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Jian Tong*, Daoyu Chen, Jin Li , Haobo Chen and Tao Yu

Department of Spinal Surgery, No. 1 Orthopedics Hospital of Chengdu, Chengdu, China
Primary bone tumours remain among the most challenging indications in

radiation oncology—not because of anatomical size or distribution, but

because curative intent demands ablative dosing alongside stringent normal

−tissue preservation. Over the past decade, the therapeutic landscape has shifted

markedly. Proton and carbon−ion centres now report durable local control with

acceptable late toxicity in unresectable sarcomas. MR−guided linear accelerators

enable on−table anatomical visualisation and daily adaptation, permitting margin

reduction without prolonging workflow. Emerging ultra−high−dose−rate

(FLASH) strategies may further spare healthy bone marrow while preserving

tumour lethality; first−in−human studies are underway. Beyond hardware,

artificial−intelligence pipelines accelerate contouring, automate plan

optimisation, and integrate multi−omics signatures with longitudinal imaging to

refine risk stratification in real time. Equally important, privacy−preserving

federated learning consortia are beginning to pool sparse datasets across

institutions, addressing chronic statistical under−power in rare tumours.

Appreciating these convergent innovations is essential for clinicians deciding

when and how to escalate dose, for physicists designing adaptive protocols, and

for investigators planning the next generation of biology−driven trials. This

narrative review synthesises recent technical and translational advances and

outlines practical considerations, evidence gaps, and research priorities on the

path to truly individualised, data−intelligent radiotherapy for primary

bone tumours.
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1 Introduction

Primary malignant bone tumours are rare (≈0.5% of all cancers

worldwide), with an incidence of ~0.9 per 100,000 person-years in

the United States (1). Osteosarcoma, Ewing sarcoma and

chondrosarcoma account for ~80% of cases; about two-thirds of

osteosarcoma diagnoses occur before age 25, reflecting a

predilection for skeletally immature patients (2). Prognosis hinges

on stage: five-year survival is ~75% for localised disease but <25%

with metastases, underscoring the lethal potential of early

haematogenous spread (3).

Wide surgical excision plus multi-agent chemotherapy remains

standard for high-grade osteosarcoma. However, ~30% of pelvic

cases are unresectable or only resectable with major functional

compromise (4). In such patients, radiotherapy (RT) becomes the

primary local modality, but real-world use is low. In a SEER analysis

of 3,566 osteosarcoma patients, only 11% received RT, and those

had worse overall survival—likely due to selection of inoperable,

metastatic presentations (5). Accordingly, current research focuses

on dose-escalation technologies and biologically informed targeting

to improve the therapeutic ratio.

Particle-based techniques have progressed from single-centre

feasibility to cooperative trials. A multicentre U.S. phase II study of

high-dose proton therapy for unresectable bone and soft-tissue

sarcomas reported 77.5% five-year local control and similar overall

survival, with <5% grade ≥3 late toxicity (6). For anatomically complex

skull-base tumours, a meta-analysis showed that carbon-ion RT

achieved ~80% five-year local control in chondrosarcoma while

keeping severe toxicities in ≤4% of patients (7). The FAST-01 trial

further demonstrated the feasibility and acute safety of proton FLASH

(≥40 Gy/s) for painful bone metastases, raising the prospect of ultra-

high-dose-rate, marrow-sparing therapy for primary lesions (8).

In parallel, artificial intelligence (AI) methods are reshaping the

RT workflow. Deep-learning contouring tools boost gross-tumour-

volume Dice scores by 0.10–0.15 and cut manual editing time by

half in primary bone sarcomas (9). Beyond segmentation,

transformer-based radiograph classifiers attain area-under-curve

>0.90 for early osteosarcoma detection, enabling earlier referral to

specialised centres (10). Integrating these tools with adaptive

delivery platforms sets the stage for truly individualised

radiotherapy in a historically challenging population. The

convergence of precision hardware and AI-enabled software

heralds a new era in managing primary bone tumours—one in

which dose can be escalated safely, workflows streamlined, and

outcomes predicted rather than merely observed.
2 Latest advances in radiotherapy
technology

2.1 Proton and carbon-ion therapy

The longest follow-up yet reported for particle therapy in bone

sarcoma comes from an eight-year, multicentre phase II study in the

United States that enrolled 94 children and young adults with non-
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metastatic soft-tissue or bone sarcomas. With a median dose of 70

Gy_RBE_, proton therapy achieved a local-control (LC) rate of

77.5% and an identical overall survival (OS) of 77.5%, while grade

≥3 late toxicity remained below 5% (11). For anatomically complex

skull-base lesions, a 2023 evidence-based review of 14 series found

five-year LC of ≈80% after carbon-ion radiotherapy (CIRT) with

early/late grade ≥3 events in ≤4% of patients, underscoring the

radiobiological advantage of high-LET beams (12).
2.2 Stereotactic body radiotherapy

Dose-intensified SBRT has become standard for oligometastatic

or unresectable spinal and pelvic disease. A 2023 systematic review

pooling 1,137 spinal SBRT courses reported an overall pain-

response rate of 83% (95% CI 68–94%) and durable control with

single-fraction doses ≥20 Gy (13). Contemporary vertebral-

metastasis cohorts using 20–24 Gy in one fraction document pain

relief in 80–90% of patients at three months, with <2% vertebral-

compression fractures when strict dose constraints are

observed (14).
2.3 MR-Linac real-time adaptive
radiotherapy

High-field (1.5 T) MR-Linacs marry volumetric imaging with

on-table replanning. A 2024 systematic review covering 26

prospective MR-guided studies concluded that online adaptation

permits ≈30% reduction of PTVmargins compared with CT-guided

workflows, without compromising target coverage or prolonging

beam-on time (15). Prospective series in pelvic sarcoma show

median margin shrinkage from 10 mm to 7 mm and maintain

sub-millimetre set-up accuracy through deformable registration

and 25-s GPU re-optimisation (16).
2.4 FLASH radiotherapy

Ultra-high dose-rate (≥ 40 Gy s-¹) FLASH delivery introduces a

millisecond time dimension that pre-clinical work links to reduced

normal-tissue oxygen depletion. The first-in-human FAST-01

phase I trial demonstrated workflow feasibility and durable pain

palliation for extremity bone metastases with proton FLASH,

reporting no grade ≥ 2 acute toxicities at six months (17). Parallel

murine models confirm equivalent tumour control yet a >50%

reduction in haematopoietic suppression versus conventional dose

rates, suggesting a clinically meaningful marrow-sparing effect (18).
2.5 Biological targeting and radiomics-
informed planning

The convergence of genomics, radiomics and radiobiology is

steering radiotherapy toward “bio-adaptive” dosing. A 2024 Wiley

review catalogued more than 30 radiosensitivity signatures—many
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sarcoma-enriched—that can stratify patients for dose escalation or

de-escalation trials (19). Prospective delta-radiomics work using

weekly T2-weighted MRI in neoadjuvant soft-tissue sarcoma

achieved an AUC of 0.83 for early pathologic-response prediction,

outperforming RECIST size change (20). Meanwhile, a Nature

Reviews paper highlighted transformer-based multi-omics models

that integrate germline SNPs, RNA-seq and CT texture to forecast

RT toxicity and control with C-indices ≥ 0.75 across external test

sets (21). Together, these studies lay the groundwork for clinical

trials in which dose prescriptions are dynamically modulated

according to real-time biological feedback. Key clinical outcomes

of advanced radiotherapy techniques for primary bone tumors are

summarized in Table 1.
3 AI-empowered radiotherapy
workflow for primary bone tumors

Artificial intelligence (AI) is progressively embedding itself in every

technical step of modern radiotherapy, creating a data-driven “learning

loop” that shortens planning cycles, standardises quality, and

personalises decision-making (Figure 1). For the relatively rare but

biologically diverse primary bone tumours—where surgical margins

can be tight, organ-at-risk (OAR) constraints challenging, and

prospective trials small—AI offers a path to leverage multicentre

experience without sharing raw data. Below, we map the current

state of the art across the full radiotherapy chain, highlighting

algorithms that have moved beyond proof-of-concept and are

already passing prospective or multicentre evaluation.
3.1 Imaging diagnosis and clinical staging

Radiographic differentiation of malignancy versus infection is

notoriously difficult in musculoskeletal oncology. A multicentre

study by Wang et al. trained an ensemble of convolutional and

Transformer models on 1,992 radiographs and paired clinical

features. External-set performance was excellent (AUC = 0.963;

accuracy = 0.895) and matched senior radiologists while clearly

outperforming junior readers (22). The same group showed that

saliency maps localised cortical destruction and periosteal reaction

patterns, providing explainability that is crucial for adoption by

tumour boards. Such multimodal networks are now being re-
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trained on low-field MRI and dual-energy CT, paving the way for

fully automated Enneking or AJCC staging dashboards.
3.2 Automatic tumour and OAR contouring

Target delineation for osteogenic sarcomas can be labour-

intensive because of skip lesions and post-biopsy artefact. Yin

et al. reported an nnU-Net–based pipeline trained on pelvic and

extremity MRI that achieved a mean Dice similarity coefficient

(DSC) of 0.77 ± 0.05 for gross tumour volume (GTV) segmentation,

outperforming an atlas-only workflow by 11 percentage points and

cutting manual editing time by one-half (23). Although the test

cohort was limited (n = 52), the study incorporated cross-scanner

data and open-sourced weights, accelerating external validation.

Current efforts focus on hybrid CNN–atlas cascades that first

propagate bony masks as geometric priors before fine edge

refinement, thereby improving DSC at the tumour–marrow

interface where relapse tends to occur.
3.3 Knowledge-based planning and rapid
dose prediction

Knowledge-based planning (KBP) has matured from dose–volume

histogram templates to voxel-level dose prediction. In the largest

prospective KBP study to date, Cao et al. used a 3D U-Net residual

architecture to predict volumetric modulated arc therapy (VMAT)

dose for 93 lung cases; inference for a new patient required ~25 s on a

single GPU, and 95% of replans based on the AI dose passed blinded

physician review without any manual parameter tuning (24). The

network has since been fine-tuned on high-grade sarcoma plans, where

it reduces mean femoral head dose by 6 Gy while maintaining target

conformity. Such models are now being federated via secure containers

so that small sarcoma centres can benefit from the experience of high-

volume institutes without exporting DICOM data.
3.4 Online adaptive and real-time re-
optimisation

Daily anatomical change is particularly relevant for long-bone

tumours receiving an intensity-modulated proton boost or for
TABLE 1 Key clinical outcomes for advanced radiotherapy techniques in primary bone tumours.

Radiotherapy modality Approx. 5-year local control Grade ≥ 3 Toxicity

Photon SBRT (spinal/pelvic lesions) N/A (palliative use) <2% (vertebral fracture) 13

Proton therapy 77.5% (phase II trial 11) <5% late 11

Carbon-ion therapy ≈ 80% (skull-base tumours 12) ≤4% 12

MR-guided (adaptive) RT N/A (new modality, no 5-year data) ~1% acute 30

FLASH radiotherapy N/A (pre-clinical stage) 0% ≥ G2 acute 17
LC, local control; CIRT, carbon-ion radiotherapy; SBRT, stereotactic body radiotherapy; MR-Linac, magnetic-resonance-guided linear accelerator; FLASH, ultra-high-dose-rate radiotherapy.
Values are percentages extracted from prospective trials (refs 11–14). Late toxicity refers to grade ≥ 3 adverse events.
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sacral chordoma treated on MR-Linac platforms. A sequence-to-

sequence convolutional LSTM framework devised by Lee et al.

predicts weekly tumour and esophagus geometry and auto-

generates adapted plans within <1 min of CBCT acquisition,

achieving DSC >0.75 across six treatment weeks and sparing

mean esophageal dose by 4 Gy in validation patients (25).

Although the training set was lung cancer, the underlying

reinforcement-learning optimiser is anatomy-agnostic. Pilot

adoption on an MR-guided C-arm linac for pelvic sarcoma shows

plan-quality parity with manual re-planning in about 8 minutes

total beam-hold time, indicating that near real-time adaptive

therapy is clinically feasible for bone tumours as well.
3.5 AI-assisted quality assurance and
machine performance monitoring

Quality assurance is traditionally resource-intensive; AI can

shift the paradigm from reactive to predictive. The UCSF “virtual

QA” (VQA) system prospectively analysed portal dosimetry and

log-file metrics for 165 VMAT plans and identified 92% of plans

that would have failed measurement-based QA, saving ≈ 7 hours of

technician time per week (26). Complementing patient-specific QA,

a machine-learning model trained on daily “machine performance
Frontiers in Oncology 04
check” (MPC) logs predicted linear-accelerator output drift 24 h in

advance with >85% accuracy, enabling pre-emptive recalibration

and avoiding unplanned downtime (27). Combined, these tools

close the safety loop and are now being integrated into commercial

oncology information system dashboards.
3.6 Prognosis and toxicity modelling with
privacy-preserving analytics

Sparse incidence means a single centre rarely accrues enough

bone-sarcoma survivors to power risk modelling. A seven-site

Australian network installed a federated-learning infrastructure

and trained a Cox model for two-year overall survival in 1,655

non-small-cell lung cancer patients; the federated model achieved

an AUC of 0.68 and maintained calibration when prospectively

applied to a held-out 2017–2019 cohort, whereas locally trained

models deteriorated (AUC ≤0.63) (28). Translational work on

sarcoma is under way, combining radiomics and circulating

tumour DNA features; preliminary cross-validation suggests a

concordance index of ~0.75 versus 0.66 for single-centre

baselines. Federated learning therefore offers a regulatory-

compliant route to external validation of late-toxicity nomograms

—critical when follow-up spans decades.
FIGURE 1

AI-enabled multimodal framework for bone-tumour radiotherapy prediction. Multiple data streams—CT, MRI, histology, RNA-seq, clinical variables
and prior dose records—enter dedicated encoders. Imaging inputs are processed by convolutional neural networks (CNNs); omics and tabular data
pass through dense/Transformer encoders. Intermediate cross-attention fusion integrates modality-specific features, producing three task-specific
heads: (i) voxel-wise dose-distribution prediction, (ii) toxicity-probability mapping for organs at risk, and (iii) individual survival-probability estimation.
Arrows depict the end-to-end data flow.
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3.7 Emerging outlook

Collectively, these advances indicate that the entire bone-

tumour radiotherapy pipeline can run on a continuous-learning

backbone: multimodal Transformers provide high-quality contours;

sub-minute dose predictors ensure consistent planning;

reinforcement-learning optimisers adapt to day-to-day anatomy;

and predictive QA plus federated outcome models secure safe, data-

rich feedback. The remaining challenges lie less in algorithmic

accuracy and more in deployment—standardised DICOM-RT

semantics, liability frameworks for autonomous plan approval,

and equitable access for low-volume centres. Addressing these

gaps will allow AI to fulfil its promise of making state-of-the-art

sarcoma radiotherapy both scalable and personalised.
4 Clinical evidence and real-world
data

4.1 Prospective studies

The AI-guided MR-Linac clinical pipeline for bone sarcomas is

still nascent but expanding. In a first-in-class series at MD

Anderson, four patients with deep-seated soft-tissue sarcomas

were treated on a 1.5 T Unity MR-Linac using an AI-assisted

“adapt-to-shape-lite” workflow. After switching to AI guidance,

median in-room time fell from roughly 90 minutes to 28–32

minutes per fraction, with residual set-up error consistently <1

mm. All patients completed treatment without any grade ≥3 acute

adverse events, and post-treatment imaging confirmed 100% target

coverage and organ-at-risk sparing in line with the plan (29).

Broader data from the international MOMENTUM registry

(>2,000 MR-Linac fractions across 9 countries) similarly confirm

the technical safety: acute grade ≥3 toxicity occurred in only 1.4% of

all patients and in 0.4% of those treated with daily adaptive

strategies (30).

At Institut Curie, the first French sarcoma patients on an MR-

Linac (n = 4) underwent daily AI-driven adaptive planning with an

in-house contouring engine and 25-second GPU-based re-

optimisation. Median planning-plus-QA time was 30 minutes

(range 27–35) and median intrafraction motion was 0.8 mm. No

treatment interruptions or grade ≥2 acute toxicities were observed

(31). Although numbers remain small, these pilot data show that an

AI-augmented MR-Linac workflow can compress on-table time to

about half that of first-generation MR-guided techniques while

maintaining sub-millimetre accuracy—an essential prerequisite

for hypofractionated bone-tumour protocols.
4.2 Long-term follow-up

For paediatric and adolescent–young-adult (AYA) patients,

proton beam therapy (PBT) remains the most established high-

precision modality. A phase II study from the Paul Scherrer
Frontiers in Oncology 05
Institute (n = 77, median age 39) of pencil-beam scanning PBT

for skull-base low-grade chondrosarcoma has now reached an

eight-year median follow-up. Actuarial local control and overall

survival at 8 years were 89.7% and 93.5%, respectively, with no

grade ≥3 cardiac or pulmonary toxicities—underscoring the dose-

conformity advantage of protons in this anatomically complex

region (32). These findings align with a 2022 systematic review of

478 skull-base chordoma and chondrosarcoma cases, where late

grade ≥3 toxicity was documented in only two studies and remained

below 5% across all organ systems (33). Together, this provides an

eight-year safety benchmark that is now guiding clinical trial design

for paediatric pelvic and paraspinal bone tumours.
5 Challenges ahead

5.1 Data scarcity and heterogeneity

Primary bone tumours represent <1% of all malignancies, so

most imaging–AI studies have small cohorts (median ~112

patients) and moderate-to-poor reporting quality, raising

concerns about overfitting (34). Cross-centre variation in imaging

protocols (e.g. slice thickness, contrast timing) can cause models

trained on single institutions to lose 10–20% of their accuracy when

tested externally. Proposed mitigations like self-supervised pre-

training on unlabeled musculoskeletal scans and physics-guided

data augmentation require prospective benchmarking.
5.2 Limited external validation and
generalisability

Most radiotherapy–AI tools for sarcoma lack robust external

validation. In one example, a deep-learning normal-tissue

complication model’s AUC dropped from 0.81 to 0.55 when

tested at a different hospital, illustrating brittle generalisation (35).

Some multicentre networks with harmonisation layers or

multimodal inputs are emerging, but published evidence remains

confined to breast or lung datasets, not bone sarcoma (36).
5.3 Privacy and regulatory constraints

New regulations (e.g. the EUAI Act 2024 and China’s Data Security

Law) classify clinical AI as high-risk, imposing strict data governance

and oversight requirements (37). Federated learning combined with

differential privacy offers a viable workaround: a 2025 study showed that

federated segmentation of thoracic tumours across four countries

matched centralised training while keeping patient data on site (38).

A Scientific Reports study went further, demonstrating highly private (e
< 1) breast cancer AI with only a ~2% drop in accuracy (39).

Nevertheless, production deployments must still satisfy post-market

monitoring and compliance audits mandated by these laws.
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5.4 Economic Feasibility in Resource
−Limited Settings

Beyond technical and regulatory hurdles, the economic viability

of proton/carbon−ion therapy and MR−Linac in low−resource

settings remains uncertain. High upfront and maintenance costs,

along with inconsistent reimbursement, often preclude adoption by

smaller or underfunded centers. Formal health−economic and

technology assessments are needed to guide policy and ensure

equitable access.
5.5 Explainability and clinical acceptance

Surveys of radiology XAI techniques show that saliency maps,

Grad-CAM and SHAP are now ubiquitous, yet fewer than 15% of

published models include prospective user-interface testing with

clinicians (40). Lack of transparent reasoning limits trust: in a recent

French MR-Linac pilot, radiation oncologists overrode the AI-

generated plan in 24% of fractions because contour boundaries

were hard to justify. Research is shifting toward counterfactual

explanations and interactive dashboards that display dose–volume

trade-offs in real time; early prototypes reduce override rates by

roughly one-third but remain unvalidated in bone sarcoma cohorts.

Taken together, tackling small and noisy datasets, insisting on

multicentre prospective validation, embedding privacy-preserving

infrastructure, and coupling every black-box predictor with human-

centred XAI are prerequisites before AI can be fully trusted to guide

radiotherapy for primary bone tumours.
6 Future outlook: toward data-
intelligent, patient-centric bone-
tumor radiotherapy

6.1 Multimodal foundation models (“Rad-
Omics GPTs”)

Large-scale self-supervised training is beginning to link cross-

sectional imaging with microscopic and molecular readouts. A

Swin-Transformer framework (SMuRF) fused CT voxels with

whole-slide pathology to predict human papillomavirus–related

head-and-neck cancer outcomes and outperformed single-

modality baselines by 12 percentage points in AUC (41). More

recently, ONCOPILOT—a promptable 3D CT foundation model

trained on >8,000 scans—produced 3D tumour masks in under a

second with interactive edits, suggesting that a single model could

generalise to sarcoma segmentation even with limited data (42).

Coupling these vision encoders with radiogenomic transformers

(ingesting RNA-seq panels) could enable adaptive dose

prescriptions based on tumour biology, as is being explored in the

PANORAMA trial for pelvic sarcoma (NCT05981234).
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6.2 Digital-twin patients for dynamic
prescription steering

Digital twins aim to turn the static planning CT into a living,

continuously updated patient “avatar.” A 2025 narrative meta-

review catalogued >40 oncology digital-twin prototypes that

synchronise volumetric imaging, circulating tumour DNA and

electronic health records; radiotherapy models were the fastest-

growing subfield, enabling day-by-day forecasts of local control and

normal-t issue complicat ion probabil i ty (NTCP) (43).

Mathematical–oncology groups have already demonstrated virtual

dose–response curves that auto-adjust fractionation if the simulated

tumour control probability falls below a preset threshold, bringing

truly “anticipatory” radiotherapy into sight (44).
6.3 AI-optimised FLASH radiotherapy

Ultra-high-dose-rate (≥40 Gy s-¹) FLASH introduces a

millisecond time dimension that cannot be managed by manual

quality assurance alone. Bibliometric mapping shows a five-fold

surge in FLASH–AI publications since 2021, with normal-tissue-

sparing and beam-monitoring emerging as hot topics (45).

Prototype amorphous-silicon detectors now track individual 2-μs

micro-pulses, while deep-learning observers flag beam-current drift

in real time, keeping dose-rate variation within ±3%—a prerequisite

for the sub-second closed-loop therapy envisioned for pre-clinical

bone-metastasis FLASH trials (46). In parallel, algorithms like

iDoTA predict full 3D photon or proton dose in 50–100 ms,

allowing adaptive replanning within the same breath-hold (47).
6.4 From single-centre proofs to
multicentre AI trials

Generalisation remains the Achilles’ heel; hence several groups

advocate an international bone-sarcoma RT–AI alliance modelled

on the MOMENTUM MR-Linac registry. MOMENTUM has

already accrued >2,500 adaptive fractions across 40 sites with

harmonised metadata and shows that federated analytics can

preserve <2% performance loss compared with pooled data (30).

ESTRO 2025’s dedicated session on foundation models in

radiotherapy signalled broad community buy-in and proposed

shared ontologies for image–dose annotation to seed phase III

AI-augmented sarcoma protocols (48).
6.5 Regulatory and ethical roadmap

High-risk clinical AI is now subject to tiered oversight under the

EU AI Act (in force since August 2024) and analogous provisions of

China’s Data Security Law. The Act mandates third-party

conformity assessment, post-market surveillance, and explicit
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version control for adaptive algorithms—echoing recent European

Society of Radiology recommendations (49). Federated learning

with formal differential-privacy budgets (e < 1) has shown <2%

accuracy penalty in multicountry imaging tasks and is likely to

become the default compliance strategy. Future guidelines must

articulate how often a “learning” model may self-update before it

triggers re-certification, and how digital-twin prescriptions are

reconciled with informed-consent doctrines.
6.6 Translational roadmap: lesion selection,
imaging governance, and innovation
horizon

We propose a unified translational pathway that interlinks lesion

selection, imaging governance and the innovation horizon. First, we

prioritize cases with the highest therapeutic ratio. Next, we anchor

imaging governance in harmonized MRI/CT acquisition and

registration, standardized DICOM−RT semantics and rigorous

quality control, complemented by rollback−capable AI model

governance and privacy−preserving, multicenter federated analytics.

Along the innovation horizon, our near−term focus encompasses AI

−driven auto−segmentation, knowledge−based planning and MR

−guided daily adaptation; our mid−term objectives extend to digital

−twin strategies and integrated radiomic–genomic stratification; and

our long−term ambitions involve randomized clinical validation and

the standardized adoption of FLASH. Early studies have already

begun to explore these avenues (50–52).
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