
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Yong Yin,
Shandong University, China

REVIEWED BY

Mi Chen,
Mianyang Third People’s Hospital, China
Chen Jian,
The Second Affiliated Hospital of Chongqing
Medical University, China

*CORRESPONDENCE

Jie Zhou

zjoncology2023@163.com

†These authors have contributed equally to
this work

RECEIVED 19 June 2025

ACCEPTED 21 August 2025
PUBLISHED 12 September 2025

CITATION

Yang Y, Shang N, Lu S, Li L, Xu P, Wang X,
Li F, Su Y, Qin Y, Lang J and Zhou J (2025)
Exploring the prognostic value of EBV DNA in
advanced nasopharyngeal carcinoma treated
with chemoradiotherapy using AI-based
modeling.
Front. Oncol. 15:1650377.
doi: 10.3389/fonc.2025.1650377

COPYRIGHT

© 2025 Yang, Shang, Lu, Li, Xu, Wang, Li, Su,
Qin, Lang and Zhou. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 12 September 2025

DOI 10.3389/fonc.2025.1650377
Exploring the prognostic value
of EBV DNA in advanced
nasopharyngeal carcinoma
treated with chemoradiotherapy
using AI-based modeling
Yang Yang1†, Ningchuan Shang2†, Shun Lu3, Lintao Li3,
Peng Xu3, Xianliang Wang3, Fan Li4, Yue Su3, Yuan Qin3,
Jinyi Lang3 and Jie Zhou3*†

1Department of Oncology, The Third People’s Hospital of Chengdu, Chengdu, China, 2School of
Clinical Medicine, Sichuan College of Traditional Chinese Medicine, Mianyang, China, 3Department of
Radiation Oncology, Precision Radiation in Oncology Key Laboratory of Sichuan Province, Sichuan
Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center,
School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,
4Department of Otorhinolaryngology Head and Neck Surgery, Chongqing General Hospital,
Chongqing University, Chongqing, China
Background: Epstein–Barr virus (EBV) DNA is a well-established biomarker in

nasopharyngeal carcinoma (NPC), but its integration into artificial intelligence

(AI)–based prognostic tools remains limited. This study aimed to develop and

validate AI models incorporating EBV DNA load levels to predict progression-free

survival (PFS) in patients with advanced NPC treated with concurrent

chemoradiotherapy (CRT).

Methods: A retrospective multicenter cohort of 503 patients was divided into

training (n = 301) and validation (n = 202) sets. Four machine learning algorithms

—Cox regression, LASSO, RSF, and GBM—were applied to predict 1- and 1.5-year

PFS in patients with advanced NPC. Model performance was evaluated using the

concordance index (C-index), time-dependent receiver operating characteristic

(ROC), decision curve analysis (DCA), and interpretability tools such as SHAP

values and partial dependence plots (PDP).

Results: The 1-, 3-, and 5-year PFS rates were 100.0%, 91.5%, and 88.6% in the

EBV = 0 group; 99.4%, 91.2%, and 88.5% in the > 0 and < 1500 group; and 92.3%,

81.0%, and 75.7% in the ≥ 1500 group, respectively, with statistically significant

differences among the three groups (P = 0.0024). The RSF model outperformed

other models with the highest C-index (0.778) and area under the ROC curve of

0.810 and 0.634 at 1 and 1.5 years, respectively. EBV DNA emerged as the most

influential predictor across all interpretability analyses. Patients with EBV DNA

≥1500 copies/ml had the poorest predicted survival, showing a distinct threshold

effect in the PDP.
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Conclusions: High EBV DNA levels were associated with poorer PFS in advanced

NPC. Among the models evaluated, the RSF model demonstrated the best

predictive performance and interpretability. EBV-informed AI modeling

represents a promising approach for enhancing individualized risk prediction

and clinical decision-making in NPC.
KEYWORDS
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Introduction

Nasopharyngeal carcinoma (NPC) is a malignancy of the head

and neck region with high prevalence in east and Southeast Asia,

and its development is strongly linked to Epstein–Barr virus (EBV)

infection (1, 2). Although intensity-modulated radiotherapy

(IMRT) combined with chemotherapy has become the standard

treatment for advanced-stage disease, recurrence and metastasis

remain major clinical challenges (3). Plasma EBV DNA has

emerged as a valuable biomarker for estimating tumor burden

and predicting prognosis, however, its accuracy and consistency

in different clinical scenarios are still debated (4, 5).

Conventional regression-based approaches may not fully

uncover the intricate relationships between EBV levels and

various prognostic factors. In contrast, artificial intelligence (AI)

techniques, especially machine learning models, provide a powerful

framework for handling complex datasets and capturing nonlinear

associations (6–8). These models have shown increasing promise in

cancer prognosis and treatment optimization (9, 10). Nonetheless,

few studies have systematically evaluated the integration of EBV

DNA into AI-based prediction tools for NPC.

In this study, we propose to develop a robust and interpretable

AI model incorporating EBV DNA levels and clinical characteristics

to enhance survival prediction in patients undergoing concurrent

chemoradiotherapy. This model aims to assist clinicians in tailoring

personalized treatment strategies and long-term monitoring plans.
Materials and methods

Study design and participants

From March 2012 to May 2020, 503 patients with advanced-

stage NPC who received concurrent chemoradiotherapy (CRT)

were retrospectively reviewed from four hospitals in China.

Inclusion criteria for this study were as follows: (1) histologically

confirmed nasopharyngeal carcinoma; (2) stage III–IV disease; (3)

received first-line concurrent CRT as the initial treatment; (4)

complete baseline EBV DNA measurements before treatment;
02
(5) complete follow-up and survival data available. Exclusion

criteria included: (1) history of prior malignancy or previous anti-

cancer treatment; (2) with serious complications or any other

serious chronic diseases; (3) unable to complete the treatment.

This study was approved by the institutional review board and

ethics committees (KY S2023-081-01). As this was a retrospective

study, the informed consent was waived by the Ethics Committee.

Participant information is confidential, and the study was

conducted in accordance with the Declaration of Helsinki.
Treatments

All enrolled patients underwent IMRT alongside synchronous

chemotherapy based on platinum compounds. The delineation of

gross tumor volume (GTV) included two components: the

nasopharyngeal lesion itself (GTVnx) and lymph nodes

confirmed as metastatic through clinical or radiologic evaluation

(GTVnd), primarily based on MRI and/or PET-CT findings. To

capture areas potentially harboring microscopic disease, clinical

target volumes (CTV) were contoured by expanding the GTVs to

incorporate adjacent high-risk tissues. Planning target volumes

(PTV) were created by applying an additional 3 – 5 mm margin

around each CTV, accounting for patient movement and setup

variation during treatment sessions. A total radiation dose of 70 Gy

was prescribed, aimed at ensuring that no less than 95% of the PTV

received the full dose. The course was delivered over 30 to 33

fractions, typically completed within a period of 6 to 7 weeks.
Endpoints and follow-up

Progression-free survival (PFS) was defined as the interval from

the initiation of treatment to either documented disease

progression, as assessed by imaging according to RECIST criteria,

or death from any cause, whichever occurred first. Disease

progression was evaluated based on institutional radiology reports

without central imaging review, reflecting real-world clinical

practice across participating centers.
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AI-model

A retrospective dataset comprising 503 patients was split into

two groups using a 6:4 random allocation strategy, resulting in a

training cohort of 301 cases and a validation cohort of 202 cases.

The training set was used to construct predictive models for

progression-free survival (PFS) at both 1 and 1.5 years. The

following six baseline variables were incorporated as potential

prognostic indicators: sex, age, T stage, N stage, clinical stage, and

EBV DNA levels at diagnosis.

Four modeling algorithms were employed: Cox proportional

hazards model, least absolute shrinkage and selection operator

(LASSO) regression, random survival forest (RSF), and gradient

boosting machine (GBM). Each model ’s discriminative

performance was assessed via concordance index (C-index) metrics.

Model performance was subsequently evaluated in the

independent validation cohort using time-dependent receiver

operating characteristic (ROC) curves and decision curve analysis

(DCA). To further elucidate the underlying mechanics of the

models, explainability methods such as SHAP values, partial

dependence survival plots (PDP), time-dependent feature

importance analysis, and Brier scores were applied in the

training group.
Frontiers in Oncology 03
Statistical analyses

Categorical variables were compared using the chi-square test.

The Kaplan–Meier method was used to estimate PFS, and survival

differences between groups were assessed by the log-rank test. All

statistical analyses related to AI-based modeling were performed

using R software.
Results

Baseline characteristics

The cohort was divided into three groups: EBV DNA = 0

copies/ml (n = 120), > 0 and < 1500 copies/ml (n = 173), and ≥ 1500

copies/ml (n = 210). There were no statistically significant

differences among the groups in terms of age (p = 0.762) or sex

(p = 0.967). However, significant differences were observed in T

stage distribution (p = 0.004). The proportion of T4 disease

increased with rising EBV DNA levels, from 10.0% in the 0 group

to 24.3% in the ≥ 1500 group. Similarly, N stage was significantly

associated with EBV DNA levels (p < 0.001). The frequency of N3

involvement was markedly higher in the ≥ 1500 group (21.4%)
TABLE 1 Baseline clinical characteristics stratified by EBV DNA levels.

Characteristic All
Pre-EBV DNA

P
0 > 0, < 1500 ≥ 1500

503 120 173 210

Age 0.762

< 45 218 (43.3%) 54 (45.0%) 77 (44.5%) 87 (41.4%)

≥ 45 285 (56.7%) 66 (55.0%) 96 (55.5%) 123 (58.6%)

Sex 0.967

Female 139 (27.6%) 33 (27.5%) 49 (28.3%) 57 (27.1%)

Male 364 (72.4%) 87 (72.5%) 124 (71.7%) 153 (72.9%)

T Stage 0.004

T1 7 (1.39%) 2 (1.67%) 2 (1.16%) 3 (1.43%)

T2 45 (8.95%) 13 (10.8%) 15 (8.67%) 17 (8.10%)

T3 371 (73.8%) 93 (77.5%) 139 (80.3%) 139 (66.2%)

T4 80 (15.9%) 12 (10.0%) 17 (9.83%) 51 (24.3%)

N Stage < 0.001

N0 45 (8.95%) 22 (18.3%) 17 (9.83%) 6 (2.86%)

N1 171 (34.0%) 46 (38.3%) 56 (32.4%) 69 (32.9%)

N2 215 (42.7%) 43 (35.8%) 82 (47.4%) 90 (42.9%)

N3 72 (14.3%) 9 (7.50%) 18 (10.4%) 45 (21.4%)

Stage < 0.001

III 362 (72.0%) 100 (83.3%) 138 (79.8%) 124 (59.0%)

IV 141 (28.0%) 20 (16.7%) 35 (20.2%) 86 (41.0%)
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compared to the 0 group (7.5%). A significant shift in clinical stage

was also observed (p < 0.001), with stage IV disease more prevalent

among patients with high EBV DNA (41.0%) compared to those

with undetectable levels (16.7%, Table 1).
Survival outcomes

The follow-up duration for the cohort was consistently

recorded. The median follow-up time was 4.59 years, with follow-

up data collected through telephone follow-ups and hospital

records. Patients were censored at the time of the last follow-up

or death, whichever occurred first. In the overall cohort, the 1-, 3-,
Frontiers in Oncology 04
and 5-year PFS rates were 96.60%, 87.10%, and 83.19%,

respectively. The 1-, 3-, and 5-year PFS rates were 100.0%, 91.5%,

and 88.6% in the EBV = 0 group; 99.4%, 91.2%, and 88.5% in the > 0

and < 1500 group; and 92.3%, 81.0%, and 75.7% in the ≥ 1500

group, respectively, with statistically significant differences among

the three groups (Figure 1A, P = 0.0024).
AI-model construction

Baseline characteristics were well balanced between the training

and validation sets, except for sex, which showed a statistically

significant difference (Table 2). The 1-, 3-, and 5-year PFS rates were
FIGURE 1

Kaplan-Meier curves for PFS. (A) Patients with EBV DNA ≥1500 copies/ml had significantly worse PFS (p = 0.0024). (B) No significant PFS difference
between training and validation sets (p = 0.29).
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96.66%, 87.72%, and 85.03% in the training set, and 96.50%,

86.15%, and 80.43% in the validation set, respectively, with no

significant differences observed between the two groups

(Figure 1B, P = 0.29).

In the training cohort, six clinical variables—sex, age, T stage, N

stage, clinical stage, and EBV DNA levels—were selected to

construct four prognostic models using different machine learning

approaches. The C-index were 0.740 for the Cox model, 0.707 for

the LASSO model, 0.778 for the RSF, and 0.732 for the GBM.
AI model validation

In the validation cohort, the 1- and 1.5-year area under the ROC

curve (AUC) were 0.743 and 0.668 for the Cox model (Figure 2A),

0.801 and 0.636 for the LASSO model (Figure 2B), 0.810 and 0.634

for the RSF model (Figure 2C), and 0.785 and 0.658 for the GBM

model (Figure 2D). The DCA demonstrated that the RSF model
Frontiers in Oncology 05
provided favorable net clinical benefit and showed good stability

across different threshold probabilities (Figures 3A, B).

Figure 4 illustrates the interpretability and performance metrics

of the random survival forest (RSF) model in the training cohort.

The time-dependent feature importance analysis (Figure 4A)

showed that EBV DNA level and N stage were the most

influential predictors throughout the entire follow-up period. The

SHAP plot further demonstrated that both EBV and N stage were

positively associated with increased risk (Figure 4B). Model

performance was stable over time, as reflected by a consistently

low Brier score and a time-dependent concordance index (C/D

AUC) that remained above 0.8 for a substantial portion of the

follow-up (Figure 4C). The partial dependence plot (PDP) showed

that patients with EBV DNA ≥1500 copies/ml had the lowest

predicted survival throughout the follow-up period (Figure 5).
Discussion

In recent years, EBV DNA has emerged as a key biomarker in

the management of NPC, particularly in regions with a high disease

burden such as Southeast Asia (11–13). While its prognostic

relevance is well established, translating EBV DNA levels into

individualized survival predictions remains a challenge. In this

study, we sought to address this gap by constructing AI–based

models that integrate EBV DNA with standard clinical features to

predict PFS in advanced NPC pat ients treated with

concurrent CRT.

Unlike traditional statistical methods, which typically assume

linear associations and fixed hazard ratios, AI algorithms are

capable of modeling more complex, nonlinear interactions (14,

15). This advantage is particularly relevant in heterogeneous

cancers such as NPC, which clinical behavior is influenced by

both tumor burden and host factors (16). By incorporating

machine learning techniques—namely Cox regression, LASSO,

RSF, and GBM—we aimed to compare the predictive capacity of

conventional and data-driven approaches (17–20).

Among the four models tested, the RSF algorithm demonstrated

the strongest performance (21). It achieved the highest C-index in

the training cohort and showed stable results in the validation set.

Beyond overall accuracy, interpretability analyses—including SHAP

values, time-dependent feature importance, and partial dependence

plots—consistently highlighted EBV DNA as the most significant

predictor of survival outcomes. These findings reinforce the notion

that EBV DNA is not merely a passive biomarker, but an active

contributor to risk stratification in AI-driven models.

The partial dependence plot for EBV DNA revealed a clear

inflection point: patients with baseline EBV DNA ≥1500 copies/ml

consistently showed markedly lower predicted survival

probabilities. Interestingly, survival curves for patients with

undetectable or low-level EBV DNA copies were similar to those

of patients with EBV DNA > 0 and < 1500 copies/ml, suggesting a

threshold effect. These observations are in line with previous clinical

studies and further validate the value of integration of EBV DNA

into automated risk prediction frameworks.
TABLE 2 Comparison of baseline clinical characteristics between
training and validation sets.

Characteristic
Validation

set
Training

set
P

202 301

Age 0.363

< 45 93 (46.0%) 125 (41.5%)

≥ 45 109 (54.0%) 176 (58.5%)

Sex 0.003

Female 71 (35.1%) 68 (22.6%)

Male 131 (64.9%) 233 (77.4%)

T Stage 0.177

T1 0 (0.00%) 7 (2.33%)

T2 18 (8.91%) 27 (8.97%)

T3 151 (74.8%) 220 (73.1%)

T4 33 (16.3%) 47 (15.6%)

N Stage 0.965

N0 17 (8.42%) 28 (9.30%)

N1 71 (35.1%) 100 (33.2%)

N2 85 (42.1%) 130 (43.2%)

N3 29 (14.4%) 43 (14.3%)

Stage 0.56

III 142 (70.3%) 220 (73.1%)

IV 60 (29.7%) 81 (26.9%)

EBV DNA 0.757

0 48 (23.8%) 72 (23.9%)

> 0, < 1500 66 (32.7%) 107 (35.5%)

≥ 1500 88 (43.6%) 122 (40.5%)
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Another strength of this study lies in its focus on model

interpretability. One of the major criticisms of AI in healthcare is

the “black box” nature of many algorithms (22, 23). By applying

tools such as SHAP and PDP, we made our models more

transparent and clinically meaningful (24). These visualizations

allow clinicians understanding not only that EBV matters, but

how and when it exerts the greatest impact on patient outcomes.
Frontiers in Oncology 06
In our study, the RSF model demonstrated superior

performance compared to other machine learning algorithms.

RSF is an ensemble learning method that is particularly well-

suited for survival analysis due to its ability to handle both

censored data and complex non-linear relationships between

predictors and survival outcomes (25, 26). Unlike traditional

survival models, RSF does not require the assumption of
FIGURE 2

Time-dependent ROC curves for 1-year and 1.5-year PFS prediction using different models. (A) Cox model; (B) LASSO model; (C) RSF model;
(D) GBM model.
FIGURE 3

Decision curve analysis of the RSF model on the test set. (A) 1-year PFS; (B) 1.5-year PFS.
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proportional hazards and can model interactions between variables

more effectively. Additionally, RSF can handle high-dimensional

datasets with many variables and is less prone to overfitting

compared to other algorithms, making it a robust choice for

survival prediction in clinical datasets like ours (27).

From a clinical standpoint, integrating EBV DNA into AI-based

models offers more than statistical insight—it provides a practical

tool for precision medicine (28–30). By accurately identifying

patients at higher risk of disease progression, clinicians can

consider early treatment intensification, closer surveillance, or

inclusion in clinical trials. Conversely, patients with low-risk

profiles may benefit from treatment de-escalation, reducing

toxicity and preserving quality of life. The model’s transparency

also enhances clinical confidence, making it more acceptable for

integration into multidisciplinary tumor boards. As such, EBV-

informed AI models may serve as decision-support systems that
Frontiers in Oncology 07
personalize management strategies and improve long-term

outcomes in advanced NPC (31–33).

Although the current model demonstrates promising results,

integrating other modalities such as radiomics, genomic alterations,

and immune-related biomarkers could further improve its

prognostic performance. Radiomics could provide detailed

imaging features related to tumor phenotype, allowing for more

accurate risk stratification. Genomic alterations, including

mutations, copy number variations, and methylation patterns,

could offer insights into the underlying molecular mechanisms of

tumor progression and treatment resistance (34). Additionally,

immune-related biomarkers, such as tumor-infiltrating

lymphocytes or checkpoint markers, may help capture the

immune response to therapy, which is often a critical factor in

cancer prognosis (35). Future studies incorporating these

multimodal data types, in combination with EBV DNA, would
FIGURE 4

Model interpretability and performance of the RSF model. (A) Time dependent feature importance shows EBV DNA and N stage had the greatest
impact on model performance over time. (B) SurvSHAP values illustrate the dynamic contribution of each variable to individual risk prediction.
(C) Brier score and time dependent C/D AUC demonstrate the model's predictive accuracy and discrimination ability over time.
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likely improve the model’s accuracy and utility, providing more

comprehensive and personalized predictions for patients with

advanced NPC.

Despite its strengths, this study has several limitations. First, the

retrospective nature of the analysis, even though based on amulticenter

cohort, may introduce selection and information bias. Second, while

EBV DNA testing was performed uniformly within each center, inter-

institutional variability in laboratory procedures cannot be completely

ruled out. Third, although treatment protocols were broadly

standardized (IMRT with platinum-based concurrent chemotherapy),

subtle differences in chemotherapy regimens, supportive care, or

radiation planning across centers may contribute to treatment

heterogeneity, potentially confounding survival outcomes. Fourth, the

model did not incorporate other potentially informative modalities

such as radiomics, genomic alterations, or immune-related biomarkers,

which could further enhance predictive accuracy. Finally, the absence
Frontiers in Oncology 08
of external validation limits the generalizability of the model. Future

prospective studies should include external datasets and integrate

multimodal information to validate and refine AI-based prognostic

models for advanced NPC.
Conclusion

In conclusion, our study demonstrates that elevated EBV DNA

levels are closely associated with poorer PFS in patients with

advanced NPC. By integrating EBV DNA with advanced AI

algorithms, particularly random survival forests, we were able to

more effectively characterize its prognostic impact across the disease

course. These findings highlight the potential of EBV-informed AI

models as valuable tools for enhancing risk stratification and

guiding personalized treatment decisions in clinical practice.
FIGURE 5

Partial dependence survival curves of key variables in the RSF model.
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