same growth potential. One characteristic of

GBM tumors, however, is the presence of a hypoxic or necrotic

“core” (41). The authors have previously proposed a modification of

the FKPP equation (26) to account for this phenomenon, given by

the so-called “ASU Barrow” (ASUB) model, which partitions the

tumor cells into proliferating (p) and quiescent (q) subpopulations:

∂ p
∂ t

= ∇ · (D(x)∇p) + g(p, q, t) − h(p, q, t) (2)

∂ q
∂ t

= h(p, q, t) : (3)

The densities of proliferating and quiescent cells are given by

the respective space- and time-dependent functions p = p(x, t), and

q = q(x, t). The overall dynamics are simple: proliferating cells

diffuse at a rate given by ∇ · (D(x)∇p); they grow an a net per capita

rate g(p, q, t) and they become quiescent (i.e., die or become

hypoxic) at a per capita rate h(p, q, t). The function D(x) defines

the rate at which cells infiltrate the brain. Quiescent cells simply

accumulate, reflecting high cellularity but no net tumor growth.

In Equations 2, 3, h(p, q, t) reflects the net cell-killing effect of

treatment; g(p, q, t) captures treatment resistance and net

proliferative tendencies. In the version simulated here, we take

g(p, q, t) = r(x)p½1 − d (p + q)� (4)

h(p, q, t) = k(x)pd (p + q), (5)

where r(x) and k(x) are the space-dependent maximum growth and

quiescence rates, and d is a monotonically increasing function of the

total cell density.

We take d(x) to be piecewise constant: we fix one value in

edematous tissue and a possibly different value in the enhancing

rim of the tumor; similarly for k(x). One rationale is that some

treatments, such as chemotherapy wafers or localized radiotherapy,

may be applied (and have greater effect) on regions corresponding to

contrast enhancement. We treat the diffusion rate analogously: D(x)

= Dw when x corresponds to a location in a white-matter tract or

tumorous region; D(x) = Dw/2 in gray matter; and D(x) = 0 in CSF.

We normalize the maximum cell density to 1 and require d(0) =
0 and d(1) = 1. In regions where the cell density is low, 1 − d is close
to 1; therefore, g ≈ rp and h ≈ 0, so that the net proliferation rate is

approximately exponential. In other words, small cell populations

grow at a rate that is roughly proportional to ert , which implies that

the overall tumor growth rate can be sensitive to the choices of r in

edematous regions, where tumor cell densities are presumed to be
Frontiers in Oncology 04
low. One convenient choice for d is the beta cumulative distribution

function B(x; a, b), which increases monotonically from 0 to 1

across the unit interval; we fix a = 3 and b = 1 (26).
2.3 Simulation of the model

The SPM-12 brain segmentation defines the patient-specific

computational domain. No-flux boundary conditions are imposed

at the interface with the skull and CSF. The model can be integrated

efficiently using the IRKC solver by Shampine et al. (42). One 60-

day simulation on a typical 256 × 256 × 25 patient brain domain

takes about 18 seconds on a single CPU core of a modern personal

computer. Multiple patient scenarios can be simulated in parallel on

a multicore machine.

As described above, the growth and quiescence functions r(x)
and k(x) in Equations 4, 5 are piecewise constant: r(x) = rc and
k(x) = kc if x corresponds to a voxel in a region segmented as

contrast enhancing, and r(x) = re and k(x) = ke in edematous

regions. To simplify their interpretation, the values for r and k

are given in the tables below as doubling and halving times,

respectively, in days, assuming pure exponential growth and

decay, which occurs when the tumor cell populations are very

small or large. (The actual parameters used in the model are k =

( log 2)=k̂ and r = ( log 2)=r̂ Þ: The net doubl ing rate of

glioblastoma tumor cells is not known, but one study estimates a

tumor volume doubling time of 31 days prior to treatment (43) and

another, a range from 14 to 49.6 days (44). A study of unresectable

gliomas in children estimates tumor halving times of 60 to 78 days

in response to radiotherapy and overall doubling times of 48 to 60

days for high-grade gliomas (45). Values of the diffusion rate D(x)

also are unknown; one review of the literature has found published

values that vary by four orders of magnitude [cf. Table 2 in (46)].

The FKPP Equation 1 predicts that tumors must reach a volume

that is proportional to
ffiffiffiffiffiffiffiffiffi
D=r

p
to persist (47), and various studies

have attempted to estimate D/r from MR imaging [e.g., (48)].

However, this approach is restricted to untreated tumors, as the

prediction assumes a uniformly expanding cell population, and D

and r are not identifiable from the ratio. Given the considerable

uncertainties, the values of D, r, and k in Table 1 are roughly

consistent with the values in the cited studies.

Initial conditions are imputed from the respective tumor

segmentations. Chang and co-workers (49) found an approximate

linear relationship between MR signal intensity and GBM cell

density, with cellularity increasing with intensity in T1-weighted

post-contrast imaging and decreasing with T2/FLAIR signal

intensity. In our simulations, we ascribe an initial population

within the interval Ic = ½pc1, pc2� that increases linearly with T1C

image intensity in regions segmented as enhancing tumor and

decreases linearly within the interval Ie = ½pe1, pe2� with T2/FLAIR

signal in the edema segmentations. Counting the intervals Ic and Ie
as one parameter apiece, there are 7 adjustable parameters, which

are listed in decreasing order of sensitivity on the simulation results

in Table 2.
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2.4 Experimental design

Of course, we do not know the “true” values for the model

parameters and initial conditions, which probably vary considerably

among the patients. Instead, our goal is to determine a likely range

of values that yield clinically representative results. To make the

computations tractable in such a large parameter space, we adopt a

Taguchi experimental design, which is a type of Latin hypercube

sampling. For simulation purposes, each parameter in Table 2 is

assigned one of three “levels,” corresponding to a “low,” “medium,”
Frontiers in Oncology 05
and “high” value. There are 37 = 2187 possible combinations, but we

choose only 18 by prioritizing the most sensitive parameters, k̂ 0 and

r̂ 0, and sampling according to an orthogonal array. The same set of

18 parameters is used to simulate every tumor. There are no

stochastic components in the modeling framework presented here.

The orthogonal array consists of columns 2–8 in Table 3 of

Kacker et al. (50), which contains 18 rows. Simulations are run with

each of the 9 possible pairs of values of the two most sensitive

parameters, k̂ 0 and r̂ 0. For each pair, two different choices of the

remaining parameters are made by uniform sampling. The goal is to

estimate the variability in the simulations as a function of the

parameters in an economical way. Table 1 displays each of the 18

parameter sets that are used to simulate each tumor.

The simulation code is highly parallelizable, and results for all of

the parameter combinations can be obtained in about 80 seconds of

wall-clock time on a Macbook Pro laptop for a typical 60-day

imaging interval. We have also done 144 simulations according to a

sampling design that uses 12 different levels of the parameters and

obtained comparable results.
3 Results

Altogether, we evaluated tumor progression across 132 time

intervals from 46 unique individuals with recurrent GBM. For each

interval, we compare the number of enhancing voxels, V0, from the

initial scan to the number V1 in the next, and define the relative

change as

Dobs =
V1 − V0

V0
: (6)
TABLE 1 The 18 parameter sets used to simulate each tumor.

I k̂ 0 r̂0 Dw Ie Ic k̂ 1 r̂ 1

1 14 21 0.015 [0.012, 0.03] [0.16, 0.80] 18 27

2 35 35 0.030 [0.016, 0.04] [0.22, 0.40] 37 27

3 56 49 0.060 [0.024, 0.06] [0.30, 0.50] 58 27

4 56 49 0.030 [0.016, 0.04] [0.16, 0.80] 18 57

5 14 21 0.060 [0.024, 0.06] [0.22, 0.40] 37 57

6 35 35 0.015 [0.012, 0.03] [0.30, 0.50] 58 57

7 56 35 0.060 [0.012, 0.03] [0.22, 0.40] 18 97

8 14 49 0.015 [0.016, 0.04] [0.30, 0.50] 58 97

9 35 21 0.030 [0.024, 0.06] [0.16, 0.80] 58 97

10 14 35 0.030 [0.024, 0.06] [0.30, 0.50] 18 27

11 35 49 0.060 [0.012, 0.03] [0.16, 0.80] 37 27

12 56 21 0.015 [0.016, 0.04] [0.22, 0.40] 58 27

13 35 49 0.015 [0.024, 0.06] [0.22, 0.40] 18 57

14 56 21 0.030 [0.012, 0.03] [0.30, 0.50] 37 57

15 14 35 0.060 [0.016, 0.04] [0.16, 0.80] 58 57

16 35 21 0.060 [0.016, 0.04] [0.30, 0.50] 18 97

17 56 35 0.015 [0.024, 0.06] [0.16, 0.80] 37 97

18 14 49 0.030 [0.012, 0.03] [0.22, 0.40] 58 97
The parameters are listed from left to right in deceasing order of sensitivity.
TABLE 2 Model and initialization parameters for the tumor simulations.

Order Parameter Units Description

1 k̂ 0 d max quiescence rate, edema

2 r̂ 0 d max growth rate, edema

3 Dw
mm2

d−1
diffusion rate, white matter and tumor

4 Ie interval population range, edema

5 Ic interval population range, enhancing region

6 k̂ 1 d
max quiescence rate, enhancing
region

7 r̂ 1 d max growth rate, enhancing region
TABLE 3 Observed and simulated chances that the patient’s tumor
grows or shrinks (positive or negative percentages, respectively) by
selected thresholds until the next scan time.

Change Observed Simulated

≤ −50% 10% 9%

≤ −25% 22% 19%

≤ −20% 25% 23%

≤ −15% 30% 27%

≤ −10% 37% 32%

< 0% 43% 45%

≥ 0% 57% 55%

≥ 10% 43% 41%

≥ 15% 38% 37%

≥ 20% 35% 33%

≥ 25% 33% 31%

≥ 50% 22% 21%

≥ 100% 14% 12%
frontiersin.org

https://doi.org/10.3389/fonc.2025.1647144
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kostelich et al. 10.3389/fonc.2025.1647144
Notice that Dobs = −1 if there are no enhancing voxels in the

comparison scan; Dobs = +1 if the number doubles; and Dobs = 0 if

the number does not change.

Figure 1A shows a histogram of the distribution of Dobs in the

clinically observed tumors, which ranges from −0.917 (i.e.,

reduction of 91.7%) to an expansion by a factor of 21.28; the

median change is 0.0377. (The horizontal axis is truncated at Dobs =

2 for ease of visualization.) There are 6 cases where 2< Dobs< 5 and

one case where Dobs >21.) In 75% of the cases, the observed changes

range from 42.2% shrinkage to an expansion by about 111%.

The same set of 18 parameters, as listed in Table 1, is used to

simulate each patient and imaging interval. In each simulation, we

count the number of voxels in which the final tumor cell population,

p + q, lies within the interval Ic. For example, in the first parameter

set, Ic= [0.16, 0.80], so the voxels in which 0.16 ≤ p + q ≤ 0.80 are

counted as enhancing. Likewise, if p + q lies within the interval Ie=

[0.012, 0.03], then the corresponding voxel is counted as edematous.

(The calculation is similar for the remaining parameters.) Let V sim
i

denote this number for the ith simulation and define, for i =

1,…, 18, the relative change in tumor volume as

Dsim
i =

V sim
i − V0

V0
, (7)

where V0 is the observed number of enhancing voxels at the start of

the simulation interval.

Figure 1B shows a histogram of the distribution of Dsim for all 18

× 132 = 2376 simulated tumors. The distribution of Dsim is roughly

consistent with the distribution Dobs of observed tumor volume

changes, Table 3 shows the likelihood that Dobs and Dsim falls within

selected percentage ranges (negative percentages indicate the

corresponding reduction in the number of enhancing voxels at

the next scan time).

Each simulation produces 18 realizations (scenarios) of the

evolution of the tumor. Of these, let V* be the volume of the
Frontiers in Oncology 06
realization that is closest to the volume Vobs of the observed tumor

at the next scan time. We define

Rbest =
V* − Vobs

Vobs
(8)

where Vobs is the number of voxels in the subsequent scan that have

been segmented as enhancing tumor.

Figure 1C shows the distribution of Rbest across all 132

simulated time intervals. In 86 (65%) of the cases, the relative

error is less than 10%, and in 113 (86%), less than 20%.

Furthermore, each of the 18 parameter choices produces a “best”

simulated tumor for some patient imaging interval; none of the

combinations in Table 1 is redundant. These results, plus the

threshold data in Table 3, suggest that the parameter ranges used

in these simulations capture most of the likely variability in

potential outcomes for typical patients. The relative errors exceed

100% in 4 (3%) of the cases (the largest is 315%, discussed in more

detail below).

Figure 2 shows a representative simulation result. In this

example, the actual tumor grows from 1629 to 2175 enhancing

voxels, i.e., the observed growth, as defined in Equation 6, is Dobs =

33.5%. The ensembles produce simulated tumors that range from

1169 to 3495 voxels; the “best” parameter set produces a tumor with

2167 voxels, so the relative error, Rbest
�� ��, is approximately 0.37%.

Figure 3A shows a histogram of the simulated changes Dsim,

Equation 7, of the patient’s tumor for each of the 18 parameter

sets. The observed change in tumor volume, Dobs, is well

approximated by several sets of the parameters.

Because the location of the tumor also matters, we define two

spatial error measures, as follows. Let R denote the set of voxels in

the region segmented as enhancing tumor in the actual patient scan

and let S be those of the simulated tumor. We define Sj j and Rj j as
the number of voxels in the respective regions. Then S ∪ Rj j is the
number of voxels occupied by one or the other and S ∩ Rj j is the
FIGURE 1

(A) Histogram of relative change Dobs, Equation 6, of voxels in regions segmented as enhancing tumor between the starting and comparison scans
over all 132 time intervals. Not shown are 6 cases (5%) where 2.22< Dobs< 4.61 and the one case where Dobs = 21.29. The median, shown as a vertical
dashed line, is 0.0377. (B) Histogram of the relative change, Dsim, in all 18 × 132 simulated tumors over the same time interval. Not shown is the
upper tail, containing 211 (8.6%) of the simulations, where Dsim >2 (the largest value is 74). The median is 0.0153. (C) Histogram of the relative
change, Rbest, defined in Equation 8 in the simulated tumors that most closely match the number of enhancing voxels in the corresponding
comparison scans. Not shown is one simulation in which Rbest = 3.15. The median is −0.0049.
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FIGURE 2

Representative simulation for a typical patient over an interval of 62 days, during which the volume of enhancing tumor grows from 1629 to 2175
voxels (33.5% increase). The axial slices shown encompass the approximate center of mass of the tumor. Top row: Patient scans and manual
segmentations. Bottom row: Simulated tumor and computationally derived segmentations. (A) Initial post-contrast T1-weighted MRI. Cyan curves:
edema segmentation; red curves: enhancing tumor. (B) As in (A), but for the initial T2-weighted MRI. (C) As in (A), but for the subsequent scan. (D)
As in (B), but for the subsequent scan. (E) As in (A), but with the simulation ensemble superimposed. The red curves show the extent of the
enhancing region for each of the 18 simulated tumors. (F) As in (E), but superimposed on the computational domain produced by SPM-12. Dark
gray: CSF; medium gray: gray matter; light gray: white matter. (G) As in (C). Red curve: segmentation of the simulated tumor that most closely
matches the observed number of enhancing voxels. Cyan curve: the corresponding simulated edema segmentation. (H) As in (F), but superimposed
on the brain segmentations produced by SPM-12 from the subsequent scan.
FIGURE 3

(A) Histogram of the simulated change Dsim, defined by Equation 7, over all 18 parameter sets used to simulate the tumor for the patient in Figure 2.
The vertical dashed line shows the observed change, Dobs, as defined by Equation 6. In this case, the volume of enhancing tumor increases by
approximately 33%. (B) As in (A), except for the patient simulated in Figure 5. All of the parameter sets significantly overestimate the number of
enhancing voxels in the comparison scan, which shrinks by about 78%.
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number of voxels in the overlap. We define the containment as

C =
S ∩ Rj j
Rj j : (9)

and the agreement as

A =
S ∩ Rj j
S ∪ Rj j : (10)

Figure 4 shows an example of the two measures. A perfect

model would produce A = C = 1 if the brain domains were exactly

co-registered.

We compute the agreement measures by superimposing the

simulated tumor on the computational domain derived from the

subsequent scan. We compare the sets of voxels segmented as

enhancing tumor in the subsequent scan with those from the

simulated tumors (there are 18 such comparisons, one for each

parameter set). The agreement measures range from 0.205 to 0.514

and the containment measures, from 0.408 to 0.799. The parameter

set that most closely approximates the actual enhancing tumor

volume gives agreement and containment measures of 0.466 and

0.634, respectively, in Figure 2.

Co-registration errors between successive patient scans are

inevitable. To help interpret the agreement and containment

measures from the simulations, it is useful to compare the

corresponding measures between the brain segmentations derived

from SPM-12 (cf. panels (f) and (h) in Figure 2). In this case, the

respective agreement measures between the regions segmented as

gray and white matter are 0.570 and 0.587 and the containment,

0.714 and 0.835.

Figure 5, which is organized identically to Figure 2, shows the

results of the simulation with the largest relative error among the

132 that were performed for this study. In this case, the clinically

observed volume of enhancing tumor has shrunk considerably,

from 2245 to 500 voxels (Dobs = −0.773). The 18 simulated tumors

(second row) range from 2075 to 7246 enhancing voxels. Figure 3B

shows a histogram of all the simulated changes Dsim, none of which
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well approximates the observed one; Rbest
�� ��, is approximately 312%.

The tumor agreement and containment measures range from

approximately 0.02 to 0.18.
4 Discussion

This preliminary study shows the potential utility of simple

mathematical models for generating scenarios of treatment

response on an individualized patient basis using imaging data

that is collected as part of routine clinical surveillance. The

experimental design provides reasonably accurate estimates of the

likelihood that a patient’s tumor grows or shrinks by a given

threshold. At least one choice of parameters from the 18 used to

simulate each tumor generates a result whose volume lies within

20% of the observed tumor in 86% of the time intervals studied. As

illustrated in Table 3, the simulations match, within a few

percentage points, the observed chances that a given patient’s

tumor grows or shrinks by specified thresholds by the next scan

time. The simulations and visualizations can be run on a laptop

computer within a couple of minutes in a clinical setting. This

section briefly addresses some related work as well as limitations

and potential improvements to the present study.
4.1 Relation to prior work

Many mathematical models have been proposed to approximate

the multiscale aspects of the growth of infiltrating gliomas, including

glioblastoma (GBM) tumors. Most of them use reaction-diffusion

equations (51), similar to the models presented here. Konukoglu et al.

(52) proposed a method to estimate “patient-specific” parameters

using a sequence of brain images. Hogea et al. (53) proposed a

different scheme (with similar objectives) that also attempts to

incorporate the tumor mass effect. While not yet standard clinical

tools, some models have incorporated angiogenesis and oxygen
FIGURE 4

Two examples of the agreement (A) defined i Equation 10 and containment (C) defined in Equation 9 measures. (A) If S is twice as large as R but
completely overlaps R, then C = 1 but A = 0.5. (B) If S and R are the same size but their overlap is only half of the area of each, then A = C = 0.5.
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transport to improve predictions of tumor dynamics (54, 55).

Mostaghi-Kashanian et al. (56) proposed a reaction-diffusion model

to distinguish visible and invisible tumor regions. Lipková et al. (57)

presented a patient-specific model that links glioma growth with

pressure distribution in the brain to estimate intracranial

hypertension, midline shift, and cognitive impairment.

Several research groups have proposed mathematical modeling

frameworks to optimize treatment strategies for GBM. One notable

example is the study by Dean et al. (58), which developed a novel

radiation therapy schedule based on a mathematical model of cell-

state plasticity. Randles et al. (59) applied a computational model of

the spatiotemporal dynamics of the perivascular niche to optimize

the standard-of-care treatment for GBM. Brüningk et al. (60)

proposed a personalized treatment strategy using intermittent

radiotherapy based on a mathematical model of tumor growth,

radiation response, and a patient-specific evolution of resistance.

Our modeling approach is more modest because our data are

limited to surveillance MRI.
4.2 Rationale for our scientific approach
and potential refinements

The ASU model has three advantages over contemporary

machine-learning methods. First, unlike a neural network that
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may contain millions of parameters that must be fitted, the ASUB

model has only seven (Table 2). Second, it is possible to quantify the

uncertainties in the output of the ASUB model and prove that it

always produces nonnegative solutions (47). (Put another way, the

ASUB model cannot “hallucinate,” unlike some machine-learning

models.) Finally, only modest computing resources are needed: a

full set of 60-day simulations takes less than two minutes on a

modern multicore CPU.

The patients in our data set received a variety of treatments,

including radiation, chemotherapy, antiangiogenic drugs, and

additional surgery. Except for surgery, which reduces tumor cell

populations beyond the scope of the model, we have not attempted

to account for treatment timelines. The model’s growth and

quiescence terms, together with their parameterizations, reflect

the sum total of treatment response and resistance. As explained

in the introduction, we simply do not have a sufficiently validated

understanding of GBM tumor biology or associated patient data to

include more detailed mathematical descriptions of the effects of

specific treatments. Instead, we lump treatment effects and tumor

biology into one set of net diffusion, growth, and quiescence terms.

We take the view that the treatment response of recurrent GBM

tumors is unpredictable, and, analogously to simulations of

portfolio performance for financial planning, have identified

ranges of model parameters that yield clinically representative

scenarios for patient counseling.
FIGURE 5

Results of the simulation with the largest relative error in enhancing tumor volume. The enhancing volume in the actual patient scans has decreased
from 2245 voxels in panel (A) to 500 voxels in panel (C). over an interval of 75 days. The axiel slices shown encompass the approximate center of
mass of the tumor. Top row: Patient scans and manual segmentations. Bottom row: Simulated tumor and computationally derived segmentations.
(A) Initial post-contrast T1-weighted MRI. (B) As in (A), but for the initial T2-weighted MRI. (C) As in (A), but for the subsequent scan. (D) As in (B),
but for the subsequent scan. (E) As in (A), but with the simulation ensemble superimposed. (F) As in (E), but superimposed on the computational
domain produced by SPM-12. Dark gray: CSF; medium gray: gray matter; light gray: white matter. (G) As in (C). Red curve: segmentation of the
simulated tumor that most closely matches the observed number of enhancing voxels. Cyan curve: the corresponding simulated edema
segmentation. (H) As in F(F0, but superimposed on the brain segmentations produced by SPM-12 from the subsequent scan.
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Nevertheless, a future (and larger) study might stratify patients

according to selected biomarkers. For example, MGMT (O6-

methylguanine (O6-MeG)-DNA methyltransferase) promoter

methylation status (61) and isocitrate dehydrogenase (IDH)

mutations (62) can affect treatment outcomes in GBM. Modified

ranges of model parameters may yield more clinically relevant

results for selected subsets of patients.
4.3 Potential integration with clinical
workflows

Once the MR scans from a given patient have been uploaded to

the appropriate digital repository, the preprocessing workflow

outlined in Section 3.1 can be applied. The ASUB model is not

sensitive to small changes in segmentation boundaries; artificial

intelligence or other semi-automated method could be used to

generate a preliminary segmentation, as long as there are no gross

errors in identifying the tumorous regions. The resulting

preprocessed data can be downloaded as any other imaging files,

and the simulation program itself could be packaged as an “app” on

a physician’s laptop. The simulations used to generate outputs like

Figure 2 can be run in a couple of minutes.
4.4 Sources of errors and failure analysis

Co-registration errors are unavoidable and, in some cases,

significant. One example is in Figure 5. The tumor is simulated

using the computational domain in panel (f). However, in panel (g),

the cyan curve representing the boundary of the edematous region

for the “best” simulated tumor runs through the resection cavity in

the subsequent scan. Panel (h) shows the corresponding SPM12-

derived brain segmentations. Differences from panel (f) in the size

and placement of the ventricles and gray- and white-matter tracts

are evident. Measures of tumor agreement and containment must

be interpreted in light of such geometric differences in the

reconstructed domains.

The effect of co-registration errors can be especially important

in the vicinity of the resection cavity, and tumor-related changes to

the brain geometry may be a contributing factor. Our model

simulations do not account for mass effect, and a future effort

may benefit from including one (but would involve significant

additional computational complexity).

Although T1 and T2 sequences were used for each patient, no

other uniform imaging protocol has been followed. The data used in

this research project were collected on different scanners. The

strength of the magnetic field varies, and there are differences in

the way that operators positioned the patients. Such variations

complicate image comparisons, but they also reflect “real world”

clinical data. We believe that our approach will be practicable in

contemporary routine clinical settings where uniform, prospective

scanning protocols may not exist.
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The ASUBmodel and the FKPP model presume a fixed carrying

capacity for tumor cells. When initialized with cell densities below

the carrying capacity, neither model can simulate a decreasing cell

population. When proliferating cells become sufficiently numerous

in the ASUB model, they join the quiescent pool. Sufficiently dense

regions of quiescent cells are assumed not to enhance on T1

imaging (they are assumed to form a hypointense region). Thus,

our existing model parameterizations cannot always simulate a

rapid reduction in the number of enhancing voxels. There are 4

cases in which Rbest >100%, of which Figure 5 is one, and each

involves a significant (> 66%) reduction in the number of enhancing

voxels between the initial and subsequent scans. This result may

simply reflect an inherent limitation of the ASUB model. Future

work (and a larger dataset) will be needed to get a better idea of how

often simulation failures like that in Figure 5 are likely to

occur and to understand the issues in model initialization and

parameterization that lead to such failures.

Our methods for initializing tumor cell populations and

performing comparisons with patient scans are simplistic, and the

tumor segmentations are based solely on relative pixel intensity.

Some patients in our data set were treated with anti-angiogenic

agents, which may affect the appearance of tumor on MRI (63)

(“pseudoresponse”). Radiotherapy can cause “pseudoprogression,”

where dying cells cause imaging enhancement that can be difficult

to distinguish from actively growing tumor cells (64, 65). The

addition of perfusion MRI may improve our characterization of

treatment effects and provide better initializations of the model.

Finally, it may be possible to improve the agreement and

containment measures with a more sophisticated model of cell

motility than isotropic diffusion. Diffusion tensor imaging (DTI)—

either of individual patients or by applying an averaged DTImap over

many patients—may be useful in reaction-diffusion models of glioma

progression (66). Analogous approaches involve viscous stress

tensors (67). In addition, the traveling-wave characteristics of the

Fisher and ASU-Barrow models may allow better initialization of

tumor cell populations in edematous regions (48, 52).
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