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Background: Metabolic alterations during transformation of low-grade gliomas
(LGGs) into high-grade glioblastomas (GBMs) remain incompletely understood.
Particularly, IDH wildtype (IDHwt) diffuse astrocytomas harboring TERT promoter
(TERTp) mutations, classified as molecular GBM under the 2021 WHO
classification, may exhibit distinct metabolic and epigenetic features compared
to histological WHO Grade 4 GBMs. Here, we conducted a detailed metabolomic
comparison of tumor specimens from a patient initially diagnosed with WHO
Grade 2 IDHwt diffuse astrocytoma carrying TERTp mutation, who subsequently
progressed to a histologically confirmed WHO Grade 4 GBM upon recurrence.
Case presentation: A 66-year-old female patient underwent surgical resection
of a WHO Grade 2 diffuse astrocytoma in April 2018. Molecular testing revealed
IDH1-wildtype status and TERTp mutation, classifying the tumor as a molecular
GBM. Following ~3.5 years of clinical stability, magnetic resonance imaging
detected tumor recurrence. The patient underwent a second craniotomy in
February 2022, with histopathology confirming progression to WHO Grade 4
GBM. Using untargeted proton nuclear magnetic resonance (*H NMR)
spectroscopy, we analyzed aqueous-methanol and chloroform phases from
methanol-chloroform-water extraction of tumor tissue from both time points.
Compared to the primary tumor, the aqueous-methanol phase of the recurrent
WHO Grade 4 GBM specimen showed decreased levels of neuronal and glial
markers including N-acetylaspartate, myo-inositol, and scyllo-inositol. Elevated
metabolites included phosphocholine, phosphoethanolamine, glycine, taurine,
hypotaurine, branched-chain amino acids (leucine, isoleucine, valine), and
notably alanine, which increased approximately 6-fold. Alanine likely serves as
an alternative carbon source supporting tumor proliferation and aggressiveness.
The chloroform phase showed the presence of cholesterol in both tumors;
however, cholesteryl ester (CE) was detected only in the recurrent tumor. The
CE-to-cholesterol ratio of 0.44 in the recurrent tumor suggests significant
cholesterol esterification during malignant progression.
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Conclusion: Our findings identify alanine accumulation and increased
cholesterol esterification as key metabolic features accompanying malignant
transformation from molecular GBM to histological WHO grade-4 GBM. These
metabolic changes may serve as biomarkers of tumor progression and
recurrence. Importantly, alanine detection via magnetic resonance
spectroscopy offers promising potential for non-invasive glioma diagnostics.
Furthermore, targeting cholesterol esterification pathways using Acyl-CoA:
cholesterol acyltransferase inhibitors could provide a novel therapeutic
approach, especially for low-grade astrocytomas with high risk of malignant
progression and recurrence.

alanine, cholesterol, cholesteryl ester, diffuse astrocytoma, glioblastoma, magnetic

resonance spectroscopy, TERT promoter mutation

Introduction

Low-grade gliomas (LGGs) are a heterogeneous group of
primary brain tumors classified by the World Health
Organization (WHO) into Grades 1 through 3. Common
subtypes include MYB- or MYBLI-altered diffuse astrocytomas
(WHO Grade 1), IDH-mutant astrocytomas (WHO Grade 2 or
3), and oligodendrogliomas with IDH mutations and 1p/19q-
codeletion (WHO Grade 2 or 3) (1). According to the 2021
WHO classification, certain IDH-wildtype (IDHwt) diffuse
astrocytomas that harbor molecular alterations such as high-level
EGFR amplification with chromosome 7 gain and 10 loss (7+/10-),
or TERT promoter (TERTp) mutations, are now categorized as
“diffuse astrocytoma, IDH-wildtype, with molecular features of
glioblastoma (GBM)”—commonly referred to as molecular GBM
(1-3).

However, it is important to emphasize that molecular GBM is
not biologically or clinically identical to histological WHO Grade 4
GBM. In particular, the metabolic and epigenetic characteristics of
these tumors can differ significantly. While both may share features
of aggressive growth and poor prognosis, their distinct biology
underscores the need for dedicated molecular and metabolic
investigations. This distinction is critical for developing effective,
subtype-specific therapies.

LGGs carry a risk of recurrence after surgical resection,
influenced by molecular features such as IDH mutation status,
1p/19q-codeletion, and TERTp mutations (4, 5). GBM, a
histologically defined WHO Grade 4 malignant central nervous
system (CNS) tumor, represents 14.2% of all CNS tumors in the
United States, with an annual incidence of 3.27 per 100,000 and a
median survival of only ~8 months (6). Current standard-of-care
therapies—surgery, radiation, and chemotherapy—offer limited
benefit (median survival <16 months) and are associated with
poor quality of life (7), emphasizing the need for novel
therapeutic approaches for both LGGs and GBMs.
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Gliomas are known to reprogram key metabolic pathways—
including glycolysis, mitochondrial oxidative phosphorylation,
glutaminolysis, and fatty acid and cholesterol metabolism—to fuel
tumor growth and progression (8).

In this study, we report metabolomic profiling of tumor
specimens from a patient initially diagnosed with diffuse
astrocytoma (WHO Grade 2) harboring a TERTp mutation, who
experienced tumor recurrence and histological progression to
WHO Grade 4 GBM approximately 3.5 years after the first
surgery. We identified specific metabolic alterations—particularly
a 6-fold increase in alanine levels and dysregulation of cholesterol
metabolism—between the initial and recurrent tumors.

To our knowledge, this is the first study to longitudinally
compare tumor metabolomic profiles in a patient with molecular
GBM (WHO Grade 2 with TERTp mutation) that later progressed
to histological WHO Grade 4 GBM. This case highlights the critical
need to metabolically characterize molecular GBMs—such as WHO
Grade 2 diffuse astrocytomas with TERTp mutations—
independently from histological WHO Grade 4 GBMs, as their
distinct metabolic vulnerabilities may offer unique therapeutic
opportunities and guide more precise treatment strategies.

Case description

A 66-year-old woman presented with an infiltrating brain
neoplasm and underwent tumor resection in April 2018.
Preoperative MRI showed no contrast enhancement on T1-
weighted imaging (Figure 1A), but T2-FLAIR revealed a large
hyperintense region in the left temporal lobe (Figure 1B),
suggestive of non-enhancing infiltrative glioma. Histopathological
examination identified a diffuse astrocytoma with a proliferation
index (Ki-67) of 5% (Figures 1C, D), and no evidence of necrosis or
microvascular proliferation, consistent with WHO Grade 2
(2016 classification).
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FIGURE 1

MRI and immunohistochemical characterization of the primary and recurrent gliomas. (A) Post-contrast axial T1-weighted (T1w) and (B) T2-FLAIR
MRI of the primary tumor (WHO Grade 2 diffuse astrocytoma) demonstrate a non-enhancing, diffusely infiltrative lesion in the upper left temporal
lobe. T2-FLAIR reveals extensive hyperintensity with associated mass effect on the left lateral ventricle and mild midline shift. (C) H&E and (D) Ki-67
immunohistochemical staining of the resected tumor show diffuse astrocytic infiltration and a low proliferation index (Ki-67: ~5%), consistent with
WHO Grade 2 diffuse astrocytoma. (E) Post-contrast TIw and (F) T2-FLAIR MRI of the recurrent tumor ~3.5 years later reveal a new contrast-
enhancing lesion in the left inferior frontal gyrus and expanded FLAIR hyperintensity extending to the left temporal lobe and periventricular region.
(G) HE&E and (H) Ki-67 staining of the recurrent tumor demonstrate increased cellular density and elevated proliferative activity (Ki-67: 10—-13%),
confirming progression to high-grade glioma (WHO Grade 4 glioblastoma). (Magnifications: H&E, 10x; Ki-67, 4x).

Molecular testing showed IDHI1 wildtype status, TERT
promoter (TERTp) mutation, and unmethylated MGMT
promoter status, indicating a likely aggressive clinical course.
Although these molecular features would now classify the tumor
as a molecular glioblastoma per the 2021 WHO criteria, at the time
of diagnosis, the cIMPACT-NOW update 3 had not yet been
published (released in November 2018), and the tumor was
classified as a diffuse astrocytoma, IDH-wildtype, TERTp-mutant.

Following surgery, the patient received standard chemoradiation
with temozolomide (TMZ, 75 mg/m?) and 60 Gy radiation in 30
fractions with 2 Gy per fraction (May-July 2018), followed by six
cycles of adjuvant TMZ (150 mg/m? August 2018-January 2019).
She tolerated the treatment well and remained clinically stable and
asymptomatic. Serial MRI scans from July 2018 to September 2021
showed no evidence of tumor progression.

In January 2022 (~3.5 years later), MRI revealed a new 1.6 cm
contrast-enhancing lesion in the left inferior frontal gyrus
(Figure 1E), with associated T2-FLAIR hyperintensity (Figure 1F).
In vivo proton magnetic resonance spectroscopy (‘H MRS) showed
elevated choline and decreased NAA, while '*F-FDG PET
demonstrated increased uptake of '®F-FDG near the lesion
(Supplementary Figure S1), showing upregulated metabolic
activity, consistent with high-grade glioma. A second craniotomy
in February 2022 confirmed a high-grade glial neoplasm with Ki-67
of 10-13%, diagnostic of WHO Grade 4 glioblastoma.

After a second round of chemoradiation, the patient remained
clinically stable until November 2022, when she experienced
seizures, a fall, skull fracture, and aphasia. In March 2023, MRI

Frontiers in Oncology

identified a second recurrence in the left frontal cortex (1.4 cm
lesion), which was treated with single-dose Gamma Knife
radiosurgery (18 Gy). The patient tolerated the procedure
without complications.

In June 2023, she developed bilateral lower limb weakness and
required emergency treatment. She subsequently transitioned to
home-based palliative care and passed away in October 2023.

Ex vivo *H magnetic resonance
spectroscopy

We collected tumor specimens from the patient during both the
initial (primary) and second (recurrent) surgeries and performed
metabolomic analyses using ex vivo high resolution proton nuclear
magnetic resonance (‘H NMR) spectroscopy. Figure 2 presents the
"H NMR spectral profiles and quantified aqueous-phase metabolites
(methanol-extracted) from the primary tumor—classified as WHO
Grade 2 diffuse astrocytoma with TERT promoter (TERTp)
mutation (molecular GBM)—and the recurrent tumor, diagnosed
as WHO Grade 4 glioblastoma (GBM).

Compared to the primary tumor, the recurrent tumor exhibited
markedly reduced levels of N-acetylaspartate (NAA),
glycerophosphocholine (GPC), myo-inositol (mlI), scyllo-inositol
(sI), creatine (Cr), and glutamate. In contrast, levels of branched-
chain amino acids (leucine/isoleucine/valine), alanine,
phosphocholine (PC), glycine, taurine, hypotaurine (H-Tau), and
phosphoethanolamine (PE) were elevated in the recurrent tumor
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FIGURE 2

Comparative *H NMR metabolite profiles of aqueous extracts from primary and recurrent tumor specimens. (A) Representative *H NMR spectra of
aqueous-phase extracts (methanol-chloroform-water extraction) from tumor tissues collected during the first surgery (April 2018; WHO Grade 2
diffuse astrocytoma with TERTp mutation (molecular GBM); bottom spectrum, blue) and second surgery following recurrence (February 2022; WHO
Grade 4 GBM; top spectrum, red). The spectra reveal distinct metabolic alterations associated with tumor progression. (B) Bar graphs showing the
metabolite concentrations (umol/g, wet tissue) in tumor specimens collected from four different spatial locations of the original tumor (CNSTM-
081.1 to CNSTM-081.4), the mean + SD of metabolite concentrations (umol/g wet tissue) in the primary tumor (n = 4) and the recurrent tumor (n =
1), showing the relative levels of metabolites in WHO Grade 2 molecular GBM and WHO Grade 4 GBM. Insets display axial T1-weighted MR images
indicating tumor sampling locations. Characteristic metabolic features of high-grade gliomas—such as decreased levels of N-acetylaspartate (NAA),
glycerophosphocholine (GPC), myo-inositol (ml), scyllo-inositol (sl), and elevated levels of phosphocholine (PC) and glycine—were observed in the
recurrent tumor, consistent with progression from a WHO Grade 2 molecular GBM to histologically confirmed GBM. Additionally, Leu/lle/Val,
alanine, hypotaurine (H-Tau) and taurine (Tau) were elevated in the recurrent tumor. (*) D-Mannitol, an exogenous osmotic agent administered
intraoperatively to reduce intracranial pressure, was detected in both tumor samples. Notably, its concentration was substantially higher in the
recurrent tumor (21.25 ymol/g) than in the primary tumor (4.94 umol/g), suggestive of increased blood-brain or blood-tumor barrier permeability in
the high-grade recurrent tumor.

specimen. Notably, decreased NAA, ml, and sI, alongside elevated =~ Amino acid metabolism is increasingly recognized as a critical
PC and glycine, are well-established metabolic hallmarks of high-  contributor to glioma progression (13, 14). In our preliminary
grade gliomas (9-11). Elevated valine, alanine, taurine, and H-Tau  studies, using (3—13C)alanine as a metabolic tracer, we observed
levels have also been reported in high-grade gliomas (12-14).  incorporation of labeled carbon into TCA cycle intermediates,
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including acetyl-CoA, citrate, and malate, suggesting that alanine
contributes to energy metabolism and supports biosynthesis of
glutamate and aspartate—amino acids essential for tumor cell
proliferation (15).

These metabolomic changes strongly support progression from
WHO Grade 2 diffuse astrocytoma to Grade 4 GBM over ~3.5 years
and align with the histopathological features observed in the
recurrent tumor (Figures 1G, H). Although the cIMPACT-NOW
update 3 (published in November 2018) recommended that diffuse
astrocytic gliomas harboring IDH-wildtype and TERTp mutation
be considered molecular GBMs (WHO Grade 4), the metabolic
profile of the primary tumor resembled that of normal-appearing
brain tissue, distinct from that of a typical GBM (16).

We further analyzed the chloroform-phase for lipid extracts
from both tumor specimens. Cholesterol was present in both the
primary and recurrent tumors (Figure 3A, bottom and middle
spectra), but cholesteryl ester (CE) was detected exclusively in the
recurrent GBM (middle spectrum, shown in green). The CE-to-
cholesterol ratio in the recurrent tumor was 0.44, indicating that
approximately 30% of the total cholesterol pool was esterified.
These findings suggest the activation of de novo cholesterol
esterification during malignant progression from molecular GBM
to histological GBM.

To explore this further, we analyzed a postmortem GBM tissue
sample from a second patient (Patient-2) with end-stage recurrent
GBM. The "H NMR spectrum of the chloroform extract (Figure 3A,
top spectrum, shown in orange) revealed even higher CE levels than
in Patient-1, with ~70% of the cholesterol pool esterified. This

yl

ester
L+

holesteryl

3
<
¢
Y
5
/
s o
Cl
ester

Cholesteryl

Patient-2
GBM
(Autopsied sample)

;‘\ }l\\ F_ H ’ ‘UM

SO WY N VSR Al WO

>

°

ester

Patient-1
Recurrent tumor
(GBM)

<
O

Y

Cholesteryl
ester

ol

Patient-1
Original tumor
(Diffuse astrocytoma)

10.3389/fonc.2025.1651974

supports the notion that the cholesterol esterification pathway
becomes increasingly active during GBM progression and
advanced disease stages.

Finally, to determine whether CE accumulation is a generalizable
feature of recurrence, we compared "H NMR spectra of tumor lipid
extracts from a newly diagnosed GBM patient (Patient-3) and a
recurrent GBM patient (Patient-4; 2 years post-surgery; Figure 3B).
CE levels were markedly elevated in the recurrent tumor, suggesting
that cholesterol esterification is enhanced during recurrence and may
be a metabolic marker of GBM progression.

Discussion and conclusions

Although the 2021 WHO classification of CNS tumors
recommends that IDHwt diffuse astrocytomas harboring TERTp
mutation be classified as molecular glioblastomas (GBMs) (1), the
metabolic profile of the original tumor in our patient did not align
with that of a primary GBM (Figure 2A, bottom spectrum). Instead,
the 'H NMR spectrum of the primary tumor (a diffuse astrocytoma
with TERTp mutation) resembled that of normal-appearing brain
tissue, consistent with the lack of contrast enhancement on post-
contrast T1-weighted MRI (Figure 1A). However, after
approximately 3.5 years, the recurrent tumor exhibited a
distinctly altered metabolic profile that matched the metabolic
features of WHO Grade 4 GBM (Figure 2A, top spectrum),
including elevated levels of phosphocholine (PC) and glycine, and
reduced levels of N-acetylaspartate (NAA), scyllo-inositol (sI), and
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Increased cholesterol esterification in primary and recurrent gliomas. (A) Comparison of *H NMR spectra (0.52 - 1.18 ppm region showing H-18 and
H-21 proton peaks) from the chloroform-phase extracts of tumor tissue specimens collected during the initial surgery (April 2018; WHO Grade 2
diffuse astrocytoma; bottom spectral overlay, shown in red, turquoise, pink and blue, n = 4), the second surgery for the recurrent tumor (February
2022; WHO Grade 4 GBM; middle spectrum, shown in green), and from an autopsied tissue specimen from a deceased end-stage GBM patient
(Patient-2; top spectrum, shown in orange). While cholesterol signals were present in both primary and recurrent tumors, cholesteryl ester (CE)
peaks were detected exclusively in the recurrent and autopsy samples. Notably, the CE signal was markedly elevated in the autopsied GBM tissue,
suggesting progressive accumulation of cholesteryl esters (CEs) during disease advancement. (B) Representative *H NMR spectra from chloroform-
phase extracts of tumor tissues from a newly diagnosed GBM patient (Patient-3) and a recurrent GBM patient (2 years post-surgery, Patient-4)
demonstrate increased CE levels in the recurrent tumor (Patient-4), supporting enhanced cholesterol esterification during recurrence and
progression. (C) Schematic illustration of the enzymatic conversion of cholesterol to cholesteryl ester (CE) catalyzed by acyl-CoA:cholesterol
acyltransferase (ACAT), a key metabolic step implicated in glioma progression.
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myo-inositol (mI). This metabolic shift was mirrored in the
imaging, with new contrast enhancement observed on MRI
(Figure 1E), consistent with high-grade transformation.

These findings suggest that "H NMR-based metabolomic profiling
of tumor specimens can offer valuable insights into the biological grade
of gliomas, including molecular subtypes and progression. Such
“metabolic fingerprinting” or “metabotyping” may complement
existing histopathological and molecular diagnostic tools and
improve the differential diagnosis and prognostication of gliomas.

Amino acid metabolism is increasingly recognized as a key
component of tumor biology, functioning not only as a source of
biosynthetic precursors and energy substrates but also as
modulators of signaling pathways (12, 13). In normal brain
physiology, glycine supports multiple functions, including
inhibitory neurotransmission, cytoprotection, protein synthesis,
and one-carbon metabolism. Elevated glycine levels are
consistently associated with high-grade gliomas, and glycine has
been proposed as a non-invasive imaging biomarker of glioma
malignancy (17, 18). In our study, glycine levels were 5-fold higher
in the recurrent tumor than in the original lesion, supporting its
high-grade status and aggressive potential.

Taurine and hypotaurine were also significantly elevated (3-fold
and 12-fold, respectively) in the recurrent tumor. While taurine is
considered neuroprotective and is often used to mitigate the side
effects of chemotherapy, recent studies have shown that taurine may
promote energy metabolism and tumor progression in leukemia
(19). The biological significance of hypotaurine and taurine in
glioma metabolism remains poorly understood and warrants
further investigation.

Of particular interest, alanine—long overlooked as a passive
byproduct—has emerged as a key bioenergetic substrate in cancer.
In pancreatic ductal adenocarcinoma (PDAC), alanine released by
stromal cells supports energy metabolism and amino acid
biosynthesis in tumor cells (20). Our own prior work demonstrated
that (3-"*C)alanine serves as a nutrient in patient-derived GBM cells,
contributing to tricarboxylic acid (TCA) cycle intermediates and the
synthesis of nonessential amino acids such as glutamate and aspartate
(15). In the present study, a 6-fold increase in alanine was observed in
the recurrent tumor, suggesting that alanine may support metabolic
plasticity and proliferation in high-grade gliomas. Notably, alanine
has recently been proposed as both a diagnostic marker for IDHwt
status and a prognostic indicator in GBM (14).

In addition to altered amino acid metabolism, we observed
marked dysregulation of cholesterol metabolism in the recurrent
tumor. While both primary and recurrent tumors contained
cholesterol, CEs were detected exclusively in the recurrent tumor
(Figure 3A). The CE/cholesterol ratio in the recurrent tumor was
0.44, indicating that approximately 30% of the cholesterol pool was
esterified. In an autopsied GBM specimen from an end-stage
patient, this ratio further increased to ~70%, underscoring
progressive accumulation of CEs during disease advancement.

Cholesterol esterification is mediated by the enzyme acyl-CoA:
cholesterol acyltransferase (ACAT) in the endoplasmic reticulum and
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serves as a mechanism for storing excess cholesterol in lipid droplets
to support membrane synthesis in proliferating cells (Figure 3C).
Although tightly regulated under physiological conditions, ACAT
activity is dysregulated in cancer, including GBM, where ACAT1 is
frequently overexpressed and CEs get accumulated (21-24). Lipid
droplet formation and CE accumulation have been proposed as
hallmarks of GBM, and several studies have demonstrated that
ACAT inhibition suppresses CE synthesis and reduces tumor cell
viability in GBM models (25-28). Our findings further support the
involvement of cholesterol esterification in glioma progression and
suggest that this pathway may be targetable (29).

In conclusion, our study reveals significant metabolic
alterations associated with glioma progression from diffuse
astrocytoma with TERTp mutation (molecular GBM) to WHO
Grade 4 GBM. In particular, elevated levels of alanine and
accumulation of cholesteryl esters were prominent features of the
recurrent tumor. These findings suggest that alanine may serve as
both a metabolic driver and biomarker of aggressive tumor
behavior, while CE accumulation highlights cholesterol
esterification as a metabolic vulnerability in GBM.

We are currently expanding our study to include a larger cohort
of glioma patients, encompassing various molecular subtypes (e.g.,
IDH-mutant astrocytomas and oligodendrogliomas), and are
generating patient-derived glioma cell lines for in vitro assessment
of metabolic pathways and therapeutic response to ACAT
inhibitors. Follow-up in vivo studies using patient-derived
xenograft (PDX) models are also planned to validate cholesterol
esterification as a therapeutic target.

Ultimately, integrating metabolic profiling with molecular and
histopathological analyses may improve diagnostic accuracy and
guide the development of novel metabolism-targeted therapies for
gliomas—including GBMs and recurrent molecular GBMs.

Methods
Sampling of tumor tissue specimens

Tumor tissue specimens were collected during the initial
surgical resection in April 2018 from four distinct spatial
locations, and from one additional location during a second
surgery in February 2022. All specimens were obtained under
image guidance using the Medtronic AxXiEM"™ workstation and
the StealthStation® navigation system (30). The sampling sites are
illustrated as insets in Figure 2B.

Chemicals and reagents

Methanol, chloroform, and deuterated chloroform (CDCls)
were obtained from Millipore Sigma (St. Louis, MO, USA).
CDCl; containing 0.05% tetramethylsilane (TMS), as well as
deuterium oxide (D,0O), deuterium chloride (DCI), and sodium
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deuteroxide (NaOD), were purchased from Cambridge Isotope
Laboratories (Tewksbury, MA, USA). A 3-(trimethylsilyl)-1-
propane sulfonic acid-dg sodium salt (DSS-dg) solution was
acquired from Chenomx Inc. (Edmonton, Canada).

Methanol-chloroform-water extraction of
tumor tissues

Approximately 50 mg of each tissue specimen was subjected to
metabolite extraction using a methanol-chloroform-water extraction
protocol, as previously described (31). The resulting aqueous
methanol and chloroform phases were separated and were dried
using a vacuum concentrator (CentriVap®, Labconco, Kansas City,
MO). The residues from the aqueous-methanol phase were
reconstituted in 180 uL of D,O containing 1.0 mM DSS-dg4
(internal standard), and the pH was adjusted to 7.4. The residues
from the chloroform phase were dissolved in 180 uL of CDCl;
containing 0.05% TMS (internal standard). All prepared samples
were transferred to 3.0 mm NMR tubes for 'H NMR data acquisition.

'H NMR experiments

One-dimensional ("H) NMR spectra were acquired using a Bruker
800 MHz spectrometer equipped with a cryogenically cooled probe
optimized for 'H/BC detection (Bruker Biospin, Billerica, MA). Data
were collected using a nuclear Overhauser effect spectroscopy
(NOESY) pulse sequence with water suppression. Acquisition
parameters were as follows: number of scans = 128; 90° pulse width
= 8.1 ps; number of time-domain points = 64k; inter-pulse delay = 5.0 s;
spectral width = 9615 Hz; acquisition time = 3.4 s; and mixing time =
100 ms. Prior to Fourier transformation, the free induction decay (FID)
data were multiplied by an exponential window function with a 0.3 Hz
line broadening. Spectral processing and analysis were performed
following protocols established in our prior studies (31, 32).
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