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Background: Epstein—Barr virus (EBV) DNA is a well-established biomarker in
nasopharyngeal carcinoma (NPC), but its integration into artificial intelligence
(Al)-based prognostic tools remains limited. This study aimed to develop and
validate Al models incorporating EBV DNA load levels to predict progression-free
survival (PFS) in patients with advanced NPC treated with concurrent
chemoradiotherapy (CRT).

Methods: A retrospective multicenter cohort of 503 patients was divided into
training (n = 301) and validation (n = 202) sets. Four machine learning algorithms
—Cox regression, LASSO, RSF, and GBM—were applied to predict 1- and 1.5-year
PFS in patients with advanced NPC. Model performance was evaluated using the
concordance index (C-index), time-dependent receiver operating characteristic
(ROC), decision curve analysis (DCA), and interpretability tools such as SHAP
values and partial dependence plots (PDP).

Results: The 1-, 3-, and 5-year PFS rates were 100.0%, 91.5%, and 88.6% in the
EBV = 0 group; 99.4%, 91.2%, and 88.5% in the > 0 and < 1500 group; and 92.3%,
81.0%, and 75.7% in the > 1500 group, respectively, with statistically significant
differences among the three groups (P = 0.0024). The RSF model outperformed
other models with the highest C-index (0.778) and area under the ROC curve of
0.810 and 0.634 at 1 and 1.5 years, respectively. EBV DNA emerged as the most
influential predictor across all interpretability analyses. Patients with EBV DNA
>1500 copies/ml had the poorest predicted survival, showing a distinct threshold
effect in the PDP.
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Conclusions: High EBV DNA levels were associated with poorer PFS in advanced
NPC. Among the models evaluated, the RSF model demonstrated the best
predictive performance and interpretability. EBV-informed Al modeling
represents a promising approach for enhancing individualized risk prediction
and clinical decision-making in NPC.

EBV DNA, advanced nasopharyngeal carcinoma, prognostic value, artificial intelligence,
machine learning, chemoradiotherapy

Introduction

Nasopharyngeal carcinoma (NPC) is a malignancy of the head
and neck region with high prevalence in east and Southeast Asia,
and its development is strongly linked to Epstein-Barr virus (EBV)
infection (1, 2). Although intensity-modulated radiotherapy
(IMRT) combined with chemotherapy has become the standard
treatment for advanced-stage disease, recurrence and metastasis
remain major clinical challenges (3). Plasma EBV DNA has
emerged as a valuable biomarker for estimating tumor burden
and predicting prognosis, however, its accuracy and consistency
in different clinical scenarios are still debated (4, 5).

Conventional regression-based approaches may not fully
uncover the intricate relationships between EBV levels and
various prognostic factors. In contrast, artificial intelligence (AI)
techniques, especially machine learning models, provide a powerful
framework for handling complex datasets and capturing nonlinear
associations (6-8). These models have shown increasing promise in
cancer prognosis and treatment optimization (9, 10). Nonetheless,
few studies have systematically evaluated the integration of EBV
DNA into Al-based prediction tools for NPC.

In this study, we propose to develop a robust and interpretable
Al'model incorporating EBV DNA levels and clinical characteristics
to enhance survival prediction in patients undergoing concurrent
chemoradiotherapy. This model aims to assist clinicians in tailoring
personalized treatment strategies and long-term monitoring plans.

Materials and methods
Study design and participants

From March 2012 to May 2020, 503 patients with advanced-
stage NPC who received concurrent chemoradiotherapy (CRT)
were retrospectively reviewed from four hospitals in China.
Inclusion criteria for this study were as follows: (1) histologically
confirmed nasopharyngeal carcinoma; (2) stage III-IV disease; (3)
received first-line concurrent CRT as the initial treatment; (4)
complete baseline EBV DNA measurements before treatment;
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(5) complete follow-up and survival data available. Exclusion
criteria included: (1) history of prior malignancy or previous anti-
cancer treatment; (2) with serious complications or any other
serious chronic diseases; (3) unable to complete the treatment.
This study was approved by the institutional review board and
ethics committees (KY S2023-081-01). As this was a retrospective
study, the informed consent was waived by the Ethics Committee.
Participant information is confidential, and the study was
conducted in accordance with the Declaration of Helsinki.

Treatments

All enrolled patients underwent IMRT alongside synchronous
chemotherapy based on platinum compounds. The delineation of
gross tumor volume (GTV) included two components: the
nasopharyngeal lesion itself (GTVnx) and lymph nodes
confirmed as metastatic through clinical or radiologic evaluation
(GTVnd), primarily based on MRI and/or PET-CT findings. To
capture areas potentially harboring microscopic disease, clinical
target volumes (CTV) were contoured by expanding the GTVs to
incorporate adjacent high-risk tissues. Planning target volumes
(PTV) were created by applying an additional 3 - 5 mm margin
around each CTV, accounting for patient movement and setup
variation during treatment sessions. A total radiation dose of 70 Gy
was prescribed, aimed at ensuring that no less than 95% of the PTV
received the full dose. The course was delivered over 30 to 33
fractions, typically completed within a period of 6 to 7 weeks.

Endpoints and follow-up

Progression-free survival (PFS) was defined as the interval from
the initiation of treatment to either documented disease
progression, as assessed by imaging according to RECIST criteria,
or death from any cause, whichever occurred first. Disease
progression was evaluated based on institutional radiology reports
without central imaging review, reflecting real-world clinical
practice across participating centers.
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TABLE 1 Baseline clinical characteristics stratified by EBV DNA levels.

10.3389/fonc.2025.1650377

Pre-EBV DNA
Characteristic
>0, <1500
Age 0.762
<45 218 (43.3%) 54 (45.0%) 77 (44.5%) 87 (41.4%)
> 45 285 (56.7%) 66 (55.0%) 96 (55.5%) 123 (58.6%)
Sex 0.967
Female 139 (27.6%) 33 (27.5%) 49 (28.3%) 57 (27.1%)
Male 364 (72.4%) 87 (72.5%) 124 (71.7%) 153 (72.9%)
T Stage 0.004
T1 7 (1.39%) 2 (1.67%) 2 (1.16%) 3 (1.43%)
T2 45 (8.95%) 13 (10.8%) 15 (8.67%) 17 (8.10%)
T3 371 (73.8%) 93 (77.5%) 139 (80.3%) 139 (66.2%)
T4 80 (15.9%) 12 (10.0%) 17 (9.83%) 51 (24.3%)
N Stage < 0.001
NO 45 (8.95%) 22 (18.3%) 17 (9.83%) 6 (2.86%)
N1 171 (34.0%) 46 (38.3%) 56 (32.4%) 69 (32.9%)
N2 215 (42.7%) 43 (35.8%) 82 (47.4%) 90 (42.9%)
N3 72 (14.3%) 9 (7.50%) 18 (10.4%) 45 (21.4%)
Stage < 0.001
I 362 (72.0%) 100 (83.3%) 138 (79.8%) 124 (59.0%)
v 141 (28.0%) 20 (16.7%) 35 (20.2%) 86 (41.0%)
Al-model Statistical analyses

A retrospective dataset comprising 503 patients was split into
two groups using a 6:4 random allocation strategy, resulting in a
training cohort of 301 cases and a validation cohort of 202 cases.
The training set was used to construct predictive models for
progression-free survival (PES) at both 1 and 1.5 years. The
following six baseline variables were incorporated as potential
prognostic indicators: sex, age, T stage, N stage, clinical stage, and
EBV DNA levels at diagnosis.

Four modeling algorithms were employed: Cox proportional
hazards model, least absolute shrinkage and selection operator
(LASSO) regression, random survival forest (RSF), and gradient
boosting machine (GBM). Each model’s discriminative
performance was assessed via concordance index (C-index) metrics.

Model performance was subsequently evaluated in the
independent validation cohort using time-dependent receiver
operating characteristic (ROC) curves and decision curve analysis
(DCA). To further elucidate the underlying mechanics of the
models, explainability methods such as SHAP values, partial
dependence survival plots (PDP), time-dependent feature
importance analysis, and Brier scores were applied in the
training group.
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Categorical variables were compared using the chi-square test.
The Kaplan-Meier method was used to estimate PFS, and survival
difterences between groups were assessed by the log-rank test. All
statistical analyses related to Al-based modeling were performed
using R software.

Results
Baseline characteristics

The cohort was divided into three groups: EBV DNA = 0
copies/ml (n = 120), > 0 and < 1500 copies/ml (n = 173), and > 1500
copies/ml (n = 210). There were no statistically significant
differences among the groups in terms of age (p = 0.762) or sex
(p = 0.967). However, significant differences were observed in T
stage distribution (p = 0.004). The proportion of T4 disease
increased with rising EBV DNA levels, from 10.0% in the 0 group
to 24.3% in the > 1500 group. Similarly, N stage was significantly
associated with EBV DNA levels (p < 0.001). The frequency of N3
involvement was markedly higher in the > 1500 group (21.4%)
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FIGURE 1
Kaplan-Meier curves for PFS. (A) Patients with EBV DNA >1500 copies/ml had significantly worse PFS (p = 0.0024). (B) No significant PFS difference
between training and validation sets (p = 0.29).

compared to the 0 group (7.5%). A significant shift in clinical stage
was also observed (p < 0.001), with stage IV disease more prevalent
among patients with high EBV DNA (41.0%) compared to those
with undetectable levels (16.7%, Table 1).

Survival outcomes

The follow-up duration for the cohort was consistently
recorded. The median follow-up time was 4.59 years, with follow-
up data collected through telephone follow-ups and hospital
records. Patients were censored at the time of the last follow-up
or death, whichever occurred first. In the overall cohort, the 1-, 3-,
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and 5-year PFS rates were 96.60%, 87.10%, and 83.19%,
respectively. The 1-, 3-, and 5-year PES rates were 100.0%, 91.5%,
and 88.6% in the EBV = 0 group; 99.4%, 91.2%, and 88.5% in the > 0
and < 1500 group; and 92.3%, 81.0%, and 75.7% in the > 1500
group, respectively, with statistically significant differences among
the three groups (Figure 1A, P = 0.0024).

Al-model construction

Baseline characteristics were well balanced between the training
and validation sets, except for sex, which showed a statistically
significant difference (Table 2). The 1-, 3-, and 5-year PFS rates were
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TABLE 2 Comparison of baseline clinical characteristics between
training and validation sets.

Validation Training

Characteristic P
set set
202 301
Age 0.363
<45 93 (46.0%) 125 (41.5%)
>45 109 (54.0%) 176 (58.5%)
Sex 0.003
Female 71 (35.1%) 68 (22.6%)
Male 131 (64.9%) 233 (77.4%)
T Stage 0.177
T1 0 (0.00%) 7 (2.33%)
T2 18 (8.91%) 27 (8.97%)
T3 151 (74.8%) 220 (73.1%)
T4 33 (16.3%) 47 (15.6%)
N Stage 0.965
NO 17 (8.42%) 28 (9.30%)
N1 71 (35.1%) 100 (33.2%)
N2 85 (42.1%) 130 (43.2%)
N3 29 (14.4%) 43 (14.3%)
Stage 0.56
1T 142 (70.3%) 220 (73.1%)
v 60 (29.7%) 81 (26.9%)
EBV DNA 0.757
0 48 (23.8%) 72 (23.9%)
>0, < 1500 66 (32.7%) 107 (35.5%)
> 1500 88 (43.6%) 122 (40.5%)

96.66%, 87.72%, and 85.03% in the training set, and 96.50%,
86.15%, and 80.43% in the validation set, respectively, with no
significant differences observed between the two groups
(Figure 1B, P = 0.29).

In the training cohort, six clinical variables—sex, age, T stage, N
stage, clinical stage, and EBV DNA levels—were selected to
construct four prognostic models using different machine learning
approaches. The C-index were 0.740 for the Cox model, 0.707 for
the LASSO model, 0.778 for the RSF, and 0.732 for the GBM.

Al model validation

In the validation cohort, the 1- and 1.5-year area under the ROC
curve (AUC) were 0.743 and 0.668 for the Cox model (Figure 2A),
0.801 and 0.636 for the LASSO model (Figure 2B), 0.810 and 0.634
for the RSF model (Figure 2C), and 0.785 and 0.658 for the GBM
model (Figure 2D). The DCA demonstrated that the RSF model
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provided favorable net clinical benefit and showed good stability
across different threshold probabilities (Figures 3A, B).

Figure 4 illustrates the interpretability and performance metrics
of the random survival forest (RSF) model in the training cohort.
The time-dependent feature importance analysis (Figure 4A)
showed that EBV DNA level and N stage were the most
influential predictors throughout the entire follow-up period. The
SHAP plot further demonstrated that both EBV and N stage were
positively associated with increased risk (Figure 4B). Model
performance was stable over time, as reflected by a consistently
low Brier score and a time-dependent concordance index (C/D
AUC) that remained above 0.8 for a substantial portion of the
follow-up (Figure 4C). The partial dependence plot (PDP) showed
that patients with EBV DNA 21500 copies/ml had the lowest
predicted survival throughout the follow-up period (Figure 5).

Discussion

In recent years, EBV DNA has emerged as a key biomarker in
the management of NPC, particularly in regions with a high disease
burden such as Southeast Asia (11-13). While its prognostic
relevance is well established, translating EBV DNA levels into
individualized survival predictions remains a challenge. In this
study, we sought to address this gap by constructing AlI-based
models that integrate EBV DNA with standard clinical features to
predict PFS in advanced NPC patients treated with
concurrent CRT.

Unlike traditional statistical methods, which typically assume
linear associations and fixed hazard ratios, AI algorithms are
capable of modeling more complex, nonlinear interactions (14,
15). This advantage is particularly relevant in heterogeneous
cancers such as NPC, which clinical behavior is influenced by
both tumor burden and host factors (16). By incorporating
machine learning techniques—namely Cox regression, LASSO,
RSF, and GBM—we aimed to compare the predictive capacity of
conventional and data-driven approaches (17-20).

Among the four models tested, the RSF algorithm demonstrated
the strongest performance (21). It achieved the highest C-index in
the training cohort and showed stable results in the validation set.
Beyond overall accuracy, interpretability analyses—including SHAP
values, time-dependent feature importance, and partial dependence
plots—consistently highlighted EBV DNA as the most significant
predictor of survival outcomes. These findings reinforce the notion
that EBV DNA is not merely a passive biomarker, but an active
contributor to risk stratification in Al-driven models.

The partial dependence plot for EBV DNA revealed a clear
inflection point: patients with baseline EBV DNA >1500 copies/ml
consistently showed markedly lower predicted survival
probabilities. Interestingly, survival curves for patients with
undetectable or low-level EBV DNA copies were similar to those
of patients with EBV DNA > 0 and < 1500 copies/ml, suggesting a
threshold effect. These observations are in line with previous clinical
studies and further validate the value of integration of EBV DNA
into automated risk prediction frameworks.
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FIGURE 2

Time-dependent ROC curves for 1-year and 1.5-year PFS prediction using different models. (A) Cox model; (B) LASSO model; (C) RSF model;

(D) GBM model.

Another strength of this study lies in its focus on model

interpretability. One of the major criticisms of Al in healthcare is

the “black box” nature of many algorithms (22, 23). By applying

tools such as SHAP and PDP, we made our models more

transparent and clinically meaningful (24). These visualizations

allow clinicians understanding not only that EBV matters, but

how and when it exerts the greatest impact on patient outcomes.
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performance compared to other machine learning algorithms.

RSF is an ensemble learning method that is particularly well-

suited for survival analysis due to its ability to handle both

censored data and complex non-linear relationships between

predictors and survival outcomes (25, 26). Unlike traditional

survival models, RSF does not require the assumption of
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Model interpretability and performance of the RSF model. (A) Time dependent feature importance shows EBV DNA and N stage had the greatest
impact on model performance over time. (B) SurvSHAP values illustrate the dynamic contribution of each variable to individual risk prediction.
(C) Brier score and time dependent C/D AUC demonstrate the model's predictive accuracy and discrimination ability over time.

proportional hazards and can model interactions between variables
more effectively. Additionally, RSF can handle high-dimensional
datasets with many variables and is less prone to overfitting
compared to other algorithms, making it a robust choice for
survival prediction in clinical datasets like ours (27).

From a clinical standpoint, integrating EBV DNA into Al-based
models offers more than statistical insight—it provides a practical
tool for precision medicine (28-30). By accurately identifying
patients at higher risk of disease progression, clinicians can
consider early treatment intensification, closer surveillance, or
inclusion in clinical trials. Conversely, patients with low-risk
profiles may benefit from treatment de-escalation, reducing
toxicity and preserving quality of life. The model’s transparency
also enhances clinical confidence, making it more acceptable for
integration into multidisciplinary tumor boards. As such, EBV-
informed AI models may serve as decision-support systems that

Frontiers in Oncology

personalize management strategies and improve long-term
outcomes in advanced NPC (31-33).

Although the current model demonstrates promising results,
integrating other modalities such as radiomics, genomic alterations,
and immune-related biomarkers could further improve its
prognostic performance. Radiomics could provide detailed
imaging features related to tumor phenotype, allowing for more
accurate risk stratification. Genomic alterations, including
mutations, copy number variations, and methylation patterns,
could offer insights into the underlying molecular mechanisms of
tumor progression and treatment resistance (34). Additionally,
immune-related biomarkers, such as tumor-infiltrating
lymphocytes or checkpoint markers, may help capture the
immune response to therapy, which is often a critical factor in
cancer prognosis (35). Future studies incorporating these
multimodal data types, in combination with EBV DNA, would
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FIGURE 5
Partial dependence survival curves of key variables in the RSF model.

likely improve the model’s accuracy and utility, providing more
comprehensive and personalized predictions for patients with
advanced NPC.

Despite its strengths, this study has several limitations. First, the
retrospective nature of the analysis, even though based on a multicenter
cohort, may introduce selection and information bias. Second, while
EBV DNA testing was performed uniformly within each center, inter-
institutional variability in laboratory procedures cannot be completely
ruled out. Third, although treatment protocols were broadly
standardized (IMRT with platinum-based concurrent chemotherapy),
subtle differences in chemotherapy regimens, supportive care, or
radiation planning across centers may contribute to treatment
heterogeneity, potentially confounding survival outcomes. Fourth, the
model did not incorporate other potentially informative modalities
such as radiomics, genomic alterations, or immune-related biomarkers,
which could further enhance predictive accuracy. Finally, the absence
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of external validation limits the generalizability of the model. Future
prospective studies should include external datasets and integrate
multimodal information to validate and refine Al-based prognostic
models for advanced NPC.

Conclusion

In conclusion, our study demonstrates that elevated EBV DNA
levels are closely associated with poorer PFS in patients with
advanced NPC. By integrating EBV DNA with advanced AI
algorithms, particularly random survival forests, we were able to
more effectively characterize its prognostic impact across the disease
course. These findings highlight the potential of EBV-informed AI
models as valuable tools for enhancing risk stratification and
guiding personalized treatment decisions in clinical practice.
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