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Clinical value of intratumoral
and peritumoral CT radiomics
models for discriminating
benign and malignant parotid
gland tumors
Cong Zhang1,2, Naijing Shi1,2, Yiru Wang2, Mohan Hao2

and Jinwu Ren1*

1Department of Medical Imaging, The First Central Hospital of Baoding, Baoding, Hebei, China,
2Graduate School, Chengde Medical University, Chengde, Hebei, China
Objective: To evaluate the utility of combining unenhanced and contrast-

enhanced CT intratumoral and peritumoral radiomic features with clinical

variables for distinguishing benign from malignant parotid gland tumors.

Methods: We retrospectively collected clinical and imaging data from 171

patients with pathologically confirmed parotid gland tumors treated at Baoding

First Central Hospital between June 2019 and June 2025 (101 benign, 70

malignant). Tumor ROIs were manually delineated slice-by-slice on non-

contrast, arterial-phase and venous-phase CT images, and peritumoral regions

were automatically expanded by 1–4 mm. The cohort was randomly split into

training and test sets at a 7:3 ratio. After extraction and selection of radiomic

features, multiple models were constructed for intratumoral, various peritumoral

ranges (1–4 mm) and intratumoral+peritumoral combinations. Model

performance was evaluated by ROC curves, the optimal radiomics model was

selected and integrated with the clinical model to produce a combined model,

and a nomogram was subsequently developed.

Results: The AUC values of the intratumoral, peritumoral (1–4 mm) and

intratumoral+peritumoral models in the training set were 0.966, 0.953, 0.927,

0.983, 0.947, 0.959, 0.956, 0.909 and 0.976, respectively; in the test set the AUCs

were 0.797, 0.766, 0.791, 0.714, 0.710, 0.805, 0.836, 0.778 and 0.753,

respectively. According to the DeLong test, in the training set the differences

between intratumor+peritumor 3mm vs. peritumor 3mm and between

intratumor+peritumor 3mm vs. intratumor+peritumor 4mm were statistically

significant (p = 0.022 and p = 0.026, respectively); in the test set, differences

among the models were not statistically significant (P > 0.05). From this, it can be

seen the combined intratumoral + 2 mm peritumoral radiomics model

demonstrated superior diagnostic performance compared to models based

exclusively on either intratumoral or peritumoral features. Consequently, this

model was designated as the optimal radiomic signature and was integrated with

independent clinical risk factors—specifically symptomatology and tumormargin

status—to construct a combined clinical–radiomics predictive model. In the

training and test sets, the AUC values of the radiomics model were 0.956 and
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0.836, respectively, while those of the clinical model were 0.774 and 0.703. The

combined model achieved AUC values of 0.974 and 0.844, demonstrating

significantly superior diagnostic performance compared to the standalone

clinical or radiomics models, along with the highest clinical utility. According to

the Delong test, in the training set the differences between the clinical model and

the combined model, and between the clinical model and the radiomics model,

were statistically significant (p = 0.000 and p = 0.000, respectively); in the test

set, differences among the models were not statistically significant (P > 0.05).

Conclusion: A multiphase CT radiomics approach that fuses intratumoral

features with a 2 mm peritumoral zone robustly distinguishes benign from

malignant parotid gland tumors. Integration with key clinical predictors further

enhances diagnostic accuracy, supporting clinical translation of the combined

model for noninvasive tumor characterization.
KEYWORDS
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1 Introduction

Salivary gland neoplasms represent one of the most common

tumor entities within the head and neck region, of which parotid

gland tumors (PGTs) account for approximately 80%, with nearly 20%

exhibiting malignant behavior (1). Surgical excision remains the gold-

standard treatment for PGTs; however, divergent histopathological

subtypes necessitate tailored operative techniques and carry distinctly

different prognoses (2). While benign parotid tumors generally confer

favorable postoperative outcomes, malignant lesions demonstrate

aggressive invasion, with a substantial risk of local recurrence

and distant metastasis (3). Consequently, accurate preoperative

discrimination between benign and malignant parotid lesions is of

paramount clinical importance for guiding individualized

treatment strategies.

Fine-needle aspiration biopsy (FNAB) is widely regarded as a

reliable method for histological characterization of salivary gland

masses (4). Nevertheless, FNAB is inherently invasive and may be

complicated by hemorrhage, facial nerve injury, or acute

inflammatory reactions (5, 6). Thus, noninvasive modalities capable

of robustly distinguishing tumor malignancy are highly desirable.

Conventional imaging techniques—including ultrasound, magnetic

resonance imaging (MRI), and computed tomography (CT)—play

pivotal roles in the diagnostic workup. Ultrasonography, as a first-line

tool, effectively delineates cystic versus solid components and assesses

lesion margins, yet its diagnostic yield is heavily operator-dependent

and limited in evaluating deep lobe involvement. MRI offers superior

soft-tissue contrast, and diffusion-weighted imaging (DWI) can aid in

differentiating benign from malignant histology (7); however, its

utility may be constrained by cost and contraindications such as

metallic implants. CT reliably evaluates tumor margins, especially in

the deep lobe, but demonstrates limited specificity for

histopathological subtype discrimination (8). Although CT imaging
02
involves ionizing radiation—especially salient in multiphasic scans

and when contrast enhancement requires iodinated contrast agents—

CT offers higher spatial resolution compared with MRI, which

facilitates clearer delineation of tumor margins and thereby allows

more precise definition of tumor extent and surrounding tissues.

In this context, there exists an urgent need for a more precise,

noninvasive preoperative assessment method to differentiate benign

from malignant parotid gland tumors. Radiomics—a quantitative

imaging analysis technique that extracts high-dimensional features

from medical images—has emerged as a promising approach to

capture tumor microenvironment and heterogeneity, potentially

reflecting underlying molecular and cellular characteristics (9). Recent

studies have applied radiomics in head and neck malignancies (10),

glioblastoma (11), breast cancer (12), and hepatocellular carcinoma

(13), demonstrating strong associations between radiomic signatures

and tumor histology, grade, and prognosis. Preliminary investigations

into parotid tumors have leveraged radiomic features for lesion

classification (14–16); however, most efforts have focused solely on

intratumoral regions, overlooking the peritumoral microenvironment.

Evidence suggests that peritumoral tissues may harbor crucial

information regarding tumor invasiveness and heterogeneity (17). To

date, few studies have systematically evaluated the peritumoral zone in

radiomic analyses for parotid lesions, and optimal peritumoral margin

size remains undetermined, often selected based on anecdotal

experience or extrapolation from other tumor types.

Accordingly, the present study aims to develop and compare

intratumoral and peritumoral CT radiomics models—across

multiple peritumoral margins—derived from unenhanced and

contrast-enhanced scans to distinguish benign from malignant

parotid gland tumors. By integrating comprehensive radiomic

profiling of both tumor and surrounding tissue, this work seeks

to furnish clinicians with a more accurate and holistic noninvasive

tool for preoperative decision-making.
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2 Materials and methods

2.1 Patient cohort

Clinical and imaging data were retrospectively collected for 171

patients treated at The First Central Hospital of Baoding between June

2019 and June 2025 whose postoperative histopathology confirmed

benign parotid gland tumors (BPT) or malignant parotid gland tumors

(MPT). Inclusion criteria were: 1.histopathological diagnosis of

primary parotid gland neoplasm; 2.availability of complete clinical

records and high-quality CT scans, including unenhanced and two‐

phase contrast-enhanced examinations; and 3.absence of significant

motion or foreign‐body artifacts on CT images. Exclusion criteria

comprised:1. prior parotid surgery or radiotherapy/chemotherapy;

2.history of invasive preoperative procedures such as biopsy; and 3.

tumor diameter < 1 cm precluding reliable lesion segmentation

(Figure 1). The cohort was randomly divided in a 7:3 ratio into a

training set (n = 119; BPT = 68, MPT = 51) and a testing set (n = 52;

BPT = 33, MPT = 19). The study protocol adhered to the Declaration

of Helsinki and was approved by the Institutional Ethics Committee of

The First Central Hospital of Baoding, with waiver of informed consent

(Approval No. Kuai [2025]018).
2.2 Imaging acquisition

All examinations were performed using a Philips Brilliance i CT

128-slice scanner, covering bilateral parotid regions in the supine

position. Scanning parameters were: 120 kV tube voltage, automatic

tube current modulation, 1 mm slice thickness with 1 mm interslice
Frontiers in Oncology 03
interval, pitch 0.984:1, and gantry rotation time 0.6 s. Contrast

enhancement was achieved via peripheral intravenous injection of

iopamidol ( 300mg I/mL; 80–100 mL) at 3 mL/s using a dual-head

power injector. Arterial-phase images were acquired 30–50 s after

injection, and venous-phase images at 65–70 s. Patients were

instructed to remove dentures and minimize swallowing during

image acquisition.
2.3 Imaging and clinical data assessment

CT imaging features were independently evaluated in a blinded

fashion by two radiologists (each with > 5 years of head and neck

diagnostic experience) unaware of the clinical information and

pathological results. In this study, two radiologists independently

evaluated the imaging features of all 171 patients. The initial

discordance rate between the two readers was approximately 12%

(about 21 cases). All discrepancies were resolved successfully through

consensus discussion between the two radiologists, and a final

unanimous assessment was reached. Imaging features included tumor

location (left/right), margin definition (well-defined/ill-defined), shape

(regular/irregular), deep-lobe involvement (determined by the

imaginary line connecting the most dorsal point of the posterior

facial vein to the most dorsal point of the ipsilateral mastoid

process), calcification (present/absent), attenuation homogeneity

(homogeneous/heterogeneous), lymph node enlargement (present/

absent), maximum tumor diameter, peak enhancement phase

(arterial/venous), and enhancement uniformity (homogeneous/

heterogeneous). Clinical variables comprised sex, age, smoking

history, alcohol consumption, and presence of clinical symptoms.
FIGURE 1

Flowchart of patient selection in this study.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1650943
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2025.1650943
2.4 Image segmentation

Three‐phase CT images were exported from the PACS system

and resampled to isotropic voxels of 1 mm × 1 mm × 1 mm; all

image intensities were then normalized. A radiologist blinded to the

pathological results manually delineated the tumor region of

interest (ROI) on axial unenhanced, arterial‐phase, and venous‐

phase images using ITK‐SNAP software, carefully excluding bone

and vessels. The intratumoral ROI was subsequently expanded

outward by 1 mm, 2 mm, 3 mm, and 4 mm to generate

peritumoral ROIs (workflow shown in Figure 2); these were

labeled Intra, Peri1mm, Peri2mm, Peri3mm, and Peri4mm. ROI

consistency was maintained by first outlining the arterial‐phase

tumor ROI, then applying the same boundaries to the unenhanced

and venous‐phase ROIs, followed by manual adjustment to ensure

accuracy. To assess segmentation reproducibility, a subset of 30

patients was randomly selected one month later for repeat

delineation, and the intraclass correlation coefficient (ICC)

was calculated.
2.5 Feature extraction and selection

Radiomic features were extracted using PyRadiomics v3.0.1.

Features with ICC ≥ 0.75 were retained and standardized by z-score

normalization. Univariate analysis (Student’s t-test or Mann–

Whitney U test) and Pearson correlation filtering were

performed, followed by least absolute shrinkage and selection

operator (LASSO) logistic regression with ten-fold cross-

validation to optimize the penalty parameter and select the most

robust predictors.
2.6 Model construction

Clinical–imaging predictors significantly associated with BPT

and MPT were identified by univariate and multivariate logistic

regression to build the clinical model. Given prior evidence that CT-

based machine learning using a support vector machine (SVM)

classifier achieves high accuracy for parotid tumor discrimination

(18), SVM algorithms were employed to develop nine radiomics
Frontiers in Oncology 04
models: Intra; Peri1mm; Peri2mm; Peri3mm; Peri4mm;

Intra + Peri1mm; Intra + Peri2mm; Intra + Peri3mm; and

Intra + Peri4mm. Receiver operating characteristic (ROC) curves

were plotted and area under the curve (AUC) values calculated to

evaluate each model’s performance in differentiating benign from

malignant parotid lesions. The optimal radiomics model was then

combined with the clinical model to construct a joint model, which

was visualized as a nomogram.
2.7 Statistical analysis

Clinical and imaging characteristics of the training and

validation cohorts were analyzed using Python 3.7.0 with

statsmodels v0.13. Continuous variables were compared by

independent‐samples t-test or Mann–Whitney U test, and

categorical variables by c² test; P < 0.05 was considered

statistically significant. Diagnostic performance of each model was

assessed by ROC analysis, reporting AUC, accuracy, sensitivity,

specificity, positive predictive value (PPV), and negative predictive

value (NPV). Delong’s test was used to compare AUCs between

models. Calibration performance was evaluated via calibration

curves, and clinical utility was appraised using decision curve

analysis (DCA). The overall radiomics workflow is depicted in

Figure 3.
3 Results

3.1 Clinical data and imaging features

This study enrolled 171 patients, of whom 101 were

pathologically confirmed as having benign parotid tumors (BPT)

and 70 as malignant parotid tumors (MPT); the cohort was

randomly split 7:3 into a training set of 119 patients (68 BPT, 51

MPT) and a test set of 52 patients (33 BPT, 19 MPT). The detailed

clinical and imaging characteristics are summarized in Table 1.

There were no statistically significant differences between BPT and

MPT groups in age, sex, smoking history, alcohol history,

maximum tumor diameter, shape, location, distribution,

calcification, attenuation homogeneity, peak enhancement phase,
FIGURE 2

Intratumoral ROI (A), intratumoral plus peritumoral 1mm ROI (B), intratumoral plus peritumoral 2mm ROI (C), intratumoral plus peritumoral 3mm ROI
(D), and intratumoral plus peritumoral 4mm ROI (E).
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FIGURE 3

Radiomics analysis workflow of this study.
TABLE 1 Baseline characteristics of patients in training and validation set.

Variable
Train set (n=119)

pvalue
Test set (n=52)

pvalue
MPT (n=51) BPT (n=68) MPT (n=19) BPT (n=33)

Age 56.35 ± 17.09 55.41 ± 14.44 0.586 57.05 ± 14.83 56.24 ± 14.91 0.79

_Maximum_diameter 3.19 ± 1.52 2.89 ± 1.19 0.367 3.21 ± 1.78 2.61 ± 1.04 0.387

Gender 0.935 1

0 19 (37.25) 27 (39.71) 8 (42.11) 13 (39.39)

1 32 (62.75) 41 (60.29) 11 (57.89) 20 (60.61)

Smoking 0.145 1

0 31 (60.78) 31 (45.59) 10 (52.63) 17 (51.52)

1 20 (39.22) 37 (54.41) 9 (47.37) 16 (48.48)

_Drinking 0.246 1

0 34 (66.67) 37 (54.41) 10 (52.63) 17 (51.52)

1 17 (33.33) 31 (45.59) 9 (47.37) 16 (48.48)

Symptom <0.001 <0.001

0 19 (37.25) 52 (76.47) 9 (47.37) 31 (93.94)

1 32 (62.75) 16 (23.53) 10 (52.63) 2 (6.06)

Location 0.615 0.249

0 23 (45.10) 35 (51.47) 7 (36.84) 19 (57.58)

1 28 (54.90) 33 (48.53) 12 (63.16) 14 (42.42)

(Continued)
F
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or enhancement uniformity (all P > 0.05). Furthermore, univariate

and multivariate logistic regression analyses identified clinical

symptoms and tumor margin status as independent predictors of

malignancy (P < 0.05; see Table 2), upon which the clinical model

was built, yielding AUCs of 0.774 and 0.703 in the training and test

sets, respectively.
3.2 Radiomics model development

A total of 1,834 radiomic features per ROI were extracted using

PyRadiomics v3.0.1, comprising 360 first-order features, 14 shape

features, and 1,460 texture features (440 gray-level co-occurrence

matrix, 280 gray-level dependence matrix, 320 gray-level run-length

matrix, 320 gray-level size-zonematrix, and 14 neighborhood gray-tone

difference matrix features), resulting in 5,502 features across the three

CT phases. After LASSO selection, 20, 33, 39, 34, and 60 features were

retained for the Intra, Peri1 mm, Peri2 mm, Peri3 mm, and Peri4 mm
Frontiers in Oncology 06
ROIs respectively (see Figure 4). In both the training and test cohorts,

the combined intratumoral + 2 mm peritumoral model achieved AUCs

of 0.956 and 0.836, outperforming all other radiomics models (Table 3).

The ROC curves for all nine radiomics models are displayed in Figure

5; Thus, the intratumoral + 2 mm peritumoral model emerged as the

optimal radiomics signature, According to the Delong test, in the

training set the differences between intratumor+peritumor 3mm vs.

peritumor 3mm and between intratumor+peritumor 3mm vs.

intratumor+peritumor 4mm were statistically significant (p = 0.022

and p = 0.026, respectively); in the test set, differences among the

models were not statistically significant (P > 0.05). Figure 6 illustrates

the Delong test results for each model.
3.3 Nomogram construction

The optimal radiomics model (Intra + Peri2 mm) was

combined with the clinical model to generate a nomogram (joint
TABLE 1 Continued

Variable
Train set (n=119)

pvalue
Test set (n=52)

pvalue
MPT (n=51) BPT (n=68) MPT (n=19) BPT (n=33)

Margin <0.001 0.148

0 31 (60.78) 14 (20.59) 7 (36.84) 5 (15.15)

1 20 (39.22) 54 (79.41) 12 (63.16) 28 (84.85)

Shape 0.038 1

0 42 (82.35) 43 (63.24) 12 (63.16) 20 (60.61)

1 9 (17.65) 25 (36.76) 7 (36.84) 13 (39.39)

Involving_deep_leaves 0.811 1

0 22 (43.14) 32 (47.06) 11 (57.89) 20 (60.61)

1 29 (56.86) 36 (52.94) 8 (42.11) 13 (39.39)

Calcification 0.21 1

0 47 (92.16) 67 (98.53) 18 (94.74) 31 (93.94)

1 4 (7.84) 1 (1.47) 1 (5.26) 2 (6.06)

Density 0.109 1

0 36 (70.59) 37 (54.41) 12 (63.16) 21 (63.64)

1 15 (29.41) 31 (45.59) 7 (36.84) 12 (36.36)

Swollen_lymph_nodes <0.001 0.018

0 14 (27.45) 46 (67.65) 6 (31.58) 23 (69.70)

1 37 (72.55) 22 (32.35) 13 (68.42) 10 (30.30)

Enhanced_peak_phase 1 0.739

0 32 (62.75) 43 (63.24) 11 (57.89) 22 (66.67)

1 19 (37.25) 25 (36.76) 8 (42.11) 11 (33.33)

_Enhanced_uniformity 0.013 0.002

0 27 (52.94) 52 (76.47) 10 (52.63) 31 (93.94)

1 24 (47.06) 16 (23.53) 9 (47.37) 2 (6.06)
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model) as detailed in Table 4 and Figure 7. In the training and test

sets, the radiomics model AUCs were 0.956 and 0.836, respectively,

while the clinical model yielded AUCs of 0.774 and 0.703. The

combined model demonstrated AUC values of 0.974 and 0.844,

surpassing those of the individual radiomics and clinical models,

and indicating superior diagnostic performance. According to the

Delong test, in the training set the differences between the clinical

model and the combined model, and between the clinical model

and the radiomics model, were statistically significant (p = 0.000

and p = 0.000, respectively); in the test set, differences among the

models were not statistically significant (P > 0.05). Delong’s

comparisons among the three models are shown in Figure 8. The

nomogram assigns substantial weight to the radiomics score in

malignancy risk estimation (Figure 9). Calibration curves for all

three models in both cohorts confirmed excellent goodness-of-fit

(Figure 10), with Hosmer–Lemeshow P values of 0.392 and 0.435

for the training and test sets, respectively, indicating no significant

deviation from perfect calibration. Decision curve analysis (Figure

11) demonstrated that the joint model achieved the highest net

clinical benefit for parotid tumor discrimination in both cohorts.
4 Discussion

Benign and malignant parotid gland tumors exhibit markedly

distinct biological behaviors, leading to divergent treatment

strategies and prognosis. For benign lesions, superficial or partial

parotidectomy is typically preferred; by contrast, malignant tumors

are associated with higher rates of recurrence and metastasis and

often warrant more extensive resection, such as total or radical
Frontiers in Oncology 07
parotidectomy (19). Consequently, accurate preoperative

differentiation between benign and malignant tumors is critical for

optimizing therapeutic decision-making and patient outcomes.

Conventional imaging assessments rely heavily on the radiologist’s

expertise and subjective interpretation, and overlapping radiographic

features among different histological subtypes further limit

diagnostic precision (20). As a result, the accuracy of preoperative

characterization of parotid tumors remains suboptimal (21).

Radiomics—an emerging artificial intelligence–driven

methodology—enables noninvasive extraction of high-dimensional

quantitative features from routine medical images, thereby revealing

intrinsic tumor biology (22). Prior studies have predominantly focused

on intratumoral radiomic signatures (23, 24), with comparatively little

attention paid to the peritumoral microenvironment. Xu et al.

demonstrated the utility of tumor-based radiomic features for

distinguishing benign from malignant parotid lesions (25). Zheng et

al. constructed an MRI-based radiomics nomogram for preoperative

differentiation of benign and malignant parotid tumors. By extracting

texture features from T1WI and fat-suppressed T2WI and integrating

clinical factors (such as deep-lobe invasion and peritumoral tissue

infiltration), the model demonstrated high discriminative performance

in both training and validation cohorts (AUC > 0.93). The pathological

basis is that malignant tumors often demonstrate infiltrative growth

and high tissue heterogeneity—attributes that can be quantitatively

captured by radiomic features—thus surpassing visual assessment and

aiding clinical decision-making (26). Faggioni et al. demonstrated that

MRI-based radiomic features—particularly T2-weighted Skewness and

pcsT1-weighted GLCM_InverseVariance—can effectively discriminate

pleomorphic adenoma (PA) from Warthin tumor (WT), exhibiting

high specificity. One study found that on contrast-enhanced T1-
TABLE 2 Univariable and multivariable logistic regression analysis of factors.

Variable
Univariate analysis Multivariate analysis

OR (95% CI) p_value OR (95% CI) p_value

Calcification 0.250 (0.040-1.573) 0.215

Symptom 0.500 (0.302-0.827) 0.024 0.155 (0.077-0.313) 0

Swollen_lymph_nodes 0.595 (0.382-0.926) 0.053

Enhanced_uniformity 0.667 (0.392-1.133) 0.209

Age 1.005 (0.999-1.010) 0.159

Maximum_diameter 1.053 (0.961-1.154) 0.356

Location 1.179 (0.773-1.799) 0.523

Involving_deep_leaves 1.241 (0.824-1.872) 0.386

Gender 1.281 (0.869-1.889) 0.293

Enhanced_peak_phase 1.316 (0.798-2.171) 0.367

Drinking 1.824 (1.110-2.995) 0.047 0.851 (0.308-2.356) 0.795

Smoking 1.850 (1.172-2.921) 0.027 2.188 (0.792-6.044) 0.205

Density 2.067 (1.232-3.466) 0.021 0.963 (0.428-2.166) 0.939

Margin 2.700 (1.756-4.154) 0 3.891 (1.831-8.265) 0.003

Shape 2.778 (1.465-5.265) 0.009 1.236 (0.495-3.083) 0.704
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TABLE 3 The predictive performance of the nine models.

Models Cohort AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

Intra_SVM
train 0.966 0.9398 - 0.9922 0.891 0.838 0.961 0.966 0.817

test 0.797 0.6754 - 0.9179 0.692 0.515 0.895 0.895 0.543

Peri1mm_SVM
train 0.953 0.9195 - 0.9868 0.882 0.824 0.961 0.966 0.803

test 0.766 0.6357 - 0.8954 0.750 0.697 0.842 0.885 0.615

Peri2mm_SVM
train 0.927 0.8692 - 0.9849 0.950 0.926 0.98 0.984 0.909

test 0.791 0.6651 - 0.9170 0.769 0.848 0.632 0.800 0.706

Peri3mm_SVM
train 0.983 0.9666 - 0.9994 0.941 0.971 0.902 0.930 0.958

test 0.714 0.5734 - 0.8540 0.692 0.606 0.842 0.870 0.552

Peri4mm_SVM
train 0.947 0.8964 - 0.9981 0.966 0.941 0.929 0.92 0.927

test 0.710 0.5579 - 0.8616 0.731 0.727 0.737 0.828 0.609

IntraPeri1mm_SVM
train 0.959 0.9186 - 1.0000 0.966 0.941 0.892 0.918 0.927

test 0.805 0.6806 - 0.9303 0.808 0.848 0.737 0.848 0.737

IntraPeri2mm_SVM train 0.956 0.9126 - 0.9992 0.966 0.956 0.980 0.985 0.943

(Continued)
F
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FIGURE 4

Process of extracting radiomics features. (A) The vertical axis of LASSO regression represents the coefficients corresponding to 5502 features, and
the horizontal axis represents the adjustment parameter l; (B) The optimal l (l=0.0168) is selected through mRMR; (C) 56 IntraPeri optimal features
have been extracted. IntraPeri, Intratumoral + 2mm peritumoral combined model; LASSO, least absolute shrinkage and selection operator; mRMR,
maximum relevance-minimum redundancy.
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weighted images, GLCM_InverseVariance was the most discriminative

feature (AUC=0.90), reflecting the relatively homogeneous

enhancement pattern of WT; on T2-weighted images, skewness had

the highest specificity (88%), with high skewness values associated with

intralesional cystic change, necrosis, or hypervascularity typical of WT.

WT commonly contains cystic components and lymphoid stroma with
Frontiers in Oncology 09
complex architecture, whereas PA is relatively more homogeneous;

these histopathologic differences are quantitatively captured by

radiomic features, enabling noninvasive and accurate preoperative

discrimination (27). Evidence suggests that the peritumoral zone

harbors critical biological information—such as angiogenesis,

lymphovascular invasion, and stromal reactions—that may drive
TABLE 3 Continued

Models Cohort AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

test 0.836 0.7209 - 0.9505 0.788 0.727 0.895 0.923 0.654

IntraPeri3mm_SVM
train 0.909 0.8486 - 0.9698 0.916 0.941 0.882 0.914 0.918

test 0.778 0.6431 - 0.9136 0.712 0.606 0.895 0.909 0.567

IntraPeri4mm_SVM
train 0.976 0.9479 - 1.0000 0.975 0.971 0.980 0.985 0.962

test 0.753 0.6114 - 0.8942 0.769 0.848 0.632 0.800 0.706
fr
FIGURE 5

ROC curves of nine radiomic models (A) training set; (B) test set.
FIGURE 6

Summary of DeLong test results for each model.
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tumor progression (28, 29). These pathophysiological changes can

likewise be captured through radiomic analysis. Indeed, peritumoral

radiomics has shown promise in predicting non–small cell lung cancer

subtypes (30), epithelial ovarian cancer extra-pelvic metastasis (31),

and malignant brain tumor classification (32). However, its application

to parotid gland tumors remains underexplored.

In this study, the diagnostic efficacy of intratumoral and

peritumoral radiomic features for discriminating benign and

malignant parotid gland tumors was systematically evaluated,

revealing that the peritumoral microenvironment may harbor

critical biological cues for tumor characterization. Likewise, the

selection of peritumoral margin size significantly influences

radiomic predictive performance (33), and the systematic

identification of an optimal expansion zone can further enhance

model accuracy. Although optimal peritumoral ranges vary by

anatomical site, definitive evidence for parotid tumors has been

lacking. By constructing models at 1 mm, 2 mm, 3 mm, and 4 mm

peritumoral expansions, we sought to determine the ideal margin

for parotid neoplasms and confirmed that peritumoral

heterogeneity provides substantial complementary value in

malignancy prediction. We integrated multiphase CT features—

unenhanced, arterial, and venous—into nine distinct radiomics

models and found the 2 mm expansion to be optimal, yielding
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AUCs of 0.927 and 0.791 in the training and test cohorts,

respectively, outperforming the 1 mm, 3 mm, and 4 mm models.

Furthermore, the combined intratumoral + 2 mm peritumoral

model demonstrated superior discrimination (AUC = 0.956 in

training, 0.836 in testing), with high accuracy and specificity.

Consistent with Shen et al.’s findings that a 2 mm peritumoral

margin maximizes AUC when compared to 5 mm (34), our results

corroborate the primacy of the 2 mm zone. Prior research indicates

that support vector machine (SVM)–based classifiers outperform

other machine learning algorithms (18) and, owing to their robust

generalizability, suitability for small datasets, and interpretability,

we employed SVM throughout. Moreover, the Peri1 mmmodel also

demonstrated robust diagnostic performance; likewise, the Peri3

mm (AUC = 0.983) and Peri4 mm (AUC = 0.976) models achieved

high AUCs in the training cohort, yet their discriminative accuracy

declined markedly in the test cohort. Moreover, we observed that

standalone peritumoral models underperformed relative to

intratumoral models, potentially reflecting our moderately sized

cohort and the predominance of larger tumors, which inherently

contain abundant discriminative information, thereby limiting the

incremental value of peritumoral features.

The Intra + Peri2 mm model demonstrated a pivotal role in

enhancing the predictive performance for parotid gland tumor
FIGURE 7

ROC curves demonstrating the discriminatory performance of radiomics, clinical, and integrated models in parotid gland tumor classification (A)
training set; (B) test set.
TABLE 4 Diagnostic efficacy of clinical, radiomics, and nomogram models in both training and testing cohorts.

Model Cohort AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

Clinic train 0.774 0.6903 - 0.8576 0.739 0.971 0.431 0.695 0.917

Clinic test 0.703 0.5642 - 0.8409 0.712 0.788 0.579 0.765 0.611

Radiomic train 0.956 0.9126 - 0.9992 0.966 0.956 0.98 0.985 0.943

Radiomic test 0.836 0.7209 - 0.9505 0.788 0.727 0.895 0.923 0.654

Combined train 0.974 0.9424 - 1.0000 0.966 0.956 0.98 0.985 0.943

Combined test 0.844 0.7364 - 0.9510 0.788 0.727 0.895 0.923 0.654
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characterization. By integrating intratumoral and 2 mm

peritumoral radiomic signatures, the IntraPeri2 mm model

achieved AUCs of 0.956 and 0.836 in the training and test

cohorts, respectively. Consequently, we infer that intratumoral

and peritumoral features are complementary, jointly conferring

superior accuracy in distinguishing benign from malignant

parotid lesions. Decision curve analysis further confirmed that the

IntraPeri2 mm model yields a meaningful net clinical benefit.

Furthermore, this study identified clinical symptoms and tumor

margin status as independent predictors of malignancy, and

combined these clinical‐imaging variables with the optimal

radiomic signature to construct a joint model. The resulting

combined model attained AUCs of 0.974 in the training set and

0.844 in the test set—outperforming both the clinical‐only and
Frontiers in Oncology 11
radiomics‐only models—and was visualized via a nomogram. The

integration of these clinical and radiomic parameters enables more

accurate preoperative stratification of parotid gland tumors, thereby

holding significant implications for individualized clinical

decision-making.
5 Study limitations

This investigation is subject to several constraints. First, its

retrospective design inherently predisposes it to selection bias.

Second, as a single-center study with a modest and imbalanced

sample, external validation was not feasible; the limited cohort may

constrain the robustness and generalizability of our findings,
FIGURE 9

Nomogram of the combined model.
FIGURE 8

Delong test results comparing the performance of clinical, radiomics, and combined models.
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underscoring the need for prospective, multicenter trials with larger,

more heterogeneous populations. Third, manual delineation of tumor

ROIs introduces intra- and interobserver variability; the

implementation and validation of automated or semi-automated

segmentation algorithms are warranted to enhance reproducibility

and mitigate observer-dependent discrepancies.
6 Conclusion

Multiphase CT-derived radiomic signatures encompassing

both intratumoral and peritumoral regions demonstrate high

discriminatory power for benign versus malignant parotid gland
Frontiers in Oncology 12
tumors. Integration of these quantitative imaging biomarkers

with independent clinical predictors yields a composite model

with superior diagnostic accuracy and clinical net benefit.

This noninvasive framework offers a promising avenue for

precision stratification and individualized management of

parotid neoplasms.
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