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Better performance of cerebral
blood volume images synthesized
from arterial spin labeling and
standard MRI in separating
glioblastoma recurrence
from treatment response
than arterial spin labeling
Danyang Wu1, Yongsheng Pan2, Yunxiao Zhou1, Cuiyan Wang3,
Jingzhen He1, Jiaxin Xiang4 and Bao Wang1*

1Department of Radiology, Qilu Hospital of Shandong University, Jinan, China, 2School of Computer
Science and Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China, 3Department
of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University,
Jinan, China, 4MR Research Collaboration, Siemens Healthineers Ltd., Shanghai, China
Cerebral blood volume (CBV) maps play an important role in the differential

diagnosis between glioblastoma recurrence and treatment response. However, it

needs high injective velocity. This study aimed to synthesize CBV maps from

arterial spin labeling (ASL) and standard MRI sequences using a deep learning

method and to validate its discriminating value. A total of 744 MRI scans from 364

patients were included in this retrospective, single-institution study. A three-

dimensional (3D) incrementable encoder–decoder network (IEDN) designed for

an asymmetrical sample size was trained to synthesize the CBV maps from ASL

and the standard MRIs. The synthetic performance was evaluated quantitatively

using the structural similarity index (SSIM) and the peak signal-to-noise ratio

(PSNR) and qualitatively using a four-point Likert scale (from 0 to 3). In 96 patients

suspected of glioblastoma recurrence vs. treatment response as the external test

set from a hospital-based cohort, the difference in the additive value between

synthetic CBVmaps and ASL to standard MRIs was examined using the Z test. The

best algorithm appeared to be achieved by the 3D IEDN with ASL + T1-weighted

imaging (T1WI) + T2-weighted imaging (T2WI) + apparent diffusion coefficient

(ADC) maps + post-contrast T1WI (SSIM = 88.69 ± 3.97%, PSNR = 32.76 ± 3.39

dB). For the image quality scores, the mean image quality score for all synthetic

CBV maps was 2.90. Standard MRI plus synthetic CBV maps had better

performance than standard MRI and ASL scans in the differential diagnosis

between tumor recurrence and treatment response (p = 0.019). Therefore, 3D
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IEDN produced qualified synthetic CBV maps without the need for high injective

velocity from ASL and standard MRIs. The synthetic CBV maps achieved better

performance in the differential diagnosis between glioblastoma recurrence and

treatment response.
KEYWORDS

arterial spin labeling, cerebral blood volume, tumor recurrence, glioblastoma, magnetic
resonance imaging
Introduction

Patients with glioblastoma often fall into a pitfall of confusing

tumor recurrence with treatment response after radiotherapy (1, 2).

Standard MRI has quite limited values in differentiating recurrence

from radionecrosis (3). Cerebral blood volume (CBV) maps may be

the most commonly used and the recommended advanced MRI

technique for the differential diagnosis between tumor recurrence

and treatment response (4). This technique requires a much more

exogenous contrast agent and a much higher injective velocity to

guarantee an important phenomenon called the “bolus effect.” (5).

In clinical practice, in comparison with the condition in which

patients have adverse reactions to the gadolinium contrast agent, a

more commonly seen clinical scenario is that patients undergoing

radiochemotherapy often have a fragile vessel such that a much

higher injective velocity of the contrast agent is prohibited. As the

contrast agent could only be injected with a very low velocity, this

means that the “bolus effect” for CBV estimation could not be

guaranteed. Arterial spin labeling (ASL) is a well-known brain

perfusion evaluation technique that does not require exogenous

contrast and the bolus injection effect (6, 7). However, ASL often

has false-negative results when identifying the nature of the

enhancing lesions with a low flow rate (8) and when it

encounters vascular variation (9). Therefore, “bolus effect”-

independent CBV maps are meaningful for these patients.

Both cerebral blood flow maps derived from ASL (CBF-ASL)

and CBV maps derived from dynamic susceptibility contrast-MRI

(DSC-MRI) are used for the differential diagnosis between tumor

recurrence and treatment response (6, 10). Although CBF and CBV

are distinct perfusion metrics, deep learning has demonstrated

excellent image translation performance across different MRI

modalities (11–13), even MR perfusion modalities (14). Because

standard MRI and CBF-ASL do not require the bolus effect, image

translation work from standard MRI and CBF-ASL into CBV maps

with deep learning appears to be the recommended method for the

generation of “bolus effect”-independent CBV maps. However,

comparison of the performance of this type of synthetic CBV

maps with that of ASL in the differential diagnosis between

glioblastoma recurrence and treatment response has yet to

be explored.
02
Therefore, this study aimed to explore the feasibility of

synthesizing “bolus effect”-independent CBV maps from ASL and

standard MRI scans and to validate its performance in the differential

diagnosis between tumor recurrence and treatment response.
Materials and methods

Study sample

In this retrospective study, all MRI examinations of brain

tumors with quantitative CBV maps and ASL performed between

December 2016 and July 2019 were retrieved from the picture

archiving and communication system of the Radiology Department.

The inclusion criteria were as follows: 1) primary and recurrent

primary brain tumors confirmed by pathological results; 2) brain

metastases confirmed by pathological results; and 3) follow-up

MRIs available for patients in 1) and 2). The exclusion criteria

were: 1) compromised quality of the CBV maps; 2) compromised

quality of the ASL maps; 3) compromised image quality of the

standard MRIs; and 4) patients less than 18 years old.

The data used in this study overlapped those of a previous study

that explored the possibility of generating CBV maps from standard

MRI scans using a deep learning-based technique (11). This

retrospective study was approved by the local ethics committee.

All experiments were performed in compliance with the

Declaration of Helsinki. As this is a retrospective study, the

requirement for informed consent was waived after approval of

the local ethics committee.
Image acquisition and preprocessing

All patients were imaged in the supine position on a 3-T MRI

scanner (Magnetom, Skyra; Siemens Healthineers, Forchheim,

Germany) using a transmit/receive quadrature 20-channel head-and-

neck coil. The imaging protocol was the same for all patients. In our

institution, a three-dimensional (3D) ASL with a single post-labeling

delay was used. Detailed information on the MRI protocols and the

ASL and CBV maps are summarized in Supplementary Methods 1–3.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1647254
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2025.1647254
3D incrementable encoder–decoder
network

In a previous study, the 3D encoder–decoder network showed

the best performance in synthesizing quantitative CBV maps (11).

This method was used in this study. However, in consideration of

the relatively small number of paired ASL and CBV maps,

experiments on a small number of subjects may not be able to

derive a convincing conclusion. Therefore, an incrementable

encoder–decoder network (IEDN) that can learn from many

subjects, only a small number of which have ASL images, was

proposed. This means that a dataset without ASL, but with standard

MRI [including T1-weighted imaging (T1WI), T2-weighted

imaging (T2WI), T2-weighted fluid-attenuated inversion recovery

imaging (T2-FLAIR), apparent diffusion coefficient (ADC) maps,

and post-contrast T1WI] and CBVmaps, could be maintained. This

specific design contributes to the improvement of the training

performance. The input MRI modalities included standard MRI

scans and ASL, and 16 types of modality combinations were used.

The ground-truth MRI modality comprised the CBV maps.

The structure of the IEDN is shown in Figure 1, which contains

an encoder Em for each MRI modality and a decoder DCBV for the

CBV modality. The latent feature maps of multiple encoders were

averaged into a mixture feature map, which enables the structure to
Frontiers in Oncology 03
not be affected by the absence of any modality. Denote S =

ST1, ST2,⋯, SASLf g as a subject with multiple MRI modalities and

A = aT1, aT2,⋯, aASLf g indicates their status of absence (am = 1 for

present and am = 0 for absence, m ∈ T1, T2,⋯, ASLf g), its CBV
image can be estimated as:

SCBV = DCBV
om   amEm Smð Þ

om   am

� �

Unlike the previous study that trained a model for each

modality combination, this study generally applied one model to

any modality combination. Based on the IEDN, we can train a

model with ASL using the same subjects as those in our previous

study and set aASL=0 to simulate a model without ASL. In this study,

both the IEDN and the primary 3D encoder–decoder models were

used for training.

The MRI scans were randomly split into approximately 3:1 for

the training and the test sets. There was no validation set. Instead,

the networks were trained constantly for 500 epochs. Multiple scans

of the same subjects were aligned to T1-MRI to ensure that they

were of the same resolution and voxel spacing. As most of the

subjects did not have misalignments between the different scans,

only reslicing was performed. The misalignment in several subjects

was corrected by linear registration. We used the Adam optimizer

with a mean absolute error and set the learning rate to 0.001.
FIGURE 1

Structure of the incrementable encoder–decoder network (IEDN), which duplicates an encoder part Em for each modality and calculates a weighted
average of the latent feature maps of all encoders before inputting them into the decoder part. A subject with any absent image, Sm, can also be
inputted into this network by setting the corresponding weight am to 0, thus can be trained or applied to all subjects.
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The codes were implemented in Python (version 3.10) with

PyTorch2.1 and were uploaded in GitHub (https://github.com/

YongshengPan/ASLwMRItoCBV), which require the GNU

General Public License (GNU GPL).
Evaluation of the synthetic “bolus effect”-
independent CBV maps from the internal
dataset

For quantitative evaluation, the structure similarity index

measure (SSIM) and the peak signal-to-noise ratio (PSNR) were

used to assess the quality of the synthetic “bolus effect”-

independent CBV maps. The range of the SSIM was [0, 1], and a

larger value indicates better image quality (15). PSNR > 40 dB

indicates very good quality, 30 dB ≤ PSNR < 40 dB indicates

good (acceptable) quality, 20 dB ≤ PSNR < 30 dB denotes bad

quality, and PSNR < 20 dB indicates very bad (unacceptable)

quality. Detailed information on SSIM has been described

previously (11). The SSIM and PSNR were calculated over the

bounding box of each brain.

Qualitative evaluation of the synthetic CBV maps was based on

a four-point Likert scale (0, very poor; 1, poor; 2, good; and 3, very

good) using the following criteria: overall perfusion distribution of

the lesions, overall perfusion degree of the lesions, and the border

and shape of the lesion in contrast to the real CBV maps. The

assessments were performed by two neuroradiologists (BW and

CW, with 9 and 18 years’ experience in MRI perfusion,

respectively). In case of divergence, consensus was reached by

these two radiologists after a discussion. The initial scores were

also recorded for consistent evaluation.
Value of the synthetic “bolus effect”-
independent CBV maps in differentiating
recurrence from treatment response

External datasets containing only the standard MRI scans and

ASL were used in this study. Synthetic “bolus effect”-independent

CBV maps were generated from the best combination of the

training model and modalities. The value of synthetic “bolus

effect”-independent CBV maps in the discrimination between

tumor recurrence and treatment response was evaluated by two

radiologists (BW and XL, with 17 years’ experience). The datasets

were from Qilu Hospital of Shandong University (N = 96). For

diagnostic accuracy, the values of the standard MRI scans plus ASL

and the standard MRI scans plus synthetic “bolus effect”-

independent CBV maps were compared. Inter-observer

agreement was evaluated after an independent image review. In

cases of disagreement between the two radiologists, any

discrepancies in the diagnosis were resolved by a third fellowship

trained radiologist (JH, with 18 years’ experience). Details of the

evaluation methods are provided in Supplementary Method 4.
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Statistical analysis

A within-group inter-rater reliability statistic (rwg) was

calculated to evaluate the inter-observer agreement regarding the

image quality scores. Individual intraclass correlation coefficients

(ICCs) with two-way random effects models were used to evaluate

the inter-observer agreement regarding the differential diagnosis.

The level of agreement was considered very good at a rwg or ICC

value ≥0.9, good at 0.70–0.89, fair at 0.50–0.69, and poor at ≤0.49.

For model performance evaluation, the differences in the SSIM

between the two models were compared using a paired t-test.

The area under the curve (AUC) for each model (standard

MRIs + ASL vs. standard MRIs + synthetic “bolus effect”-

independent CBV maps) was calculated and compared for

statistical significance. Differences were considered statistically

significant at a two-sided p-value <0.05. Statistical analyses were

performed by BW using R version 3.2.0 (www.r-project.org) and

MATLAB (version 2023a; MathWorks, Inc., Natick, MA, USA).
Results

Study population

Of the 233MRI scans with ASL (123 patients, 92 men; mean age =

57.2 ± 9.4 years, range = 18–72 years), 10 (5.3%) were excluded due to

the compromised image quality of the quantitative CBV maps caused

by metal susceptibility artifacts and error registration, 12 (6.4%) scans

were excluded due to the compromised image quality of ASL resulting

from patient head motion, and 3 (1.6%) MRI scans were excluded due

to the compromised image quality of the standard MRI sequences. Of

the 585 MRI scans without ASL, 34 (5.8%) scans were excluded due to

the compromised image quality of the CBVmaps and 15 (2.6%) scans

were excluded due to the compromised image quality of the standard

MRI sequences. Finally, 208 MRI scans with ASL from 129 patients

(78 men; mean age = 57.0 ± 9.2 years) and 536 MRI scans without

ASL from 235 patients (122 men; mean age = 58.9 ± 10.3 years) were

included in this study. The study sample is shown in Figure 2. Detailed

information of the study sample is summarized in Table 1.
Evaluation of all algorithms with different
sequence combinations

The results of the 17 generative models for the two algorithms

in the validation cohort are summarized in Table 2. The best

algorithm without post-contrast T1WI appeared to be achieved

by IEDN with ASL+T1WI+T2WI+ADC maps (SSIM = 85.52 ±

3.93%, PSNR = 31.43 ± 3.24 dB). The best 3D encoder–decoder

algorithm also appeared to be achieved with ASL+T1WI+T2WI

+ADC maps (SSIM = 85.33 ± 4.45%, PSNR = 31.19 ± 3.23 dB). The

best IEDN algorithm showed a slightly better performance than the

3D encoder–decoder (p = 0.003). The algorithm with the worst
frontiersin.or
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performance was the 3D encoder–decoder model with ASL only

(SSIM = 77.48 ± 4.21%, PSNR = 29.29 ± 2.43 dB). The best

algorithm had a significant improvement than that with the ASL-

CBF only (p < 0.001). Furthermore, the addition of post-contrast

T1WI could significantly improve the performance of the best

algorithm without post-contrast T1WI (SSIM = 88.69 ± 3.97%, p

< 0.001; PSNR = 32.76 ± 3.39 dB, p < 0.001). Therefore, the best

combination of the training model and the MRI modalities was the

IDEN model with ASL+T1WI+T2WI+ADC maps+post-contrast

T1WI. The standard MRI, ASL, synthetic CBV maps, and ground-

truth CBV maps are illustrated in Figure 3.
Qualitative evaluation of the synthesized
“bolus effect”-independent CBV maps

Synthetic “bolus effect”-independent CBVmaps generated from

the IEDN with ASL+T1WI+T2WI+ADC maps+post-contrast

T1WI were used for qualitative evaluation. The inter-observer
Frontiers in Oncology 05
agreement for the quality of the synthetic “bolus effect”-

independent CBV maps was good (within-group r = 0.89). The

mean image quality score for all the synthetic “bolus effect”-

independent CBV maps was 2.90. For the image quality scores,

the percentages of the images given one point (rated as poor

quality), two points (good quality), and three points (very good

quality) were 1% (2/208), 8.2% (17/208), and 90.8% (189/

208), respectively.
Diagnostic accuracy of the synthetic “bolus
effect”-independent CBV maps compared
with ASL in differentiating glioblastoma
recurrence from treatment response

Of the 96 patients suspected of glioblastoma recurrence vs.

treatment response after radiotherapy, 45 (46.9%) had a diagnosis

of tumor recurrence and 52 (53.1%) of treatment response. The

standard MRIs plus synthetic “bolus effect”-independent CBVmaps
FIGURE 2

Data collection flowchart. MRI scans for inclusion screening and the final study sample. DSC, dynamic susceptibility contrast; ASL, arterial spin
labeling; CBV, cerebral blood volume.
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showed better performance than the standard MRIs plus ASL in

differential diagnosis (standard MRIs + ASL: AUC = 0.76, 95%CI =

0.68–0.85; standard MRIs + synthetic “bolus effect”-independent

CBV: AUC = 0.87, 95%CI = 0.80–0.94; p = 0.019) (Table 3), and

there was very good agreement between the two evaluations (ICC =

0.84, 95%CI = 0.79–0.88). The improvements were attributed to the

improved accuracy in diagnosing tumor recurrence. Illustrations of

the improved accuracy in diagnosing tumor recurrence are shown

in Figure 4.
Discussion

Image translation from ASL and standard MRI scans to

synthetic “bolus effect”-independent CBV maps is extremely

important for patients in whom the qualified “bolus effect” of

DSC-MRI could not be guaranteed (4, 5) as the gadolinium-based

contrast agent could only be injected with a very low velocity. In this

study, it was found that this image translation work is feasible using

a deep learning method. The best algorithm was finally achieved

with IEDN with ASL+T1WI+T2WI+ADC maps+post-contrast

T1WI (SSIM = 88.69 ± 3.97%; PSNR = 32.76 ± 3.39 dB). In

addition, standard MRI plus synthetic “bolus effect”-independent
TABLE 2 Results of the 17 generative models of two algorithms from ASL and standard MRI scans.

Sequence
SSIM (%) PSNR (dB)

3D IDEN 3D encoder–decoder 3D IDEN 3D encoder–decoder

ASL-CBF only 78.66 ± 4.91 77.48 ± 4.21 29.44 ± 2.69 29.29 ± 2.43

ASL-CBF+T2 83.54 ± 5.36 82.81 ± 4.17 30.92 ± 3.31 30.20 ± 2.85

ASL-CBF+T1 83.45 ± 4.00 83.15 ± 4.27 30.71 ± 2.90 30.32 ± 2.89

ASL-CBF+T2-FLAIR 83.23 ± 3.84 83.12 ± 4.14 30.70 ± 2.88 30.55 ± 2.93

ASL-CBF+ADC 84.81 ± 3.83 83.88 ± 4.10 30.91 ± 3.05 30.80 ± 3.04

ASL-CBF+T1+T2 84.87 ± 4.30 84.64 ± 4.41 31.08 ± 3.10 30.63 ± 3.01

ASL-CBF+T1+T2-FLAIR 83.94 ± 3.99 83.64 ± 4.41 31.06 ± 3.02 30.73 ± 3.04

ASL-CBF+T1+ADC 85.10 ± 3.77 84.62 ± 4.32 31.16 ± 3.09 30.88 ± 3.09

ASL-CBF+T2-FLAIR+ADC 85.06 ± 3.80 84.50 ± 4.33 31.17 ± 3.12 30.94 ± 3.12

ASL-CBF+T2+T2-FLAIR 84.87 ± 4.32 83.52 ± 4.39 31.10 ± 3.13 30.96 ± 3.12

ASL-CBF+T2+ADC 85.36 ± 4.08 85.09 ± 4.32 31.44 ± 3.31 31.15 ± 3.22

ASL-CBF+T1+T2+T2-FLAIR 85.22 ± 4.17 84.79 ± 4.50 31.14 ± 3.11 31.00 ± 3.15

ASL-CBF+T1+T2+ADC 85.52 ± 3.93 85.33 ± 4.45 31.43 ± 3.24 31.19 ± 3.23

ASL-CBF+T2+T2-FLAIR+ADC 85.43 ± 3.97 85.21 ± 4.45 31.42 ± 3.26 31.10 ± 3.20

ASL-CBF+T1+T2-FLAIR+ADC 85.06 ± 3.81 84.75 ± 4.43 31.18 ± 3.09 30.89 ± 3.11

ASL-CBF+T1+T2+T2-FLAIR+ADC 85.42 ± 3.94 85.31 ± 4.52 31.39 ± 3.21 31.05 ± 3.18

ASL-CBF+T1+T2+ADC+post-contrast T1WI 88.69 ± 3.97 86.68 ± 4.65 32.76 ± 3.39 32.45 ± 3.45
SSIM, structure similarity index measure; PSNR, peak signal-to-noise ratio; IDEN, incrementable encoder–decoder network; ASL-CBF, cerebral blood flow derived from arterial spin labeling
technique; T2-FLAIR, T2-weighted fluid-attenuated inversion recovery; ADC, apparent diffusion coefficient.
The bold text means the best SSIM values of models without postcontrast T1WI.
TABLE 1 Clinical information of the study sample used for image
translation training.

No. of patients 364

No. of MRI scans 744

Mean no. of scans per patient (range) 2.12 (1–5)

Mean age (years) 58.53 ± 10.16

Sex

Men 200 (54.9%)

Women 164 (45.1%)

Type of brain disease

Glioma 132 (36.3%)

Brain metastasis 180 (49.5%)

Meningioma 16(4.4%)

Lymphoma 12 (3.3%)

Medulloblastoma 14 (3.8%)

Othera 10 (2.7%)
Unless otherwise stated, data are presented as the number of patients with percentages
in parentheses.
aIncluding solitary fibrous tumors and germinomas.
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CBV maps had better performance than standard MRI plus ASL

scans in the differential diagnosis between tumor recurrence and

treatment response (p = 0.019).

In clinical practice, ASL has great advantages over DSC-MRI

among patients with hemorrhage, metal implants, and those with

no access to a contrast agent (16). However, its low spatial

resolution and low signal-to-noise ratio limit its wider clinical

application (7, 16). Although MR machines of higher-strength

fields are used to improve the spatial resolution and signal-to-

noise ratio of ASL, their quality is not comparable to that of DSC-

MRI even from 1.5-T machines (8). Moreover, the results of ASL

sometimes require professional interpretation as certain physical

and physiological parameters could affect the quality of the ASL

image (7, 16). Therefore, generation of perfusion maps with higher

spatial resolution and signal-to-noise ratio, but without contrast

agent administration, is meaningful in clinical practice.

Although both ASL and CBV maps are perfusion techniques,

they vary in terms of perfusion values and patterns, as well as in

physiological aspects (8, 17). Our work should be separated from

other image translation works that synthesized high-resolution

images from low-resolution images (18) (e.g., from low-resolution

to high-resolution ASL maps). They are different deep learning

works, and they need different paired image data for training.

One of the advantages of our datasets is that quantitative CBV

maps (19) paired with ASL maps were used. We considered

quantitative CBV maps as being able to maintain the quantitative

characteristics of ASL during the model training and to facilitate our

quantitative evaluation of the model performance. In addition, the

generation of the “bolus effect”-independent CBV maps in this

study was both arterial input function-independent and operator-

independent (19), and the availability of this type of CBVmaps used

as ground-truth data may enable a reliable synthesis of “bolus

effect”-independent CBV maps.

Our previous study (11) demonstrated that CBV maps could be

generated from standard MRI scans, while the image translation

work from structural MRIs to advanced MRIs may have a weak

biological and technical interpretability. The addition of ASL into

the training process of the deep learning network may improve the

medical interpretability of the image translation work. Moreover, in

our previous study with only standard MRI, the best SSIM of 86.29

± 4.30 was reached. In this study, after retraining, with the addition

of ASL into the training modalities, the best SSIM of 88.69 ± 3.97

was achieved (paired t-test: p < 0.001). This result emphasizes the

additive value of ASL in improving synthetic performance to

standard MRI.
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The commonly used ASL is often with a single post-labeling

delay, which has great influence on its cerebral blood flow maps

(16). For the suspected lesions in the deep white matter region,

particularly for relatively small lesions in the centrum semiovale, the

appropriate pulse labeling delay times vary (8). This may be the

reason for the ASL sometimes showing an underestimated

perfusion in the suspected lesions. However, the synthetic “bolus

effect”-independent CBV maps could help remind observers

whether there is an overestimation or an underestimation. In

addition, radiologists should pay more attention to ASL-negative

patients after radiotherapy.

Synthetic CBV maps from standard MRIs have limited

biological interpretability due to their nature of being from

structural to functional images. However, the addition of ASL to

standard MRI appears more sufficient for radiologists due to both

CBF-ASL and CBV maps being brain perfusion techniques. On the

other hand, the synthetic process of deep learning methods has to

be addressed as it is still unexplored in that the physiological

features that play important roles in the whole process are still

unknown. This is the core limitation of deep learning. The clinical

value of this study is that the synthetic CBV maps could provide

more radiological evidence for radiologists whether the true CBV

maps cannot be acquired due to patient or machine factors.

Satragno et al. (20) found that systemic inflammation markers

also demonstrated value in differential diagnosis. The addition of

this biomarker information to the synthetic process may further

reinforce its biological plausibility and clinical relevance.

This study has several limitations. Firstly, although certain

techniques that focus on small samples were used, the training

dataset sample was relatively small for the image translation work.

Moreover, a number of scans were from the same subjects, which

may be transported to the training and test sets separately, and the

final results would have been influenced by selective bias. Secondly,

the ASL technique with multiple pulse labeling delay times (21) was

not used in this study and could not be compared with either ASL

with single post-labeling delay or the synthetic CBV maps. Thirdly,

based on our clinical experience in differential diagnosis between

tumor recurrence and treatment response, the extent, the size, and

the location of the enhancing lesions may have an influence on the

ASL results. Attention should be paid to the possible selection bias

resulting from the study cohort. Fourthly, comparison of the

diagnostic performance between the synthetic CBV maps and the

actual contrast-enhanced CBV maps was not performed as we did

not have enough data for the differential diagnosis between

glioblastoma recurrence and treatment response that had both
TABLE 3 Comparison of the performance between standard MRIs plus ASL and synthetic CBV maps in the differential diagnosis of recurrence and TR.

Diagnostic
scenario

Standard MRI+ASL Standard MRI+ synthetic CBV Z test
p-valueAUC Sensitivity Specificity AUC Sensitivity Specificity

Recurrence vs. TR 0.76 (0.68–0.85) 0.65 (0.52–0.76) 0.89 (0.78–0.95) 0.87 (0.80–0.94) 0.82 (0.71–0.90) 0.88 (0.75–0.94) 0.019
CBV, cerebral blood volume; ASL, arterial spin labeling; AUC, area under the receiver operating characteristic curve; TR, treatment response.
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FIGURE 3

Illustration of the standard MRI, ASL, synthetic CBV maps, and ground-truth CBV maps. (A) Standard MRI, ASL, and synthetic CBV and ground-truth
CBV maps from a 53-year-old female patient diagnosed with astrocytoma (WHO grade IV). Although the tumor is not obviously enhanced, both the
ASL and CBV maps show hypoperfusion within the tumor. Both synthetic CBV maps with or without post-contrast T1WI for synthesis are similar to
the ground-truth maps. (B) Standard MRI, ASL, and synthetic CBV and ground-truth CBV maps from a 47-year-old male patient diagnosed with
astrocytoma (WHO grade II). Although the tumor has a heterogenous signal intensity pattern, both the ASL and CBV maps show hypoperfusion
within the tumor. Both synthetic CBV maps with or without post-contrast T1WI for synthesis are similar to the ground-truth map. (C) Standard MRI,
ASL, and synthetic CBV and ground-truth CBV maps from a 63-year-old female patient 3 months after radio- and chemotherapy with glioblastoma
(who was finally diagnosed as an early treatment response). Although the abnormal region is obviously enhanced, both the ASL and CBV maps show
hypoperfusion within the region. Both synthetic CBV maps with or without post-contrast T1WI for synthesis are similar to the ground-truth map.
sCBV with ASL denotes that the synthetic CBV map was generated only from ASL; sCBV without T1_C indicates that the synthetic CBV map was
generated from ASL, T2WI, T1WI, and ADC maps; sCBV with T1_C means that the synthetic CBV map was generated from ASL, T2WI, T1WI, ADC
maps, and post-contrast T1WI. T2-FLAIR, T2-weighted fluid-attenuated inversion recovery imaging; ADC, apparent diffusion coefficient; ASL, arterial
spin labeling; sCBV, synthetic cerebral blood volume map; T1_C, post-contrast T1-weighted images.
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ASL and actual contrast-enhanced CBV maps. Finally, although

IEDN was able to handle missing modalities in our CBV synthesis,

its generalization needs further validation in common real-world

artifacts, variations in the scanner hardware, or patient motion.

In conclusion, we performed an image translation work from

ASL maps and standard MRIs to generate synthetic “bolus effect”-
Frontiers in Oncology 09
independent CBV maps, with the synthetic CBV maps

showing better additive value to standard MRIs than ASL in

discriminating between tumor recurrence and treatment response

in glioblastoma after radiotherapy. However, further studies with

larger datasets should be performed to further validate its

clinical value.
FIGURE 4

Illustration of the improved accuracy in diagnosing tumor recurrence. (A) A new enhancing lesion that appeared in the radiotherapeutic region 3
months after radiochemotherapy in a 65-year-old female patient with glioblastoma. ASL showed hypoperfusion within the enhancing region, while
synthetic CBV showed hypoperfusion (arrow). A confirmed dynamic susceptibility contrast MRI (DSC-MRI) was then performed, with the relative CBV
also demonstrating hypoperfusion the same as the synthetic CBV (arrow). The synthetic CBV map correctly recognized the false-negative
recurrence lesion in ASL. (B) An enlarged enhancing lesion that appeared in the radiotherapeutic region 2 months after radiochemotherapy in a 76-
year-old female patient with glioblastoma. ASL showed hypoperfusion within the enhancing region, while synthetic CBV showed hypoperfusion
(arrow). A confirmed DSC-MRI was then performed, with the relative CBV also demonstrating hypoperfusion the same as the synthetic CBV (arrow).
The synthetic CBV map correctly recognized the false-negative recurrence lesion in ASL. Both patients were diagnosed with tumor recurrence
based on further pathological results and received laser interstitial thermal therapy. The TTP maps from both cases demonstrated an obviously
delayed time to peak, indicating that the mismatch between the post-labeling delay time and the real time to peak may be responsible for the
underestimated perfusion of ASL. ASL, arterial spin labeling; sCBV, synthetic non-contrast cerebral blood volume map; TTP, time-to-peak map.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1647254
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2025.1647254
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Ethics statement

The studies involving humans were approved by Qilu Hospital

of Shandong University. The studies were conducted in accordance

with the local legislation and institutional requirements. The ethics

committee/institutional review board waived the requirement of

written informed consent for participation from the participants or

the participants’ legal guardians/next of kin because this is a

retrospective study that we cannot get the written informed

consent from enrolled patients.
Author contributions

YP: Data curation, Formal analysis, Methodology, Writing –

original draft. YZ: Data curation, Formal analysis, Visualization,

Writing – original draft. DW: Data curation, Investigation,

Methodology, Writing – original draft. CW: Resources,

Supervision, Validation, Writing – review & editing. JH:

Resources, Supervision, Validation, Writing – review & editing.

JX: Investigation, Software, Visualization, Writing – review &

editing. BW: Funding acquisition, Software, Writing – original

draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the research

and/or publication of this article. This work was supported in part to the

National Natural Science Foundation of China (82202114).
Frontiers in Oncology 10
Conflict of interest

Author JX was employed by the company Siemens

Healthineers Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1647254/

full#supplementary-material
References
1. Schaff LR, Mellinghoff IK. Glioblastoma and other primary brain Malignancies in
adults: A review. JAMA. (2023) 329:574–87. doi: 10.1001/jama.2023.0023

2. McKinnon C, Nandhabalan M, Murray SA, Plaha P. Glioblastoma: clinical
presentation, diagnosis, and management. BMJ. (2021) 374:n1560. doi: 10.1136/bmj.n1560

3. Wang H, Zeng L, Wu H, Tian J, Xie H, Zhang L, et al. Preoperative vascular
heterogeneity based on dynamic susceptibility contrast MRI in predicting spatial
pattern of locally recurrent high-grade gliomas. Eur Radiol. (2024) 34:1982–93.
doi: 10.1007/s00330-023-10149-6

4. Boxerman JL, Shiroishi MS, Ellingson BM, Pope WB. Dynamic susceptibility
contrast MR imaging in glioma. Magn Reson Imaging Clin N Am. (2016) 24:649–70.
doi: 10.1016/j.mric.2016.06.005

5. Essig M, Shiroishi MS, Nguyen TB, Tian J, Xie H, Zhang L, et al. Perfusion MRI:
the five most frequently asked technical questions. Am J Roentgenol. (2013) 200:24–34.
doi: 10.2214/AJR.12.9543

6. Luna LP, Ahmed A, Daftaribesheli L, Deng F, Intrapiromkul J, Lanzman BA, et al.
Arterial spin labeling clinical applications for brain tumors and tumor treatment
complications: A comprehensive case-based review. Neuroradiol J. (2023) 36:129–41.
doi: 10.1177/19714009221114444
7. Abdel Razek AAK, Talaat M, El-Serougy L, Gaballa G, Abdelsalam M. Clinical
applications of arterial spin labeling in brain tumors. J Comput Assist Tomogr. (2019)
43:525–32. doi: 10.1097/RCT.0000000000000873

8. Warmuth C, Gunther M, Zimmer C. Quantification of blood flow in brain
tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted
contrast-enhanced MR imaging. Radiology. (2003) 228:523–32. doi: 10.1148/
radiol.2282020409

9. Noorbakhsh A, Farid N, Bolar DS. Apparent posterior cerebral artery territory
perfusion asymmetry on arterial spin labeling MRI is a common non-pathologic
finding in patients with a unilateral fetal posterior cerebral artery. Neuroradiology.
(2022) 64:513–20. doi: 10.1007/s00234-021-02794-9

10. Zhang J, Wang Y, Wang Y, Xiao H, Chen X, Lei Y, et al. Perfusion magnetic
resonance imaging in the differentiation between glioma recurrence and
pseudoprogression: a systematic review, meta-analysis and meta-regression. Quant
Imaging Med Surg. (2022) 12:4805–22. doi: 10.21037/qims-22-32

11. Wang B, Pan Y, Xu S, Zhang Y, Ming Y, Chen L, et al. Quantitative cerebral
blood volume image synthesis from standard MRI using image-to-image translation for
brain tumors. Radiology. (2023) 308:e222471. doi: 10.1148/radiol.222471
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2025.1647254/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1647254/full#supplementary-material
https://doi.org/10.1001/jama.2023.0023
https://doi.org/10.1136/bmj.n1560
https://doi.org/10.1007/s00330-023-10149-6
https://doi.org/10.1016/j.mric.2016.06.005
https://doi.org/10.2214/AJR.12.9543
https://doi.org/10.1177/19714009221114444
https://doi.org/10.1097/RCT.0000000000000873
https://doi.org/10.1148/radiol.2282020409
https://doi.org/10.1148/radiol.2282020409
https://doi.org/10.1007/s00234-021-02794-9
https://doi.org/10.21037/qims-22-32
https://doi.org/10.1148/radiol.222471
https://doi.org/10.3389/fonc.2025.1647254
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2025.1647254
12. Takita H, Matsumoto T, Tatekawa H, Katayama Y, Nakajo K, Uda T, et al. AI-
based virtual synthesis of methionine PET from contrast-enhanced MRI: development
and external validation study. Radiology. (2023) 308:e223016. doi: 10.1148/radiol.223016

13. Benzakoun J, DeslysMA, Legrand L, Hmeydia G, Turc G, HassenWB, et al. Synthetic
FLAIR as a substitute for FLAIR sequence in acute ischemic stroke. Radiology. (2022)
303:153–9. doi: 10.1148/radiol.211394

14. Sanders JW, Chen HS, Johnson JM, Schomer DF, Jimenez JE, Ma J, et al.
Synthetic generation of DSC-MRI-derived relative CBV maps from DCE MRI of brain
tumors. Magn Reson Med. (2021) 85:469–79. doi: 10.1002/mrm.28432

15. Maruyama S. Properties of the SSIM metric in medical image assessment:
correspondence between measurements and the spatial frequency spectrum. Phys
Eng Sci Med. (2023) 46:1131–41. doi: 10.1007/s13246-023-01280-1

16. Grade M, Hernandez Tamames JA, Pizzini FB, Achten E, Golay X, Smits M. A
neuroradiologist’s guide to arterial spin labeling MRI in clinical practice.
Neuroradiology. (2015) 57:1181–202. doi: 10.1007/s00234-015-1571-z

17. Luan J, Wu M, Wang X, Qiao L, Guo G, Zhang C. The diagnostic value of
quantitative analysis of ASL, DSC-MRI and DKI in the grading of cerebral gliomas: a
Frontiers in Oncology 11
meta-analysis. Radiat Oncol Lond Engl. (2020) 15:204. doi: 10.1186/s13014-020-
01643-y

18. You C, Yang Q, Shan H, Gjesteby L, Li G, Ju S, et al. Structurally-sensitive multi-
scale deep neural network for low-dose CT denoising. IEEE Access Pract Innov Open
Solut. (2018) 6:41839–55. doi: 10.1109/ACCESS.2018.2858196

19. Srour JM, Shin W, Shah S, Sen A, Carroll TJ. SCALE-PWI: A pulse sequence for
absolute quantitative cerebral perfusion imaging. J Cereb Blood Flow Metab. (2011)
31:1272–82. doi: 10.1038/jcbfm.2010.215

20. Satragno C, Schiavetti I, Cella E, Picichè F, Falcitano L, Resaz M, et al.
Systemic inflammatory markers and volume of enhancing tissue on post-contrast
T1w MRI images in differentiating true tumor progression from pseudoprogression
in high-grade glioma. Clin Transl Radiat Oncol. (2024) 49:100849. doi: 10.1016/
j.ctro.2024.100849

21. Damestani NL, Jacoby J, Michel CB, Rashid B, Salat DH, Juttukonda MR.
MRI assessment of cerebral white matter microvascular hemodynamics across
the adult lifespan. J Magn Reson Imaging JMRI. (2024) 60:1549–62. doi: 10.1002/
jmri.29217
frontiersin.org

https://doi.org/10.1148/radiol.223016
https://doi.org/10.1148/radiol.211394
https://doi.org/10.1002/mrm.28432
https://doi.org/10.1007/s13246-023-01280-1
https://doi.org/10.1007/s00234-015-1571-z
https://doi.org/10.1186/s13014-020-01643-y
https://doi.org/10.1186/s13014-020-01643-y
https://doi.org/10.1109/ACCESS.2018.2858196
https://doi.org/10.1038/jcbfm.2010.215
https://doi.org/10.1016/j.ctro.2024.100849
https://doi.org/10.1016/j.ctro.2024.100849
https://doi.org/10.1002/jmri.29217
https://doi.org/10.1002/jmri.29217
https://doi.org/10.3389/fonc.2025.1647254
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Better performance of cerebral blood volume images synthesized from arterial spin labeling and standard MRI in separating glioblastoma recurrence from treatment response than arterial spin labeling
	Introduction
	Materials and methods
	Study sample
	Image acquisition and preprocessing
	3D incrementable encoder–decoder network
	Evaluation of the synthetic “bolus effect”-independent CBV maps from the internal dataset
	Value of the synthetic “bolus effect”-independent CBV maps in differentiating recurrence from treatment response
	Statistical analysis

	Results
	Study population
	Evaluation of all algorithms with different sequence combinations
	Qualitative evaluation of the synthesized “bolus effect”-independent CBV maps
	Diagnostic accuracy of the synthetic “bolus effect”-independent CBV maps compared with ASL in differentiating glioblastoma recurrence from treatment response

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


